Vitamin b12 transport from food to the body's cells—a sophisticated, multistep pathway

feature-image

Play all audios:

Loading...

ABSTRACT Vitamin B12 (B12; also known as cobalamin) is a cofactor in many metabolic processes; deficiency of this vitamin is associated with megaloblastic anaemia and various neurological


disorders. In contrast to many prokaryotes, humans and other mammals are unable to synthesize B12. Instead, a sophisticated pathway for specific uptake and transport of this molecule has


evolved. Failure in the gastrointestinal part of this pathway is the most common cause of nondietary-induced B12 deficiency disease. However, although less frequent, defects in cellular


processing and further downstream steps in the transport pathway are also known culprits of functional B12 deficiency. Biochemical and genetic approaches have identified novel proteins in


the B12 transport pathway—now known to involve more than 15 gene products—delineating a coherent pathway for B12 trafficking from food to the body's cells. Some of these gene products


are specifically dedicated to B12 transport, whereas others embrace additional roles, which explains the heterogeneity in the clinical picture of the many genetic disorders causing B12


deficiency. This Review describes basic and clinical features of this multistep pathway with emphasis on gastrointestinal transport of B12 and its importance in clinical medicine. KEY POINTS


* A coherent vitamin B12 (B12) transport pathway from food to the body's cells has now been delineated; the pathway includes an ABC transporter for cellular B12 efflux and a receptor


for uptake of B12-bound transcobalamin * More than 15 gene products are involved in B12 transport and/or processing; several new genes encoding intracellular proteins (including a potential


lysosomal transporter of B12) have been identified * Gastrointestinal uptake of B12 is via cubam, the complex of cubilin and amnionless * Novel genetic causes of B12 deficiency disease have


been clarified; many of the new proteins have been identified by positional cloning of the genes harbouring the disease-causing mutations * New diagnostic assays for B12 deficiency are being


developed; plasma level of holo-transcobalamin is a promising biomarker in combination with existing markers Access through your institution Buy or subscribe This is a preview of


subscription content, access via your institution ACCESS OPTIONS Access through your institution Subscribe to this journal Receive 12 print issues and online access $209.00 per year only


$17.42 per issue Learn more Buy this article * Purchase on SpringerLink * Instant access to full article PDF Buy now Prices may be subject to local taxes which are calculated during checkout


ADDITIONAL ACCESS OPTIONS: * Log in * Learn about institutional subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS CLYBL AVERTS VITAMIN B12


DEPLETION BY REPAIRING MALYL-COA Article 19 March 2025 AMINO ACID METABOLISM IN KIDNEY HEALTH AND DISEASE Article 28 August 2024 IRON FROM NANOSTRUCTURED FERRIC PHOSPHATE: ABSORPTION AND


BIODISTRIBUTION IN MICE AND BIOAVAILABILITY IN IRON DEFICIENT ANEMIC WOMEN Article Open access 18 February 2022 REFERENCES * McLean, E., de Benoist, B. & Allen, L. H. Review of the


magnitude of folate and vitamin B12 deficiencies worldwide. _Food Nutr. Bull._ 29 (2 Suppl.), S38–S51 (2008). Article  PubMed  Google Scholar  * Dali-Youcef, N. & Andres, E. An update on


cobalamin deficiency in adults. _QJM_ 102, 17–28 (2009). Article  CAS  PubMed  Google Scholar  * Reynolds, E. Vitamin B12, folic acid, and the nervous system. _Lancet Neurol._ 5, 949–960


(2006). Article  CAS  PubMed  Google Scholar  * Stubbe, J. Binding site revealed of nature's most beautiful cofactor. _Science_ 266, 1663–1664 (1994). Article  CAS  PubMed  Google


Scholar  * Rickes, E. L., Brink, N. G., Koniuszy, F. R., Wood, T. R. & Folkers, K. Crystalline vitamin B12. _Science_ 107, 396–397 (1948). Article  CAS  PubMed  Google Scholar  * Rickes,


E. L., Brink, N. G., Koniuszy, F. R., Wood, T. R. & Folkers, K. Vitamin B12, a cobalt complex. _Science_ 108, 134 (1948). Article  CAS  PubMed  Google Scholar  * Smith, E. L.


Purification of anti-pernicious anaemia factors from liver. _Nature_ 161, 638 (1948). Article  CAS  PubMed  Google Scholar  * Kamper, M. J. & Hodgkin, D. C. Some observations on the


crystal structure of a chlorine-substituted vitamin B12. _Nature_ 176, 551–553 (1955). Article  CAS  PubMed  Google Scholar  * Lindstrand, K. Isolation of methylcobalamin from natural source


material. _Nature_ 10, 188–189 (1964). Article  Google Scholar  * Hodgkin, D. C. _ et al_. Structure of vitamin B12. _Nature_ 178, 64–66 (1956). Article  CAS  PubMed  Google Scholar  *


Martens, J. H., Barg, H., Warren, M. J. & Jahn, D. Microbial production of vitamin B12. _Appl. Microbiol. Biotechnol._ 58, 275–285 (2002). Article  CAS  PubMed  Google Scholar  *


Mathews, F. S. _ et al_. Crystal structure of human intrinsic factor: cobalamin complex at 2.6-A resolution. _Proc. Natl Acad. Sci. USA_ 104, 17311–17316 (2007). Article  PubMed  PubMed


Central  Google Scholar  * Wuerges, J. _ et al_. Structural basis for mammalian vitamin B12 transport by transcobalamin. _Proc. Natl Acad. Sci. USA_ 103, 4386–4391 (2006). Article  CAS 


PubMed  PubMed Central  Google Scholar  * Birn, H. _ et al_. Characterization of an epithelial approximately 460 kDa protein that facilitates endocytosis of intrinsic factor-vitamin B12 and


binds receptor-associated protein. _J. Biol. Chem._ 272, 26497–26504 (1997). Article  CAS  PubMed  Google Scholar  * Kozyraki, R. _ et al_. The human intrinsic factor-vitamin B12 receptor,


cubilin: molecular characterization and chromosomal mapping of the gene to 10p within the autosomal recessive megaloblastic anemia (MGA1) region. _Blood_ 91, 3593–3600 (1998). CAS  PubMed 


Google Scholar  * Hurlimann, J. & Zuber, C. Vitamin B12-binders in human body fluids. I. Antigenic and physico-chemical characteristics. _Clin. Exp. Immunol._ 4, 125–140 (1969). CAS 


PubMed  PubMed Central  Google Scholar  * Gordon, M. M., Hu, C., Chokshi, H., Hewitt, J. E. & Alpers, D. H. Glycosylation is not required for ligand or receptor binding by expressed rat


intrinsic factor. _Am. J. Physiol._ 260, G736–G742 (1991). CAS  PubMed  Google Scholar  * Drennan, C. L., Huang, S., Drummond, J. T., Matthews, R. G. & Lidwig, M. L. How a protein binds


B12: A 3.0 A X-ray structure of B12-binding domains of methionine synthase. _Science_ 266, 1669–1674 (1994). Article  CAS  PubMed  Google Scholar  * Mancia, F. _ et al_. How coenzyme B12


radicals are generated: the crystal structure of methylmalonyl-coenzyme A mutase at 2 A resolution. _Structure_ 4, 339–350 (1996). Article  CAS  PubMed  Google Scholar  * Schwartz, M.


Intrinsic factor antibody in serum from patients with pernicious anaemia. _Lancet_ 2, 1263–1267 (1960). Article  CAS  PubMed  Google Scholar  * Tanner, S. M. _ et al_. Hereditary juvenile


cobalamin deficiency caused by mutations in the intrinsic factor gene. _Proc. Natl Acad. Sci. USA_ 102, 4130–4133 (2005). Article  CAS  PubMed  PubMed Central  Google Scholar  * Castle, W.


B. The etiology of pernicious and related macrocytic anemias. _Science_ 82, 159–164 (1935). Article  CAS  PubMed  Google Scholar  * Li, N., Rosenblatt, D. S. & Seetharam, B. Nonsense


mutations in human transcobalamin II deficiency. _Biochem. Biophys. Res. Commun._ 204, 1111–1118 (1994). Article  CAS  PubMed  Google Scholar  * Li, N., Rosenblatt, D. S., Kamen, B. A.,


Seetharam, S. & Seetharam, B. Identification of two mutant alleles of transcobalamin II in an affected family. _Hum. Mol. Genet._ 3, 1835–1840 (1994). Article  CAS  PubMed  Google


Scholar  * Namour, F. _ et al_. Transcobalamin deficiency due to activation of an intra exonic cryptic splice site. _Br. J. Haematol._ 123, 915–920 (2003). Article  CAS  PubMed  Google


Scholar  * Nissen, P. H., Nordwall, M., Hoffmann-Lucke, E., Sorensen, B. S. & Nexo, E. Transcobalamin deficiency caused by compound heterozygosity for two novel mutations in the TCN2


gene: a study of two affected siblings, their brother, and their parents. _J. Inherit. Metab. Dis._ http://dx.doi.org/10.1007/s10545-010-9145-z. * Qian, L., Quadros, E. V., Regec, A.,


Zittoun, J. & Rothenberg, S. P. Congenital transcobalamin II deficiency due to errors in RNA editing. _Blood Cells Mol. Dis._ 28, 134–142 (2002). Article  PubMed  Google Scholar  *


Hygum, K. _ et al_. Mouse transcobalamin has features resembling both human transcobalamin and haptocorrin. _PLoS ONE_ 6, e20638 (2011). Article  CAS  PubMed  PubMed Central  Google Scholar


  * Morkbak, A. L., Poulsen, S. S. & Nexo, E. Haptocorrin in humans. _Clin. Chem. Lab. Med._ 45, 1751–1759 (2007). Article  CAS  PubMed  Google Scholar  * Allen, R. H. & Stabler, S.


P. Identification and quantitation of cobalamin and cobalamin analogues in human feces. _Am. J. Clin. Nutr._ 87, 1324–1335 (2008). Article  CAS  PubMed  Google Scholar  * Hardlei, T. F.


& Nexo, E. A new principle for measurement of cobalamin and corrinoids, used for studies of cobalamin analogs on serum haptocorrin. _Clin. Chem._ 55, 1002–1010 (2009). Article  CAS 


PubMed  Google Scholar  * Green, R. Ins and outs of cellular cobalamin transport. _Blood_ 115, 1476–1477 (2010). Article  CAS  PubMed  Google Scholar  * Quadros, E. V. Advances in the


understanding of cobalamin assimilation and metabolism. _Br. J. Haematol._ 148, 195–204 (2010). Article  CAS  PubMed  Google Scholar  * Nexo, E. & Hoffmann-Lucke, E. Holotranscobalamin,


a marker of vitamin B-12 status: analytical aspects and clinical utility. _Am. J. Clin. Nutr._ 94, 359S–365S (2011). Article  CAS  PubMed  PubMed Central  Google Scholar  * Hvas, A. M. &


Nexo, E. Diagnosis and treatment of vitamin B12 deficiency—an update. _Haematologica_ 91, 1506–1512 (2006). CAS  PubMed  Google Scholar  * Green, R. Indicators for assessing folate and


vitamin B12 status and for monitoring the efficacy of intervention strategies. _Food Nutr. Bull._ 29, S52–S63 (2008). Article  PubMed  Google Scholar  * Refsum, H. _ et al_. Facts and


recommendations about total homocysteine determinations: an expert opinion. _Clin. Chem._ 50, 3–32 (2004). Article  CAS  PubMed  Google Scholar  * Savage, D. G., Lindenbaum, J., Stabler, S.


P. & Allen, R. H. Sensitivity of serum methylmalonic acid and total homocysteine determinations for diagnosing cobalamin and folate deficiencies. _Am. J. Med._ 96, 239–246 (1994).


Article  CAS  PubMed  Google Scholar  * Allen, R. H., Seetharam, B., Podell, E. & Alpers, D. H. Effect of proteolytic enzymes on the binding of cobalamin to R protein and intrinsic


factor. _In vitro_ evidence that a failure to partially degrade R protein is responsible for cobalamin malabsorption in pancreatic insufficiency. _J. Clin. Invest._ 61, 47–54 (1978). Article


  CAS  PubMed  PubMed Central  Google Scholar  * Seetharam, B., Levine, J. S., Ramasamy, M. & Alpers, D. H. Purification, properties, and immunochemical localization of a receptor for


intrinsic factor-cobalamin complex in the rat kidney. _J. Biol. Chem._ 263, 4443–4449 (1988). CAS  PubMed  Google Scholar  * Seetharam, B., Christensen, E. I., Moestrup, S. K., Hammond, T.


G. & Verroust, P. J. Identification of rat yolk sac target protein of teratogenic antibodies, gp280, as intrinsic factor-cobalamin receptor. _J. Clin. Invest._ 99, 2317–2322 (1997).


Article  CAS  PubMed  PubMed Central  Google Scholar  * Moestrup, S. K. _ et al_. The intrinsic factor—vitamin B12 receptor and target of teratogenic antibodies is a megalin-binding


peripheral membrane protein with homology to developmental proteins. _J. Biol. Chem._ 273, 5235–5242 (1998). Article  CAS  PubMed  Google Scholar  * Fyfe, J. C. _ et al_. The functional


cobalamin (vitamin B12)-intrinsic factor receptor is a novel complex of cubilin and amnionless. _Blood_ 103, 1573–1579 (2004). Article  CAS  PubMed  Google Scholar  * Sahali, D. _ et al_.


Characterization of a 280-kD protein restricted to the coated pits of the renal brush border and the epithelial cells of the yolk sac. Teratogenic effect of the specific monoclonal


antibodies. _J. Exp. Med._ 167, 213–218 (1988). Article  CAS  PubMed  Google Scholar  * He, Q. _ et al_. Amnionless function is required for cubilin brush-border expression and intrinsic


factor-cobalamin (vitamin B12) absorption _in vivo_. _Blood_ 106, 1447–1453 (2005). Article  CAS  PubMed  PubMed Central  Google Scholar  * Kalantry, S. _ et al_. The amnionless gene,


essential for mouse gastrulation, encodes a visceral-endoderm-specific protein with an extracellular cysteine-rich domain. _Nat. Genet._ 27, 412–416 (2001). Article  CAS  PubMed  Google


Scholar  * Strope, S., Rivi, R., Metzger, T., Manova, K. & Lacy, E. Mouse amnionless, which is required for primitive streak assembly, mediates cell-surface localization and endocytic


function of cubilin on visceral endoderm and kidney proximal tubules. _Development_ 131, 4787–4795 (2004). Article  CAS  PubMed  Google Scholar  * Tanner, S. M. _ et al_. Amnionless,


essential for mouse gastrulation, is mutated in recessive hereditary megaloblastic anemia. _Nat. Genet._ 33, 426–429 (2003). Article  CAS  PubMed  Google Scholar  * Kristiansen, M. _ et al_.


Molecular dissection of the intrinsic factor-vitamin B12 receptor, cubilin, discloses regions important for membrane association and ligand binding. _J. Biol. Chem._ 274, 20540–20544


(1999). Article  CAS  PubMed  Google Scholar  * Andersen, C. B., Madsen, M., Storm, T., Moestrup, S. K. & Andersen, G. R. Structural basis for receptor recognition of


vitamin-B(12)-intrinsic factor complexes. _Nature_ 464, 445–448 (2010). Article  CAS  PubMed  Google Scholar  * Birn, H. _ et al_. Cubilin is an albumin binding protein important for renal


tubular albumin reabsorption. _J. Clin. Invest._ 105, 1353–1361 (2000). Article  CAS  PubMed  PubMed Central  Google Scholar  * Kozyraki, R. _ et al_. The intrinsic factor—vitamin B12


receptor, cubilin, is a high-affinity apolipoprotein A-I receptor facilitating endocytosis of high-density lipoprotein. _Nat. Med._ 5, 656–661 (1999). Article  CAS  PubMed  Google Scholar  *


Zhai, X. Y. _ et al_. Cubilin- and megalin-mediated uptake of albumin in cultured proximal tubule cells of opossum kidney. _Kidney Int._ 58, 1523–1533 (2000). Article  CAS  PubMed  Google


Scholar  * Pedersen, G. A., Chakraborty, S., Steinhauser, A. L., Traub, L. M. & Madsen, M. AMN directs endocytosis of the intrinsic factor-vitamin B(12) receptor cubam by engaging ARH or


Dab2. _Traffic_ 11, 706–720 (2010). Article  CAS  PubMed  PubMed Central  Google Scholar  * Coudroy, G. _ et al_. Contribution of cubilin and amnionless to processing and membrane targeting


of cubilin-amnionless complex. _J. Am. Soc. Nephrol._ 16, 2330–2337 (2005). Article  CAS  PubMed  Google Scholar  * Fyfe, J. C., Ramanujam, K. S., Ramaswamy, K., Patterson, D. F. &


Seetharam, B. Defective brush-border expression of intrinsic factor-cobalamin receptor in canine inherited intestinal cobalamin malabsorption. _J. Biol. Chem._ 266, 4489–4494 (1991). CAS 


PubMed  Google Scholar  * Namour, F. _ et al_. Luminal expression of cubilin is impaired in Imerslund-Grasbeck syndrome with compound AMN mutations in intron 3 and exon 7. _Haematologica_


96, 1715–1719 (2011). Article  CAS  PubMed  PubMed Central  Google Scholar  * Storm, T. _ et al_. A patient with cubilin deficiency. _N. Engl. J. Med._ 364, 89–91 (2011). Article  CAS 


PubMed  Google Scholar  * Xu, D., Kozyraki, R., Newman, T. C. & Fyfe, J. C. Genetic evidence of an accessory activity required specifically for cubilin brush-border expression and


intrinsic factor-cobalamin absorption. _Blood_ 94, 3604–3606 (1999). CAS  PubMed  Google Scholar  * Grasbeck, R., Gordin, R., Kantero, I. & Kuhlback, B. Selective vitamin B12


malabsorption and proteinuria in young people. A syndrome. _Acta Med. Scand._ 167, 289–296 (1960). Article  CAS  PubMed  Google Scholar  * Imerslund, O. Idiopathic chronic megaloblastic


anemia in children. _Acta Paediatr. Suppl._ 49 (Suppl. 119), 1–115 (1960). Google Scholar  * Aminoff, M. _ et al_. Mutations in CUBN, encoding the intrinsic factor-vitamin B12 receptor,


cubilin, cause hereditary megaloblastic anaemia 1. _Nat. Genet._ 21, 309–313 (1999). Article  CAS  PubMed  Google Scholar  * He, Q. _ et al_. Canine Imerslund-Grasbeck syndrome maps to a


region orthologous to HSA14q. _Mamm. Genome_ 14, 758–764 (2003). Article  CAS  PubMed  Google Scholar  * Kristiansen, M. _ et al_. Cubilin P1297L mutation associated with hereditary


megaloblastic anemia 1 causes impaired recognition of intrinsic factor-vitamin B(12) by cubilin. _Blood_ 96, 405–409 (2000). CAS  PubMed  Google Scholar  * Rutsch, F. _ et al_.


Identification of a putative lysosomal cobalamin exporter altered in the cblF defect of vitamin B12 metabolism. _Nat. Genet._ 41, 234–239 (2009). Article  CAS  PubMed  Google Scholar  *


Rosenblatt, D. S., Hosack, A., Matiaszuk, N. V., Cooper, B. A. & Laframboise, R. Defect in vitamin B12 release from lysosomes: newly described inborn error of vitamin B12 metabolism.


_Science_ 228, 1319–1321 (1985). Article  CAS  PubMed  Google Scholar  * Froese, D. S. & Gravel, R. A. Genetic disorders of vitamin B metabolism: eight complementation groups—eight


genes. _Expert Rev. Mol. Med._ 12, e37 (2010). Article  CAS  PubMed  PubMed Central  Google Scholar  * Banerjee, R., Gherasim, C. & Padovani, D. The tinker, tailor, soldier in


intracellular B12 trafficking. _Curr. Opin. Chem. Biol._ 13, 484–491 (2009). Article  CAS  PubMed  PubMed Central  Google Scholar  * Hannibal, L. _ et al_. Processing of alkylcobalamins in


mammalian cells: a role for the MMACHC (cblC) gene product. _Mol. Genet. Metab._ 97, 260–266 (2009). Article  CAS  PubMed  PubMed Central  Google Scholar  * Lerner-Ellis, J. P. _ et al_.


Identification of the gene responsible for methylmalonic aciduria and homocystinuria, cblC type. _Nat. Genet._ 38, 93–100 (2006). Article  CAS  PubMed  Google Scholar  * Kim, J., Gherasim,


C. & Banerjee, R. Decyanation of vitamin B12 by a trafficking chaperone. _Proc. Natl Acad. Sci. USA_ 105, 14551–14554 (2008). Article  PubMed  PubMed Central  Google Scholar  * Kim, J.,


Hannibal, L., Gherasim, C., Jacobsen, D. W. & Banerjee, R. A human vitamin B12 trafficking protein uses glutathione transferase activity for processing alkylcobalamins. _J. Biol. Chem._


284, 33418–33424 (2009). Article  CAS  PubMed  PubMed Central  Google Scholar  * Coelho, D. _ et al_. Gene identification for the cblD defect of vitamin B12 metabolism. _N. Engl. J. Med._


358, 1454–1464 (2008). Article  CAS  PubMed  Google Scholar  * Miousse, I. R. _ et al_. Clinical and molecular heterogeneity in patients with the cblD inborn error of cobalamin metabolism.


_J. Pediatr._ 154, 551–556 (2009). Article  CAS  PubMed  Google Scholar  * Suormala, T. _ et al_. The cblD defect causes either isolated or combined deficiency of methylcobalamin and


adenosylcobalamin synthesis. _J. Biol. Chem._ 279, 42742–42749 (2004). Article  CAS  PubMed  Google Scholar  * Beedholm-Ebsen, R. _ et al_. Identification of multidrug resistance protein 1


(MRP1/ABCC1) as a molecular gate for cellular export of cobalamin. _Blood_ 115, 1632–1639 (2010). Article  CAS  PubMed  Google Scholar  * Bakos, E. & Homolya, L. Portrait of multifaceted


transporter, the multidrug resistance-associated protein 1 (MRP1/ABCC1). _Pflugers Arch._ 453, 621–641 (2007). Article  CAS  PubMed  Google Scholar  * Cole, S. P. _ et al_. Overexpression


of a transporter gene in a multidrug-resistant human lung cancer cell line. _Science_ 258, 1650–1654 (1992). Article  CAS  PubMed  Google Scholar  * Flens, M. J. _ et al_. Tissue


distribution of the multidrug resistance protein. _Am. J. Pathol._ 148, 1237–1247 (1996). CAS  PubMed  PubMed Central  Google Scholar  * Peng, K. C. _ et al_. Tissue and cell distribution of


the multidrug resistance-associated protein (MRP) in mouse intestine and kidney. _J. Histochem. Cytochem._ 47, 757–768 (1999). Article  CAS  PubMed  Google Scholar  * Ostray, F. & Gams,


R. A. Cellular fluxes of vitamin B12. _Blood_ 50, 877–888 (1977). CAS  PubMed  Google Scholar  * Ramasamy, M., Alpers, D. H., Tiruppathi, C. & Seetharam, B. Cobalamin release from


intrinsic factor and transfer to transcobalamin II within the rat enterocyte. _Am. J. Physiol._ 257, G791–G797 (1989). CAS  PubMed  Google Scholar  * Seetharam, B. & Yammani, R. R.


Cobalamin transport proteins and their cell-surface receptors. _Expert Rev. Mol. Med._ 5, 1–18 (2003). Article  PubMed  Google Scholar  * Schilling, R. F. Intrinsic factor studies II. The


effect of gastric juice on the urinary excretion of radioactivity after the oral administration of radioactive vitamin B12. _J. Lab. Clin. Med._ 42, 860–866 (1953). CAS  PubMed  Google


Scholar  * Shah, N. P., Beech, C. M., Sturm, A. C. & Tanner, S. M. Investigation of the ABC transporter MRP1 in selected patients with presumed defects in vitamin B12 absorption. _Blood_


117, 4397–4398 (2011). Article  CAS  PubMed  Google Scholar  * Deeley, R. G., Westlake, C. & Cole, S. P. Transmembrane transport of endo- and xenobiotics by mammalian ATP-binding


cassette multidrug resistance proteins. _Physiol. Rev._ 86, 849–899 (2006). Article  CAS  PubMed  Google Scholar  * Hall, C. A. The carriers of native vitamin B12 in normal human serum.


_Clin. Sci. Mol. Med._ 53, 453–457 (1977). CAS  PubMed  Google Scholar  * Quadros, E. V., Nakayama, Y. & Sequeira, J. M. The protein and the gene encoding the receptor for the cellular


uptake of transcobalamin-bound cobalamin. _Blood_ 113, 186–192 (2009). Article  CAS  PubMed  PubMed Central  Google Scholar  * Bose, S., Seetharam, S. & Seetharam, B. Membrane expression


and interactions of human transcobalamin II receptor. _J. Biol. Chem._ 270, 8152–8157 (1995). Article  CAS  PubMed  Google Scholar  * Nexo, E. & Hollenberg, M. D. Characterization of


the particulate and soluble acceptor for transcobalamin II from human placenta and rabbit liver. _Biochim. Biophys. Acta_ 628, 190–200 (1980). Article  CAS  PubMed  Google Scholar  *


Seligman, P. A. & Allen, R. H. Characterization of the receptor for transcobalamin II isolated from human placenta. _J. Biol. Chem._ 253, 1766–1772 (1978). CAS  PubMed  Google Scholar  *


Amagasaki, T., Green, R. & Jacobsen, D. W. Expression of transcobalamin II receptors by human leukemia K562 and HL-60 cells. _Blood_ 76, 1380–1386 (1990). CAS  PubMed  Google Scholar  *


Cho, W. _ et al_. Expression of CD320 in human B cells in addition to follicular dendritic cells. _BMB Rep._ 41, 863–867 (2008). Article  CAS  PubMed  Google Scholar  * Park, H. J., Kim, J.


Y., Jung, K. I. & Kim, T. J. Characterization of a novel nene in the nxtended MHC region of mouse, NG29/Cd320, a homolog of the human CD320. _Immune Netw._ 9, 138–146 (2009). Article 


PubMed  PubMed Central  Google Scholar  * Arendt, J. F., Quadros, E. V. & Nexo, E. Soluble transcobalamin receptor, sCD320, is present in human serum and relates to serum


cobalamin—establishment and validation of an ELISA. _Clin. Chem. Lab Med._ http://dx/doi.org/10.1515/cclm.2011.810. * Quadros, E. V. & Jacobsen, D. W. The dynamics of cobalamin


utilization in L-1210 mouse leukemia cells: a model of cellular cobalamin metabolism. _Biochim. Biophys. Acta_ 1244, 395–403 (1995). Article  CAS  PubMed  Google Scholar  * Youngdahl-Turner,


P., Rosenberg, L. E. & Allen, R. H. Binding and uptake of transcobalamin II by human fibroblasts. _J. Clin. Invest._ 61, 133–141 (1978). Article  CAS  PubMed  PubMed Central  Google


Scholar  * Quadros, E. V. _ et al_. Positive newborn screen for methylmalonic aciduria identifies the first mutation in TCblR/CD320, the gene for cellular uptake of transcobalamin-bound


vitamin B(12). _Hum. Mutat._ 31, 924–929 (2010). Article  CAS  PubMed  PubMed Central  Google Scholar  * Birn, H., Nexo, E., Christensen, E. I. & Nielsen, R. Diversity in rat tissue


accumulation of vitamin B12 supports a distinct role for the kidney in vitamin B12 homeostasis. _Nephrol. Dial. Transplant._ 18, 1095–1100 (2003). Article  CAS  PubMed  Google Scholar  *


Moestrup, S. K. _ et al_. Megalin-mediated endocytosis of transcobalamin-vitamin-B12 complexes suggests a role of the receptor in vitamin-B12 homeostasis. _Proc. Natl Acad. Sci. USA_ 93,


8612–8617 (1996). Article  CAS  PubMed  PubMed Central  Google Scholar  * Burger, R. L., Schneider, R. J., Mehlman, C. S. & Allen, R. H. Human plasma R-type vitamin B12-binding proteins.


II. The role of transcobalamin I, transcobalamin III, and the normal granulocyte vitamin B12-binding protein in the plasma transport of vitamin B12. _J. Biol. Chem._ 250, 7707–7713 (1975).


CAS  PubMed  Google Scholar  * Birn, H. _ et al_. Megalin is essential for renal proximal tubule reabsorption and accumulation of transcobalamin-B(12). _Am. J. Physiol. Renal Physiol._ 282,


F408–F416 (2002). Article  CAS  PubMed  Google Scholar  * Birn, H. The kidney in vitamin B12 and folate homeostasis: characterization of receptors for tubular uptake of vitamins and carrier


proteins. _Am. J. Physiol. Renal Physiol._ 291, F22–F36 (2006). Article  CAS  PubMed  Google Scholar  * Newmark, P., Newman, G. E. & O'Brien, J. R. Vitamin B12 in the rat kidney.


Evidence for an association with lysosomes. _Arch. Biochem. Biophys._ 141, 121–130 (1970). Article  CAS  PubMed  Google Scholar  * Hammad, S. M., Barth, J. L., Knaak, C. & Argraves, W.


S. Megalin acts in concert with cubilin to mediate endocytosis of high density lipoproteins. _J. Biol. Chem._ 275, 12003–12008 (2000). Article  CAS  PubMed  Google Scholar  * Kozyraki, R. _


et al_. Megalin-dependent cubilin-mediated endocytosis is a major pathway for the apical uptake of transferrin in polarized epithelia. _Proc. Natl Acad. Sci. USA_ 98, 12491–12496 (2001).


Article  CAS  PubMed  PubMed Central  Google Scholar  * Leheste, J. R. _ et al_. Megalin knockout mice as an animal model of low molecular weight proteinuria. _Am. J. Pathol._ 155, 1361–1370


(1999). Article  CAS  PubMed  PubMed Central  Google Scholar  * Nagai, J. _ et al_. Mutually dependent localization of megalin and Dab2 in the renal proximal tubule. _Am. J. Physiol. Renal


Physiol._ 289, F569–F576 (2005). Article  CAS  PubMed  Google Scholar  * Green, R. Is it time for vitamin B-12 fortification? What are the questions? _Am. J. Clin. Nutr._ 89, 712S–716S


(2009). Article  CAS  PubMed  PubMed Central  Google Scholar  * Hvas, A. M., Morkbak, A. L., Hardlei, T. F. & Nexo, E. The vitamin B12 absorption test, CobaSorb, identifies patients not


requiring vitamin B12 injection therapy. _Scand. J. Clin. Lab. Invest._ 71, 432–438 (2011). Article  CAS  PubMed  Google Scholar  * Fedosov, S. N. _ et al_. Human intrinsic factor expressed


in the plant Arabidopsis thaliana. _Eur. J. Biochem._ 270, 3362–3367 (2003). Article  CAS  PubMed  Google Scholar  * Kuzminski, A. M., Del Giacco, E. J., Allen, R. H., Stabler, S. P. &


Lindenbaum, J. Effective treatment of cobalamin deficiency with oral cobalamin. _Blood_ 92, 1191–1198 (1998). CAS  PubMed  Google Scholar  * Clardy, S. M., Allis, D. G., Fairchild, T. J.


& Doyle, R. P. Vitamin B12 in drug delivery: breaking through the barriers to a B12 bioconjugate pharmaceutical. _Expert Opin. Drug Deliv._ 8, 127–140 (2011). Article  CAS  PubMed 


Google Scholar  * Quadros, E. V., Nakayama, Y. & Sequeira, J. M. Targeted delivery of saporin toxin by monoclonal antibody to the transcobalamin receptor, TCblR/CD320. _Mol. Cancer


Ther._ 9, 3033–3040 (2010). Article  CAS  PubMed  PubMed Central  Google Scholar  Download references ACKNOWLEDGEMENTS This study was supported by the Novo Nordisk Foundation, the Lundbeck


Foundation, the Danish Medical Research Council and the European Research Council. AUTHOR INFORMATION AUTHORS AND AFFILIATIONS * Department of Biomedicine, Aarhus University, Ole Worms Allé


3, Building 1170, Aarhus, 8000, Denmark Marianne J. Nielsen, Mie R. Rasmussen, Christian B. F. Andersen & Søren K. Moestrup * Department of Clinical Biochemistry, Aarhus University


Hospital, Norrebrogade, Aarhus, 8000, Denmark Ebba Nexø Authors * Marianne J. Nielsen View author publications You can also search for this author inPubMed Google Scholar * Mie R. Rasmussen


View author publications You can also search for this author inPubMed Google Scholar * Christian B. F. Andersen View author publications You can also search for this author inPubMed Google


Scholar * Ebba Nexø View author publications You can also search for this author inPubMed Google Scholar * Søren K. Moestrup View author publications You can also search for this author


inPubMed Google Scholar CONTRIBUTIONS M. J. Nielsen contributed to the writing and reviewing/editing of the manuscript. M. R. Rasmussen and C. B. F. Andersen researched data. E. Nexø


researched data and contributed to reviewing/editing the manuscript. S. K. Moestrup contributed to all aspects of this manuscript. CORRESPONDING AUTHOR Correspondence to Søren K. Moestrup.


ETHICS DECLARATIONS COMPETING INTERESTS The authors declare no competing financial interests. RIGHTS AND PERMISSIONS Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Nielsen,


M., Rasmussen, M., Andersen, C. _et al._ Vitamin B12 transport from food to the body's cells—a sophisticated, multistep pathway. _Nat Rev Gastroenterol Hepatol_ 9, 345–354 (2012).


https://doi.org/10.1038/nrgastro.2012.76 Download citation * Published: 01 May 2012 * Issue Date: June 2012 * DOI: https://doi.org/10.1038/nrgastro.2012.76 SHARE THIS ARTICLE Anyone you


share the following link with will be able to read this content: Get shareable link Sorry, a shareable link is not currently available for this article. Copy to clipboard Provided by the


Springer Nature SharedIt content-sharing initiative