
- Select a language for the TTS:
- UK English Female
- UK English Male
- US English Female
- US English Male
- Australian Female
- Australian Male
- Language selected: (auto detect) - EN
Play all audios:
ABSTRACT Transposon insertion sequencing (TIS) is a powerful approach that can be extensively applied to the genome-wide definition of loci that are required for bacterial growth under
diverse conditions. However, experimental design choices and stochastic biological processes can heavily influence the results of TIS experiments and affect downstream statistical analysis.
In this Opinion article, we discuss TIS experimental parameters and how these factors relate to the benefits and limitations of the various statistical frameworks that can be applied to the
computational analysis of TIS data. Access through your institution Buy or subscribe This is a preview of subscription content, access via your institution ACCESS OPTIONS Access through your
institution Subscribe to this journal Receive 12 print issues and online access $209.00 per year only $17.42 per issue Learn more Buy this article * Purchase on SpringerLink * Instant
access to full article PDF Buy now Prices may be subject to local taxes which are calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in * Learn about institutional subscriptions *
Read our FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS A DECADE OF ADVANCES IN TRANSPOSON-INSERTION SEQUENCING Article 12 June 2020 TECHNICAL CONSIDERATIONS FOR
COST-EFFECTIVE TRANSPOSON DIRECTED INSERTION-SITE SEQUENCING (TRADIS) Article Open access 21 March 2024 MEASURING AND INTERPRETING TRANSPOSABLE ELEMENT EXPRESSION Article 23 June 2020
REFERENCES * Barquist, L., Boinett, C. J. & Cain, A. K. Approaches to querying bacterial genomes with transposon-insertion sequencing. _RNA Biol._ 10, 1161–1169 (2013). Article CAS
PubMed PubMed Central Google Scholar * van Opijnen, T. & Camilli, A. Transposon insertion sequencing: a new tool for systems-level analysis of microorganisms. _Nat. Rev. Microbiol._
11, 435–442 (2013). Article CAS PubMed Google Scholar * van Opijnen, T., Bodi, K. L. & Camilli, A. Tn-seq: high-throughput parallel sequencing for fitness and genetic interaction
studies in microorganisms. _Nat. Methods_ 6, 767–772 (2009). Article CAS PubMed PubMed Central Google Scholar * Goodman, A. L. et al. Identifying genetic determinants needed to
establish a human gut symbiont in its habitat. _Cell Host Microbe_ 6, 279–289 (2009). Article CAS PubMed PubMed Central Google Scholar * Gawronski, J. D., Wong, S. M., Giannoukos, G.,
Ward, D. V. & Akerley, B. J. Tracking insertion mutants within libraries by deep sequencing and a genome-wide screen for _Haemophilus_ genes required in the lung. _Proc. Natl Acad. Sci.
USA_ 106, 16422–16427 (2009). Article CAS PubMed PubMed Central Google Scholar * Langridge, G. C. et al. Simultaneous assay of every _Salmonella_ Typhi gene using one million transposon
mutants. _Genome Res._ 19, 2308–2316 (2009). Article CAS PubMed PubMed Central Google Scholar * Chiang, S. L. & Rubin, E. J. Construction of a mariner-based transposon for
epitope-tagging and genomic targeting. _Gene_ 296, 179–185 (2002). Article CAS PubMed Google Scholar * Rubin, E. J. et al. _In vivo_ transposition of mariner-based elements in enteric
bacteria and mycobacteria. _Proc. Natl Acad. Sci. USA_ 96, 1645–1650 (1999). Article CAS PubMed PubMed Central Google Scholar * Goryshin, I. Y., Miller, J. A., Kil, Y. V., Lanzov, V. A.
& Reznikoff, W. S. Tn5/IS50 target recognition. _Proc. Natl Acad. Sci. USA_ 95, 10716–10721 (1998). Article CAS PubMed PubMed Central Google Scholar * Zhang, Y. J. et al. Global
assessment of genomic regions required for growth in _Mycobacterium tuberculosis_. _PLoS Pathog._ 8, e1002946 (2012). Article PubMed PubMed Central Google Scholar * Chao, M. C. et al.
High-resolution definition of the _Vibrio cholerae_ essential gene set with hidden Markov model-based analyses of transposon-insertion sequencing data. _Nucleic Acids Res._ 41, 9033–9048
(2013). Article CAS PubMed PubMed Central Google Scholar * Lodge, J. K., Weston-Hafer, K. & Berg, D. E. Transposon Tn5 target specificity: preference for insertion at G/C pairs.
_Genetics_ 120, 645–650 (1988). CAS PubMed PubMed Central Google Scholar * Green, B., Bouchier, C., Fairhead, C., Craig, N. L. & Cormack, B. P. Insertion site preference of Mu, Tn5,
and Tn7 transposons. _Mob. DNA_ 3, 3 (2012). Article CAS PubMed PubMed Central Google Scholar * Christen, B. et al. The essential genome of a bacterium. _Mol. Syst. Biol._ 7, 528
(2011). Article PubMed PubMed Central Google Scholar * Barquist, L. et al. A comparison of dense transposon insertion libraries in the _Salmonella_ serovars Typhi and Typhimurium.
_Nucleic Acids Res._ 41, 4549–4564 (2013). Article CAS PubMed PubMed Central Google Scholar * DeJesus, M. A. et al. Bayesian analysis of gene essentiality based on sequencing of
transposon insertion libraries. _Bioinformatics_ 29, 695–703 (2013). Article CAS PubMed PubMed Central Google Scholar * Lamichhane, G. et al. A postgenomic method for predicting
essential genes at subsaturation levels of mutagenesis: application to _Mycobacterium tuberculosis_. _Proc. Natl Acad. Sci. USA_ 100, 7213–7218 (2003). Article CAS PubMed PubMed Central
Google Scholar * Griffin, J. E. et al. High-resolution phenotypic profiling defines genes essential for mycobacterial growth and cholesterol catabolism. _PLoS Pathog._ 7, e1002251 (2011).
Article CAS PubMed PubMed Central Google Scholar * Zemansky, J. et al. Development of a mariner-based transposon and identification of _Listeria monocytogenes_ determinants, including
the peptidyl-prolyl isomerase PrsA2, that contribute to its hemolytic phenotype. _J. Bacteriol._ 191, 3950–3964 (2009). Article CAS PubMed PubMed Central Google Scholar * Johnson, C. M.
& Grossman, A. D. Identification of host genes that affect acquisition of an integrative and conjugative element in _Bacillus subtilis_. _Mol. Microbiol._ 93, 1284–1301 (2014). Article
CAS PubMed PubMed Central Google Scholar * Shevchenko, Y. et al. Systematic sequencing of cDNA clones using the transposon Tn5. _Nucleic Acids Res._ 30, 2469–2477 (2002). Article CAS
PubMed PubMed Central Google Scholar * Troy, E. B. et al. Understanding barriers to _Borrelia burgdorferi_ dissemination during infection using massively parallel sequencing. _Infect.
Immun._ 81, 2347–2357 (2013). Article CAS PubMed PubMed Central Google Scholar * Fu, Y., Waldor, M. K. & Mekalanos, J. J. Tn-Seq analysis of _Vibrio cholerae_ intestinal
colonization reveals a role for T6SS-mediated antibacterial activity in the host. _Cell Host Microbe_ 14, 652–663 (2013). Article CAS PubMed PubMed Central Google Scholar * Pritchard,
J. R. et al. ARTIST: high-resolution genome-wide assessment of fitness using transposon-insertion sequencing. _PLoS Genet._ 10, e1004782 (2014). Article PubMed PubMed Central Google
Scholar * van Opijnen, T. & Camilli, A. A fine scale phenotype-genotype virulence map of a bacterial pathogen. _Genome Res._ 22, 2541–2551 (2012). Article CAS PubMed PubMed Central
Google Scholar * Carter, R. et al. Genomic analyses of pneumococci from children with sickle cell disease expose host-specific bacterial adaptations and deficits in current interventions.
_Cell Host Microbe_ 15, 587–599 (2014). Article CAS PubMed PubMed Central Google Scholar * Abel, S. et al. Sequence tag-based analysis of microbial population dynamics. _Nat. Methods_
12, 223–226 (2015). Article CAS PubMed PubMed Central Google Scholar * Kaper, J. B., Morris, J. G. Jr & Levine, M. M. Cholera. _Clin. Microbiol. Rev._ 8, 48–86 (1995). Article CAS
PubMed PubMed Central Google Scholar * Ritchie, J. M., Rui, H., Bronson, R. T. & Waldor, M. K. Back to the future: studying cholera pathogenesis using infant rabbits. _mBio_ 1,
e00047-10 (2010). Article PubMed PubMed Central Google Scholar * Kamp, H. D., Patimalla-Dipali, B., Lazinski, D. W., Wallace-Gadsden, F. & Camilli, A. Gene fitness landscapes of
_Vibrio cholerae_ at important stages of its life cycle. _PLoS Pathog._ 9, e1003800 (2013). Article PubMed PubMed Central Google Scholar * Zomer, A., Burghout, P., Bootsma, H. J.,
Hermans, P. W. & van Hijum, S. A. ESSENTIALS: software for rapid analysis of high throughput transposon insertion sequencing data. _PLoS ONE_ 7, e43012 (2012). Article CAS PubMed
PubMed Central Google Scholar * Lazinski, D. W. & Camilli, A. Homopolymer tail-mediated ligation PCR: a streamlined and highly efficient method for DNA cloning and library
construction. _Biotechniques_ 54, 25–34 (2013). Article CAS PubMed PubMed Central Google Scholar * Gallagher, L. A., Shendure, J. & Manoil, C. Genome-scale identification of
resistance functions in _Pseudomonas aeruginosa_ using Tn-seq. _mBio_ 2, e00315-10 (2011). Article PubMed PubMed Central Google Scholar * Yamaichi, Y. et al. High-resolution genetic
analysis of the requirements for horizontal transmission of the ESBL plasmid from _Escherichia coli_ O104:H4. _Nucleic Acids Res._ 43, 348–360 (2014). Article PubMed PubMed Central Google
Scholar * Fu, G. K. et al. Molecular indexing enables quantitative targeted RNA sequencing and reveals poor efficiencies in standard library preparations. _Proc. Natl Acad. Sci. USA_ 111,
1891–1896 (2014). Article CAS PubMed PubMed Central Google Scholar * Shiroguchi, K., Jia, T. Z., Sims, P. A. & Xie, X. S. Digital RNA sequencing minimizes sequence-dependent bias
and amplification noise with optimized single-molecule barcodes. _Proc. Natl Acad. Sci. USA_ 109, 1347–1352 (2012). Article CAS PubMed PubMed Central Google Scholar * Li, H. et al. The
sequence alignment/map format and SAMtools. _Bioinformatics_ 25, 2078–2079 (2009). Article PubMed PubMed Central Google Scholar * Baugh, L. et al. Combining functional and structural
genomics to sample the essential _Burkholderia_ structome. _PLoS ONE_ 8, e53851 (2013). Article CAS PubMed PubMed Central Google Scholar * Valentino, M. D. et al. Genes contributing to
_Staphylococcus aureus_ fitness in abscess- and infection-related ecologies. _mBio_ 5, e01729-14 (2014). Article PubMed PubMed Central Google Scholar * Klein, B. A. et al. Identification
of essential genes of the periodontal pathogen _Porphyromonas gingivalis_. _BMC Genomics_ 13, 578 (2012). Article CAS PubMed PubMed Central Google Scholar * Deng, J., Su, S., Lin, X.,
Hassett, D. J. & Lu, L. J. A statistical framework for improving genomic annotations of prokaryotic essential genes. _PLoS ONE_ 8, e58178 (2013). Article CAS PubMed PubMed Central
Google Scholar * Remmele, C. W. et al. Transcriptional landscape and essential genes of _Neisseria gonorrhoeae_. _Nucleic Acids Res._ 42, 10579–10595 (2014). Article CAS PubMed PubMed
Central Google Scholar * DeJesus, M. A. & Ioerger, T. R. A. Hidden Markov Model for identifying essential and growth-defect regions in bacterial genomes from transposon insertion
sequencing data. _BMC Bioinformatics_ 14, 303 (2013). Article PubMed PubMed Central Google Scholar * Brutinel, E. D. & Gralnick, J. A. Anomalies of the anaerobic tricarboxylic acid
cycle in _Shewanella oneidensis_ revealed by Tn-seq. _Mol. Microbiol._ 86, 273–283 (2012). Article CAS PubMed Google Scholar * Zhang, Y. J. et al. Tryptophan biosynthesis protects
mycobacteria from CD4 T-cell-mediated killing. _Cell_ 155, 1296–1308 (2013). Article CAS PubMed PubMed Central Google Scholar * Mann, B. et al. Control of virulence by small RNAs in
_Streptococcus pneumoniae_. _PLoS Pathog._ 8, e1002788 (2012). Article CAS PubMed PubMed Central Google Scholar * McDonough, E., Lazinski, D. W. & Camilli, A. Identification of _in
vivo_ regulators of the _Vibrio cholerae_ xds gene using a high-throughput genetic selection. _Mol. Microbiol._ 92, 302–315 (2014). Article CAS PubMed PubMed Central Google Scholar *
Moll, A. et al. Cell separation in _Vibrio cholerae_ is mediated by a single amidase whose action is modulated by two nonredundant activators. _J. Bacteriol._ 196, 3937–3948 (2014). Article
PubMed PubMed Central Google Scholar * Dorr, T. et al. A novel peptidoglycan binding protein crucial for PBP1A-mediated cell wall biogenesis in _Vibrio cholerae_. _PLoS Genet._ 10,
e1004433 (2014). Article PubMed PubMed Central Google Scholar * Skurnik, D. et al. A comprehensive analysis of _in vitro_ and _in vivo_ genetic fitness of _Pseudomonas aeruginosa_ using
high-throughput sequencing of transposon libraries. _PLoS Pathog._ 9, e1003582 (2013). Article CAS PubMed PubMed Central Google Scholar * Turner, K. H., Everett, J., Trivedi, U.,
Rumbaugh, K. P. & Whiteley, M. Requirements for _Pseudomonas aeruginosa_ acute burn and chronic surgical wound infection. _PLoS Genet._ 10, e1004518 (2014). Article PubMed PubMed
Central Google Scholar * Wang, Z., Gerstein, M. & Snyder, M. RNA-Seq: a revolutionary tool for transcriptomics. _Nat. Rev. Genet._ 10, 57–63 (2009). Article CAS PubMed PubMed
Central Google Scholar * Trapnell, C. et al. Differential analysis of gene regulation at transcript resolution with RNA-seq. _Nat. Biotechnol._ 31, 46–53 (2013). Article CAS PubMed
Google Scholar * Anders, S. & Huber, W. Differential expression analysis for sequence count data. _Genome Biol._ 11, R106 (2010). Article CAS PubMed PubMed Central Google Scholar *
Khatiwara, A. et al. Genome scanning for conditionally essential genes in _Salmonella enterica_ serotype Typhimurium. _Appl. Environ. Microbiol._ 78, 3098–3107 (2012). Article CAS PubMed
PubMed Central Google Scholar * Santa Maria, J. P. Jr et al. Compound-gene interaction mapping reveals distinct roles for _Staphylococcus aureus_ teichoic acids. _Proc. Natl Acad. Sci.
USA_ 111, 12510–12515 (2014). Article CAS PubMed PubMed Central Google Scholar * Hsiao, A. et al. Members of the human gut microbiota involved in recovery from _Vibrio cholerae_
infection. _Nature_ 515, 423–426 (2014). Article CAS PubMed PubMed Central Google Scholar * Moxon, E. R. & Murphy, P. A. _Haemophilus influenzae_ bacteremia and meningitis resulting
from survival of a single organism. _Proc. Natl Acad. Sci. USA_ 75, 1534–1536 (1978). Article CAS PubMed PubMed Central Google Scholar * Barnes, P. D., Bergman, M. A., Mecsas, J. &
Isberg, R. R. _Yersinia pseudotuberculosis_ disseminates directly from a replicating bacterial pool in the intestine. _J. Exp. Med._ 203, 1591–1601 (2006). Article CAS PubMed PubMed
Central Google Scholar * Kaiser, P., Slack, E., Grant, A. J., Hardt, W. D. & Regoes, R. R. Lymph node colonization dynamics after oral _Salmonella typhimurium_ infection in mice. _PLoS
Pathog._ 9, e1003532 (2013). Article CAS PubMed PubMed Central Google Scholar * Grant, A. J. et al. Modelling within-host spatiotemporal dynamics of invasive bacterial disease. _PLoS
Biol._ 6, e74 (2008). Article PubMed PubMed Central Google Scholar Download references ACKNOWLEDGEMENTS This work was supported by the Howard Hughes Medical Institute, the US National
Institutes of Health (AI R37-042347 to M.K.W.; 5F32 GM108355-02 to M.C.C.), and the Swiss Foundation for Grants in Biology and Medicine (PASMP3_142724/1 to S.A.). AUTHOR INFORMATION AUTHORS
AND AFFILIATIONS * Department of Microbiology and Immunobiology, USA; the Division of Infectious Disease, Harvard Medical School, Boston, Massachusetts 02115, Brigham and Women's
Hospital, Boston, Massachusetts 02115, USA; and the Howard Hughes Medical Institute, Boston, Massachusetts 02115, USA., Michael C. Chao, Brigid M. Davis & Matthew K. Waldor * the
Division of Infectious Disease, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA, Michael C. Chao, Brigid M. Davis & Matthew K. Waldor * Department of Pharmacy,
University of Tromsø, The Arctic University of Norway, 9019, Tromsø, Norway Sören Abel Authors * Michael C. Chao View author publications You can also search for this author inPubMed Google
Scholar * Sören Abel View author publications You can also search for this author inPubMed Google Scholar * Brigid M. Davis View author publications You can also search for this author
inPubMed Google Scholar * Matthew K. Waldor View author publications You can also search for this author inPubMed Google Scholar CORRESPONDING AUTHOR Correspondence to Matthew K. Waldor.
ETHICS DECLARATIONS COMPETING INTERESTS The authors declare no competing financial interests. RELATED LINKS DATABASES Sequencing Read Archive (SRA) FURTHER INFORMATION Picard POWERPOINT
SLIDES POWERPOINT SLIDE FOR FIG. 1 POWERPOINT SLIDE FOR FIG. 2 RIGHTS AND PERMISSIONS Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Chao, M., Abel, S., Davis, B. _et al._ The
design and analysis of transposon insertion sequencing experiments. _Nat Rev Microbiol_ 14, 119–128 (2016). https://doi.org/10.1038/nrmicro.2015.7 Download citation * Published: 19 January
2016 * Issue Date: February 2016 * DOI: https://doi.org/10.1038/nrmicro.2015.7 SHARE THIS ARTICLE Anyone you share the following link with will be able to read this content: Get shareable
link Sorry, a shareable link is not currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative