The expression of glutamate transporter glt-1 in the rat cerebral cortex is down-regulated by the antipsychotic drug clozapine

feature-image

Play all audios:

Loading...

ABSTRACT We show here that clozapine, a beneficial antipsychotic, down-regulates the expression of the glutamate transporter GLT-1 in the rat cerebral cortex, thereby reducing glutamate


transport and raising extracellular glutamate levels. Clozapine treatment (25–35 mg kg−1 day−1 orally) reduced GLT-1 immunoreactivity in several brain regions after 3 weeks; this effect was


most prominent after 9 weeks and most evident in the frontal cortex. GLT-1 protein levels were reduced in the cerebral cortex of treated rats compared with controls and were more severely


affected in the anterior (71.9 ± 4.5%) than in the posterior (53.2 ± 15.4%) cortex. L-[3H]-glutamate uptake in _Xenopus laevis_ oocytes injected with mRNA extracted from the anterior


cerebral cortex of rats treated for 9 weeks was remarkably reduced (to 30.6 ± 8.6%) as compared to controls. In addition, electrophysiological recordings from oocytes following application


of glutamate revealed a strong reduction in glutamate uptake currents (46.3 ± 10.2%) as compared to controls. Finally, clozapine treatment led to increases in both the mean basal (8.1 ± 0.7 


μM) and the KCl-evoked (28.7 ± 7.7 μM) output of glutamate that were 3.1 and 3.5, respectively, higher than in control rats. These findings indicate that clozapine may potentiate


glutamatergic synaptic transmission by regulating glutamate transport. Access through your institution Buy or subscribe This is a preview of subscription content, access via your institution


ACCESS OPTIONS Access through your institution Subscribe to this journal Receive 12 print issues and online access $259.00 per year only $21.58 per issue Learn more Buy this article *


Purchase on SpringerLink * Instant access to full article PDF Buy now Prices may be subject to local taxes which are calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in * Learn


about institutional subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS ASTROCYTES MODULATE EXTRACELLULAR NEUROTRANSMITTER LEVELS AND EXCITATORY


NEUROTRANSMISSION IN DORSOLATERAL STRIATUM VIA DOPAMINE D2 RECEPTOR SIGNALING Article 22 November 2021 MGLUR5 PAMS RESCUE CORTICAL AND BEHAVIOURAL DEFECTS IN A MOUSE MODEL OF CDKL5


DEFICIENCY DISORDER Article 09 August 2022 GLUTAMATERGIC DYSFUNCTION IN SCHIZOPHRENIA Article Open access 03 December 2022 REFERENCES * Olney JW, Farber NB . Glutamate receptor dysfunction


and schizophrenia _Arch Gen Psychiatry_ 1995 52: 998–1007 Article  CAS  Google Scholar  * Tsai G, Passani L, Slusher BS, Carter R, Baer L, Kleinmann JE _et al_. Abnormal excitatory


neurotransmitter metabolism in schizophrenic brains _Arch Gen Psychiatry_ 1995 52: 829–836 Article  CAS  Google Scholar  * Akbarian S, Sucher NJ, Bradley D, Tafazzoli A, Trinh D, Hetrick WP


_et al_. Selective alterations in gene expression for NMDA receptor subunits in prefrontal cortex of schizophrenics _J Neurosci_ 1996 16: 19–30 Article  CAS  Google Scholar  * Benes FM . The


role of glutamate in the pathophysiology of schizophrenia. In: Conti F, Hicks TP (eds) _Excitatory Amino Acids and the Cerebral Cortex_ Cambridge: MIT 1996 pp ;361–374 Google Scholar  *


Carlsson A, Hansson LO, Waters N, Carlsson ML . A glutamatergic deficiency model of schizophrenia _Br J Psychiatry_ 1999 174(37S): 2–6 Article  Google Scholar  * Mohn AR, Gainetdinov RR,


Caron MG, Koller BH . Mice with reduced NMDA receptor expression display behaviors related to schizophrenia _Cell_ 1999 98: 427–436 Article  CAS  Google Scholar  * Tamminga C . Glutamatergic


aspects of schizophrenia _Br J Psychiatry_ 1999 174(37S): 12–15 Article  Google Scholar  * Meador-Woodruff JH, Healy DJ . Glutamate receptor expression in schizophrenic brain _Brain Res


Rev_ 2000 31: 288–294 Article  CAS  Google Scholar  * Javitt DC, Zukin SR . Recent advances in the phencyclidine model of schizophrenia _Am J Psychiatry_ 1991 148: 1301–1308 Article  CAS 


Google Scholar  * Conti F, Weinberg RJ . Shaping excitation at glutamatergic synapses _Trends Neurosci_ 1999 22: 451–458 Article  CAS  Google Scholar  * Rothstein JD, Dykes-Hoberg M, Pardo


CA, Bristol LA, Jin L, Kuncl RW _et al_. Knockout of glutamate transporters reveals a major role for astroglial transport in excitotoxicity and clearance of glutamate _Neuron_ 1996 16:


675–686 Article  CAS  Google Scholar  * Tanaka K, Watase K, Manabe T, Yamada K, Watanabe M, Takahashi K _et al_. Epilepsy and exacerbation of brain injury in mice lacking the glutamate


transporter GLT-1 _Science_ 1997 276: 1699–1702 Article  CAS  Google Scholar  * Fitzgerald LW, Deutch AY, Gasic G, Heinemann SF, Nestler EJ . Regulation of cortical and subcortical glutamate


receptor subunit expression by antipsychotic drugs _J Neurosci_ 1995 15: 2453–2461 Article  CAS  Google Scholar  * Duncan GE, Zorn S, Lieberman JA . Mechanisms of typical and atypical


antipsychotic drug action in relation to dopamine and NMDA receptor hypofunction hypotheses of schizophrenia _Mol Psychiatry_ 1999 4: 418–428 Article  CAS  Google Scholar  * Wahlbeck K,


Cheine M, Essali A, Adams C . Evidence of clozapine's effectiveness in schizophrenia: a systematic review and meta-analysis of randomized trials _Am J Psychiatry_ 1999 156: 990–999 CAS


  PubMed  Google Scholar  * See RE, Ellison G . Comparison of chronic administration of haloperidol and the atypical neuroleptics, clozapine and raclopride, in an animal model of tardive


dyskinesia _Eur J Pharmacol_ 1990 181: 175–186 Article  CAS  Google Scholar  * Rupniak NMJ, Mann S, Hall MD, Fleminger S, Kilpatrick G, Jenner P _et al_. Differential effects of continuous


administration for 1 year of haloperidol or sulpiride on striatal dopamine function _Psychopharmacology_ 1984 84: 503–511 Article  CAS  Google Scholar  * Titeler M, Seeman P . Radioligand


labeling of pre- and postsynaptic dopamine receptors _Adv Biochem Psychopharmacol_ 1980 24: 159–165 CAS  PubMed  Google Scholar  * Wilk S, Stanley M . Clozapine concentrations in brain


regions: relationship to dopamine metabolite increase _Eur J Pharmacol_ 1978 51: 101–107 Article  CAS  Google Scholar  * Baldessarini RJ, Centorrino F, Flood JG, Volpicelli SA, Huston-Lyons


D, Cohen BM . Tissue concentrations of clozapine and its metabolities in the rat _Neuropsychopharmacology_ 1993 9: 117–124 Article  CAS  Google Scholar  * Gao XM, Hashimoto T, Cooper TB,


Tamminga CA . The dose-response characteristics of rat oral dyskinesias with chronic haloperidol or clozapine administration _J Neural Transm_ 1997 104: 97–104 Article  CAS  Google Scholar 


* Fischer V, Schmitt U, Weigmann H, Von Keller B, Reuss S, Hiemke C _et al_. Chronical haloperidol and clozapine treatment in rats: differential RNA display analysis, behavioral and serum


level determination _Prog Neuropsychopharmacol Biol Psychiatry_ 1998 22: 1129–1139 Article  CAS  Google Scholar  * Paxinos G, Watson C . _The Rat Brain in Stereotaxic Coordinates_ Academic


Press: New York 1982 Google Scholar  * Conti F, De Biasi S, Minelli A, Rothstein JD, Melone M . EAAC1, a high-affinity glutamate transporter, is localized to neurons and astrocytes in the


cerebral cortex _Cereb Cortex_ 1998 8: 108–116 Article  CAS  Google Scholar  * Rothstein JD, Martin L, Levey AI, Dykes-Hoberg M, Jin L, Wu D _et al_. Localization of neuronal and glial


glutamate transporters _Neuron_ 1994 13: 713–725 Article  CAS  Google Scholar  * Minelli A, DeBiasi S, Brecha NC, Vitellaro Zuccarello L, Conti F . GAT-3, a high affinity GABA plasma


membrane transporter, is localized exclusively to astrocytic processes in the cerebral cortex _J Neurosci_ 1996 16: 6255–6264 Article  CAS  Google Scholar  * Chomsczynski P, Sacchi N .


Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction _Anal Biochem_ 1987 162: 156–159 Google Scholar  * Matute C, Miledi R . Neurotransmitter


receptors and voltage-dependent Ca2+ channels encoded by mRNA from the adult corpus callosum _Proc Natl Acad Sci USA_ 1993 90: 3270–3274 Article  CAS  Google Scholar  * Domercq M,


Sánchez-Gómez MV, Areso P, Matute C . Expression of glutamate transporters in rat optic nerve oligodendrocytes _Eur J Neurosci_ 1999 11: 2226–2236 Article  CAS  Google Scholar  *


Pellegrini-Giampietro DE, Peruginelli F, Meli E, Cozzi A, Albani-Torregrossa S, Pellicciari R _et al_. Protection with metabotropic glutamate 1 receptor antagonists in models of ischemic


neuronal death: time-course and mechanisms _Neuropharmacology_ 1999 38: 1607–1619 Article  CAS  Google Scholar  * Pines G, Danbolt NC, Bjoras M, Zhang Y, Bendaham A, Eide L _et al_. Cloning


and expression of a rat brain L-glutamate transporter _Nature_ 1992 360: 464–467 Article  CAS  Google Scholar  * Meltzer HY . Pre-clinical pharmacology of atypical antipsychotic drugs: a


selective review _Br J Psychiatry_ 1996 168 (SUPPL 29): 23–31 Article  Google Scholar  * Leveque J-C, Macias W, Rajadhyaksha A, Carlson RR, Barczak A, Kang S _et al_. Intracellular


modulation of NMDA receptor function by antipsychotic drugs _J Neurosci_ 2000 20: 4011–4020 Article  CAS  Google Scholar  * Baldessarini RJ, Frankenburg FR . Clozapine. A novel antipsychotic


agent _New Engl J Med_ 1991 324: 746–754 Article  CAS  Google Scholar  * Allison DB, Mentore JL, Heo M, Chandler LP, Cappelleri JC, Infante MC _et al_. Antipsychotic-induced weight gain: a


comprehensive research synthesis _Am J Psychiatry_ 1999 156: 1686–1696 CAS  Google Scholar  * Bustillo JR, Buchanan RW, Irish D, Breier A . Differential effect of clozapine on weight: a


controlled study _Am J Psychiatry_ 1996 153: 817–819 Article  CAS  Google Scholar  * Bromel T, Blum WF, Ziegler A, Schulz E, Bender M, Fleischhaker C _et al_. Serum leptin levels increase


rapidly after initiation of clozapine therapy _Mol Psychiatry_ 1998 3: 76–80 Article  CAS  Google Scholar  * Schneider JS, Wade T, Lidsky TI . Chronic neuroleptic treatment alters expression


of glial glutamate transporter GLT-1 mRNA in the striatum _NeuroReport_ 1998 9: 133–136 Article  CAS  Google Scholar  * Daly DA, Moghaddam B . Actions of clozapine and haloperidol on the


extracellular levels of excitatory amino acids in the prefrontal cortex and striatum of conscious rats _Neurosci Lett_ 1993 152: 61–64 Article  CAS  Google Scholar  * Kuroki T, Meltzer HY,


Ichikawa J . Effects of antipsychotic drugs on extracellular dopamine levels in rate medial prefrontal cortex and nucleus accumbens _J Pharmacol Exp Ther_ 1999 288: 774–781 CAS  PubMed 


Google Scholar  * Youngren KD, Inglis FM, Pivirotto PJ, Jedema HP, Bradberry CW, Goldman-Rakic PS _et al_. Clozapine preferentially increases dopamine release in the rhesus monkey prefrontal


cortex compared with the caudate nucleus _Neuropsychopharmacology_ 1999 20: 403–412 Article  CAS  Google Scholar  * Bourdelais AJ, Deutch AY . The effects of clozapine on extracellular GABA


levels in the prefrontal cortex of the rat: an _in vivo_ microdialysis study _Cereb Cortex_ 1994 4: 69–77 Article  CAS  Google Scholar  * Robertson GS, Fibiger HC . Neuroleptics increase


c-fos expression in the forebrain: contrasting effects of haloperidol and clozapine _Neuroscience_ 1992 46: 315–328 Article  CAS  Google Scholar  * Deutch AY, Duman RS . The effects of


antipsychotic drugs on Fos protein expression in the prefrontal cortex: cellular localization and pharmacological characterization _Neuroscience_ 1996 70: 377–389 Article  CAS  Google


Scholar  * Merchant KM, Figur LM, Evans DL . Induction of c-fos mRNA in rat medial prefrontal cortex by antipsychotic drugs: role of dopamine D2 and D3 receptors _Cereb Cortex_ 1996 6:


561–570 Article  CAS  Google Scholar  * Lidow MS, Williams GV, Goldman-Rakic PS . The cerebral cortex: a case for a common site of action on antipsychotics _Trends Pharmacol Sci_ 1998 19:


136–140 Article  CAS  Google Scholar  * Spurney CF, Baca SM, Murray AM, Jaskiw GE, Kleinman JE, Hyde TM . Differential effects of haloperidol and clozapine on ionotropic glutamate receptors


in rats _Synapse_ 1999 34: 266–276 Article  CAS  Google Scholar  * Moghaddam B, Adams BW . Reversal of phencyclidine effects by a group II metabotropic glutamate receptor agonist in rats


_Science_ 1998 281: 1349–1352 Article  CAS  Google Scholar  Download references ACKNOWLEDGEMENTS This paper is dedicated to GianFranco Marchesi (1940–1998), Professor of Psychiatry at the


University of Ancona, who stimulated this study. This work was supported by a Theodore and Vana Stanley Foundation Research Award (to FC) and by grants from Telethon (962/97 to FC) and


University del Pais Vasco (CM). We are grateful to Marco Catalano, Aldo Rustioni, and Giulio Tononi for critical comments on an earlier version of this paper and Andrea Minelli for helpful


discussions. AUTHOR INFORMATION AUTHORS AND AFFILIATIONS * Istituto di Fisiologia Umana, Università di Ancona, Via Tronto 10/A, Torrette di Ancona, Ancona, 60020, Italy M Melone & F


Conti * Dipartimento di Fisiologia e Biochimica Generali, Università di Milano, Via Celoria 26, Milan, 20133, Italy L Vitellaro-Zuccarello * Departamento de Neurociencias, Universidad del


Pais Vasco, 48940-Leioa, Vizcaya, Spain A Vallejo-Illarramendi, A Pérez-Samartin & C Matute * Dipartimento di Farmacologia Preclinica e Clinica, Università degli Studi di Firenze, Viale


G Pieraccini 6, Firenze, 50139, Italy A Cozzi & D E Pellegrini-Giampietro * Department of Neurology, The Johns Hopkins University, Baltimore, 21287–7519, MD, USA J D Rothstein Authors *


M Melone View author publications You can also search for this author inPubMed Google Scholar * L Vitellaro-Zuccarello View author publications You can also search for this author inPubMed 


Google Scholar * A Vallejo-Illarramendi View author publications You can also search for this author inPubMed Google Scholar * A Pérez-Samartin View author publications You can also search


for this author inPubMed Google Scholar * C Matute View author publications You can also search for this author inPubMed Google Scholar * A Cozzi View author publications You can also search


for this author inPubMed Google Scholar * D E Pellegrini-Giampietro View author publications You can also search for this author inPubMed Google Scholar * J D Rothstein View author


publications You can also search for this author inPubMed Google Scholar * F Conti View author publications You can also search for this author inPubMed Google Scholar CORRESPONDING AUTHOR


Correspondence to F Conti. RIGHTS AND PERMISSIONS Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Melone, M., Vitellaro-Zuccarello, L., Vallejo-Illarramendi, A. _et al._ The


expression of glutamate transporter GLT-1 in the rat cerebral cortex is down-regulated by the antipsychotic drug clozapine. _Mol Psychiatry_ 6, 380–386 (2001).


https://doi.org/10.1038/sj.mp.4000880 Download citation * Received: 11 October 2000 * Revised: 08 January 2001 * Accepted: 10 January 2001 * Published: 09 July 2001 * Issue Date: 01 July


2001 * DOI: https://doi.org/10.1038/sj.mp.4000880 SHARE THIS ARTICLE Anyone you share the following link with will be able to read this content: Get shareable link Sorry, a shareable link is


not currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative KEYWORDS * glutamate * glutamate uptake * neuroleptics *


transporter regulation * synaptic transmission * schizophrenia