Rna-guided editing of bacterial genomes using crispr-cas systems

feature-image

Play all audios:

Loading...

ABSTRACT Here we use the clustered, regularly interspaced, short palindromic repeats (CRISPR)–associated Cas9 endonuclease complexed with dual-RNAs to introduce precise mutations in the


genomes of _Streptococcus pneumoniae_ and _Escherichia coli_. The approach relies on dual-RNA:Cas9-directed cleavage at the targeted genomic site to kill unmutated cells and circumvents the


need for selectable markers or counter-selection systems. We reprogram dual-RNA:Cas9 specificity by changing the sequence of short CRISPR RNA (crRNA) to make single- and multinucleotide


changes carried on editing templates. Simultaneous use of two crRNAs enables multiplex mutagenesis. In _S. pneumoniae_, nearly 100% of cells that were recovered using our approach contained


the desired mutation, and in _E. coli_, 65% that were recovered contained the mutation, when the approach was used in combination with recombineering. We exhaustively analyze dual-RNA:Cas9


target requirements to define the range of targetable sequences and show strategies for editing sites that do not meet these requirements, suggesting the versatility of this technique for


bacterial genome engineering. Access through your institution Buy or subscribe This is a preview of subscription content, access via your institution ACCESS OPTIONS Access through your


institution Subscribe to this journal Receive 12 print issues and online access $209.00 per year only $17.42 per issue Learn more Buy this article * Purchase on SpringerLink * Instant access


to full article PDF Buy now Prices may be subject to local taxes which are calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in * Learn about institutional subscriptions * Read


our FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS A VERSATILE GENETIC ENGINEERING TOOLKIT FOR _E. COLI_ BASED ON CRISPR-PRIME EDITING Article Open access 01


September 2021 SYSTEMATICALLY ATTENUATING DNA TARGETING ENABLES CRISPR-DRIVEN EDITING IN BACTERIA Article Open access 08 February 2023 MAKE-OR-BREAK PRIME EDITING FOR GENOME ENGINEERING IN


_STREPTOCOCCUS PNEUMONIAE_ Article Open access 23 April 2025 ACCESSION CODES PRIMARY ACCESSIONS NCBI REFERENCE SEQUENCE * KC112384 REFERENCES * Urnov, F.D., Rebar, E.J., Holmes, M.C., Zhang,


H.S. & Gregory, P.D. Genome editing with engineered zinc finger nucleases. _Nat. Rev. Genet._ 11, 636–646 (2010). Article  CAS  PubMed  Google Scholar  * Bogdanove, A.J. & Voytas,


D.F. TAL effectors: customizable proteins for DNA targeting. _Science_ 333, 1843–1846 (2011). Article  CAS  PubMed  Google Scholar  * Stoddard, B.L. Homing endonuclease structure and


function. _Q. Rev. Biophys._ 38, 49–95 (2005). Article  CAS  PubMed  Google Scholar  * Bae, T. & Schneewind, O. Allelic replacement in _Staphylococcus aureus_ with inducible


counter-selection. _Plasmid_ 55, 58–63 (2006). Article  CAS  PubMed  Google Scholar  * Sung, C.K., Li, H., Claverys, J.P. & Morrison, D.A. An _rpsL_ cassette, janus, for gene replacement


through negative selection in _Streptococcus pneumoniae_. _Appl. Environ. Microbiol._ 67, 5190–5196 (2001). Article  CAS  PubMed  PubMed Central  Google Scholar  * Sharan, S.K., Thomason,


L.C., Kuznetsov, S.G. & Court, D.L. Recombineering: a homologous recombination-based method of genetic engineering. _Nat. Protoc._ 4, 206–223 (2009). Article  CAS  PubMed  PubMed Central


  Google Scholar  * Jinek, M. et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. _Science_ 337, 816–821 (2012). CAS  PubMed  PubMed Central  Google


Scholar  * Deveau, H., Garneau, J.E. & Moineau, S. CRISPR-Cas system and its role in phage-bacteria interactions. _Annu. Rev. Microbiol._ 64, 475–493 (2010). Article  CAS  PubMed  Google


Scholar  * Horvath, P. & Barrangou, R. CRISPR-Cas, the immune system of bacteria and archaea. _Science_ 327, 167–170 (2010). Article  CAS  PubMed  Google Scholar  * Terns, M.P. &


Terns, R.M. CRISPR-based adaptive immune systems. _Curr. Opin. Microbiol._ 14, 321–327 (2011). Article  CAS  PubMed  PubMed Central  Google Scholar  * van der Oost, J., Jore, M.M., Westra,


E.R., Lundgren, M. & Brouns, S.J. CRISPR-based adaptive and heritable immunity in prokaryotes. _Trends Biochem. Sci._ 34, 401–407 (2009). Article  CAS  PubMed  Google Scholar  * Brouns,


S.J. et al. Small CRISPR RNAs guide antiviral defense in prokaryotes. _Science_ 321, 960–964 (2008). Article  CAS  PubMed  PubMed Central  Google Scholar  * Carte, J., Wang, R., Li, H.,


Terns, R.M. & Terns, M.P. Cas6 is an endoribonuclease that generates guide RNAs for invader defense in prokaryotes. _Genes Dev._ 22, 3489–3496 (2008). Article  CAS  PubMed  PubMed


Central  Google Scholar  * Deltcheva, E. et al. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. _Nature_ 471, 602–607 (2011). Article  CAS  PubMed  PubMed Central


  Google Scholar  * Hatoum-Aslan, A., Maniv, I. & Marraffini, L.A. Mature clustered, regularly interspaced, short palindromic repeats RNA (crRNA) length is measured by a ruler mechanism


anchored at the precursor processing site. _Proc. Natl. Acad. Sci. USA_ 108, 21218–21222 (2011). Article  CAS  PubMed  PubMed Central  Google Scholar  * Haurwitz, R.E., Jinek, M.,


Wiedenheft, B., Zhou, K. & Doudna, J.A. Sequence- and structure-specific RNA processing by a CRISPR endonuclease. _Science_ 329, 1355–1358 (2010). Article  CAS  PubMed  PubMed Central 


Google Scholar  * Deveau, H. et al. Phage response to CRISPR-encoded resistance in _Streptococcus thermophilus_. _J. Bacteriol._ 190, 1390–1400 (2008). Article  CAS  PubMed  Google Scholar 


* Gasiunas, G., Barrangou, R., Horvath, P. & Siksnys, V. Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. _Proc. Natl. Acad. Sci.


USA_ 109, E2579–E2586 (2012). Article  CAS  PubMed  PubMed Central  Google Scholar  * Makarova, K.S., Aravind, L., Wolf, Y.I. & Koonin, E.V. Unification of Cas protein families and a


simple scenario for the origin and evolution of CRISPR-Cas systems. _Biol. Direct_ 6, 38 (2011). Article  CAS  PubMed  PubMed Central  Google Scholar  * Barrangou, R. RNA-mediated


programmable DNA cleavage. _Nat. Biotechnol._ 30, 836–838 (2012). Article  CAS  PubMed  Google Scholar  * Brouns, S.J. Molecular biology. A Swiss army knife of immunity. _Science_ 337,


808–809 (2012). Article  CAS  PubMed  Google Scholar  * Carroll, D. A CRISPR approach to gene targeting. _Mol. Ther._ 20, 1658–1660 (2012). Article  CAS  PubMed  PubMed Central  Google


Scholar  * Bikard, D., Hatoum-Aslan, A., Mucida, D. & Marraffini, L.A. CRISPR interference can prevent natural transformation and virulence acquisition during in vivo bacterial


infection. _Cell Host Microbe_ 12, 177–186 (2012). Article  CAS  PubMed  Google Scholar  * Sapranauskas, R. et al. The _Streptococcus thermophilus_ CRISPR-Cas system provides immunity in


_Escherichia coli_. _Nucleic Acids Res._ 39, 9275–9282 (2011). Article  CAS  PubMed  PubMed Central  Google Scholar  * Semenova, E. et al. Interference by clustered regularly interspaced


short palindromic repeat (CRISPR) RNA is governed by a seed sequence. _Proc. Natl. Acad. Sci. USA_ 108, 10098–10103 (2011). Article  CAS  PubMed  PubMed Central  Google Scholar  *


Wiedenheft, B. et al. RNA-guided complex from a bacterial immune system enhances target recognition through seed sequence interactions. _Proc. Natl. Acad. Sci. USA_ 108, 10092–10097 (2011).


Article  CAS  PubMed  PubMed Central  Google Scholar  * Zahner, D. & Hakenbeck, R. The _Streptococcus pneumoniae_ beta-galactosidase is a surface protein. _J. Bacteriol._ 182, 5919–5921


(2000). Article  CAS  PubMed  PubMed Central  Google Scholar  * Marraffini, L.A., Dedent, A.C. & Schneewind, O. Sortases and the art of anchoring proteins to the envelopes of


gram-positive bacteria. _Microbiol. Mol. Biol. Rev._ 70, 192–221 (2006). Article  CAS  PubMed  PubMed Central  Google Scholar  * Motamedi, M.R., Szigety, S.K. & Rosenberg, S.M.


Double-strand-break repair recombination in _Escherichia coli_: physical evidence for a DNA replication mechanism _in vivo_. _Genes Dev._ 13, 2889–2903 (1999). Article  CAS  PubMed  PubMed


Central  Google Scholar  * Hosaka, T. et al. The novel mutation K87E in ribosomal protein S12 enhances protein synthesis activity during the late growth phase in _Escherichia coli_. _Mol.


Genet. Genomics_ 271, 317–324 (2004). Article  CAS  PubMed  Google Scholar  * Costantino, N. & Court, D.L. Enhanced levels of lambda Red-mediated recombinants in mismatch repair mutants.


_Proc. Natl. Acad. Sci. USA_ 100, 15748–15753 (2003). Article  CAS  PubMed  PubMed Central  Google Scholar  * Edgar, R. & Qimron, U. The _Escherichia coli_ CRISPR system protects from


lambda lysogenization, lysogens, and prophage induction. _J. Bacteriol._ 192, 6291–6294 (2010). Article  CAS  PubMed  PubMed Central  Google Scholar  * Marraffini, L.A. & Sontheimer,


E.J. Self versus non-self discrimination during CRISPR RNA-directed immunity. _Nature_ 463, 568–571 (2010). Article  CAS  PubMed  PubMed Central  Google Scholar  * Fischer, S. et al. An


archaeal immune system can detect multiple Protospacer Adjacent Motifs (PAMs) to target invader DNA. _J. Biol. Chem._ 287, 33351–33363 (2012). Article  CAS  PubMed  PubMed Central  Google


Scholar  * Gudbergsdottir, S. et al. Dynamic properties of the _Sulfolobus_ CRISPR-Cas and CRISPR/Cmr systems when challenged with vector-borne viral and plasmid genes and protospacers.


_Mol. Microbiol._ 79, 35–49 (2011). Article  CAS  PubMed  PubMed Central  Google Scholar  * Wang, H.H. et al. Genome-scale promoter engineering by coselection MAGE. _Nat. Methods_ 9, 591–593


(2012). Article  PubMed  PubMed Central  Google Scholar  * Cong, L. et al. Multiplex genome engineering using CRISPR-Cas systems. _Science_ doi:10.1126/science.1231143 (3 January 2013). *


Mali, P. et al. RNA-guided human genome engineering via Cas9. _Science_ doi:10.1126/science.1232033 (3 January 2013). * Cho, S.W., Kim, S., Kim, J.M. & Kim, J.-S. Targeted genome


engineering in human cells with the Cas9 RNA-guided endonuclease. _Nat. Biotechnol._ advance online publication, doi:10.1038/nbt.2507 (29 January 2013). * Hwang, W.Y. et al. Efficient genome


editing in zebrafish using a CRISPR-Cas system. _Nat. Biotechnol._ advance online publication, doi:10.1038/nbt.2501 (29 January 2013). * Hoskins, J. et al. Genome of the bacterium


_Streptococcus pneumoniae_ strain R6. _J. Bacteriol._ 183, 5709–5717 (2001). Article  CAS  PubMed  PubMed Central  Google Scholar  * Havarstein, L.S., Coomaraswamy, G. & Morrison, D.A.


An unmodified heptadecapeptide pheromone induces competence for genetic transformation in _Streptococcus pneumoniae_. _Proc. Natl. Acad. Sci. USA_ 92, 11140–11144 (1995). Article  CAS 


PubMed  PubMed Central  Google Scholar  * Horinouchi, S. & Weisblum, B. Nucleotide sequence and functional map of pC194, a plasmid that specifies inducible chloramphenicol resistance.


_J. Bacteriol._ 150, 815–825 (1982). CAS  PubMed  PubMed Central  Google Scholar  * Horton, R.M. In vitro recombination and mutagenesis of DNA: SOEing Together tailor-made genes. _Methods


Mol. Biol._ 15, 251–261 (1993). CAS  PubMed  Google Scholar  * Podbielski, A., Spellerberg, B., Woischnik, M., Pohl, B. & Lutticken, R. Novel series of plasmid vectors for gene


inactivation and expression analysis in group A streptococci (GAS). _Gene_ 177, 137–147 (1996). Article  CAS  PubMed  Google Scholar  * Husmann, L.K., Scott, J.R., Lindahl, G. &


Stenberg, L. Expression of the Arp protein, a member of the M protein family, is not sufficient to inhibit phagocytosis of _Streptococcus pyogenes_. _Infect. Immun._ 63, 345–348 (1995). CAS


  PubMed  PubMed Central  Google Scholar  * Gibson, D.G. et al. Enzymatic assembly of DNA molecules up to several hundred kilobases. _Nat. Methods_ 6, 343–345 (2009). Article  CAS  PubMed 


Google Scholar  Download references ACKNOWLEDGEMENTS We thank V. Fischetti and C. Euler for plasmid pLZ12spec, D. Court for the HME63 strain, J. Kern for plasmid pKD46, the Rockefeller


University Genomic Resource Center for technical support and J. Roberts for the MG1655 strain. D.B. is supported by a Harvey L. Karp Discovery Award and the Bettencourt Schuller Foundation.


D.C. is supported by the Medical Scientist Training Program. F.Z. is supported by a US National Institutes of Health (NIH) Director's Pioneer Award (DP1MH100706), Transformative R01,


the Keck, McKnight, Gates, Damon Runyon, Searle Scholars, Klingenstein, and Simons Foundations, Bob Metcalfe, Mike Boylan and Jane Pauley. L.A.M. is supported by the Searle Scholars Program,


the Rita Allen Scholars Program, a Irma T. Hirschl Award and a NIH Director's New Innovator Award (1DP2AI104556-01). AUTHOR INFORMATION Author notes * Wenyan Jiang and David Bikard:


These authors contributed equally to this work. AUTHORS AND AFFILIATIONS * Laboratory of Bacteriology, The Rockefeller University, New York, New York, USA Wenyan Jiang, David Bikard & 


Luciano A Marraffini * Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA David Cox & Feng Zhang * Department of Brain and Cognitive Science and Department of Biological


Engineering, McGovern Institute for Brain Research, MIT, Cambridge, Massachusetts, USA David Cox & Feng Zhang Authors * Wenyan Jiang View author publications You can also search for this


author inPubMed Google Scholar * David Bikard View author publications You can also search for this author inPubMed Google Scholar * David Cox View author publications You can also search


for this author inPubMed Google Scholar * Feng Zhang View author publications You can also search for this author inPubMed Google Scholar * Luciano A Marraffini View author publications You


can also search for this author inPubMed Google Scholar CONTRIBUTIONS W.J., D.B. and L.A.M. designed the experiments; W.J., D.B. and D.C. performed experiments; W.J., D.B., F.Z. and L.A.M.


wrote the paper. CORRESPONDING AUTHORS Correspondence to David Bikard or Luciano A Marraffini. ETHICS DECLARATIONS COMPETING INTERESTS The authors declare no competing financial interests.


SUPPLEMENTARY INFORMATION SUPPLEMENTARY TEXT AND FIGURES Supplementary Discussion, Supplementary Figures 1–11 and Supplementary Tables 1–3 (PDF 2790 kb) SUPPLEMENTARY DATA Supplementary Data


(XLSX 36 kb) RIGHTS AND PERMISSIONS Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Jiang, W., Bikard, D., Cox, D. _et al._ RNA-guided editing of bacterial genomes using


CRISPR-Cas systems. _Nat Biotechnol_ 31, 233–239 (2013). https://doi.org/10.1038/nbt.2508 Download citation * Received: 29 November 2012 * Accepted: 16 January 2013 * Published: 29 January


2013 * Issue Date: March 2013 * DOI: https://doi.org/10.1038/nbt.2508 SHARE THIS ARTICLE Anyone you share the following link with will be able to read this content: Get shareable link Sorry,


a shareable link is not currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative