Nuclear export dynamics of rna–protein complexes

feature-image

Play all audios:

Loading...

ABSTRACT The central dogma of molecular biology — DNA makes RNA makes proteins — is a flow of information that in eukaryotes encounters a physical barrier: the nuclear envelope, which


encapsulates, organizes and protects the genome. Nuclear-pore complexes, embedded in the nuclear envelope, regulate the passage of molecules to and from the nucleus, including the poorly


understood process of the export of RNAs from the nucleus. Recent imaging approaches focusing on single molecules have provided unexpected insight into this crucial step in the information


flow. This review addresses the latest studies of RNA export and presents some models for how this complex process may work. Access through your institution Buy or subscribe This is a


preview of subscription content, access via your institution ACCESS OPTIONS Access through your institution Subscribe to this journal Receive 51 print issues and online access $199.00 per


year only $3.90 per issue Learn more Buy this article * Purchase on SpringerLink * Instant access to full article PDF Buy now Prices may be subject to local taxes which are calculated during


checkout ADDITIONAL ACCESS OPTIONS: * Log in * Learn about institutional subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS OVERLAPPING NUCLEAR


IMPORT AND EXPORT PATHS UNVEILED BY TWO-COLOUR MINFLUX Article Open access 19 March 2025 SUPER-RESOLVED 3D TRACKING OF CARGO TRANSPORT THROUGH NUCLEAR PORE COMPLEXES Article 10 January 2022


THE CELLULAR ENVIRONMENT SHAPES THE NUCLEAR PORE COMPLEX ARCHITECTURE Article Open access 13 October 2021 REFERENCES * Franke, W. W. & Scheer, U. The ultrastructure of the nuclear


envelope of amphibian oocytes: a reinvestigation _J. Ultrastruct. Res._ 30, 288–316 (1970). CAS  PubMed  Google Scholar  * Walde, S. & Kehlenbach, R. H. The Part and the Whole: functions


of nucleoporins in nucleocytoplasmic transport. _Trends Cell Biol._ 20, 461–469 (2010). PubMed  Google Scholar  * Mattaj, I. W. & Englmeier, L. Nucleocytoplasmic transport: the soluble


phase. _Annu. Rev. Biochem._ 67, 265–306 (1998). CAS  PubMed  Google Scholar  * Pemberton, L. F. & Paschal, B. M. Mechanisms of receptor-mediated nuclear import and nuclear export.


_Traffic_ 6, 187–198 (2005). CAS  PubMed  Google Scholar  * Alber, F. et al. The molecular architecture of the nuclear pore complex. _Nature_ 450, 695–701 (2007). THIS STUDY DESCRIBES AN


APPROACH TO COMBINE DIFFERENT EXPERIMENTAL DATA INTO A COMMON FRAMEWORK WITH A DEFINED ERROR, UNDERLINING THE ESSENTIAL FEATURES OF NPC ARCHITECTURE. ADS  CAS  PubMed  Google Scholar  *


Strawn, L. A., Shen, T. X., Shulga, N., Goldfarb, D. S. & Wente, S. R. Minimal nuclear pore complexes define FG repeat domains essential for transport. _Nature Cell Biol._ 6, 197–206


(2004). CAS  PubMed  Google Scholar  * Jovanovic-Talisman, T. et al. Artificial nanopores that mimic the transport selectivity of the nuclear pore complex. _Nature_ 457, 1023–1027 (2009).


ADS  CAS  PubMed  Google Scholar  * Ris, H. & Malecki, M. High-resolution field emission scanning electron microscope imaging of internal cell structures after Epon extraction from


sections: a new approach to correlative ultrastructural and immunocytochemical studies. _J. Struct. Biol._ 111, 148–157 (1993). CAS  PubMed  Google Scholar  * Kiseleva, E. et al. Yeast


nuclear pore complexes have a cytoplasmic ring and internal filaments. _J. Struct. Biol._ 145, 272–288 (2004). CAS  PubMed  Google Scholar  * Kubitscheck, U. et al. Nuclear transport of


single molecules: dwell times at the nuclear pore complex. _J. Cell Biol._ 168, 233–243 (2005). PubMed  PubMed Central  Google Scholar  * Grünwald, D. & Singer, R. _In vivo_ imaging of


labelled endogenous β-actin mRNA during nucleocytoplasmic transport. _Nature_ 467, 604–607 (2010). THIS IS THE FIRST STUDY TO FOLLOW A SINGLE MRNA IN DETAIL THROUGH THE NPC, SHOWING THAT


OVERALL TRANSPORT TIMES ARE FAST, ∼HUNDREDS OF MILLISECONDS, AND THAT DOCKING AND RELEASE ARE VISIBLE KINETIC STEPS. ADS  PubMed  PubMed Central  Google Scholar  * Gorlich, D. & Kutay,


U. Transport between the cell nucleus and the cytoplasm. _Annu. Rev. Cell Dev. Biol._ 15, 607–660 (1999). CAS  PubMed  Google Scholar  * Paine, P. L., Moore, L. C. & Horowitz, S. B.


Nuclear envelope permeability. _Nature_ 254, 109–114 (1975). ADS  CAS  PubMed  Google Scholar  * Keminer, O. & Peters, R. Permeability of single nuclear pores. _Biophys. J._ 77, 217–228


(1999). ADS  CAS  PubMed  PubMed Central  Google Scholar  * Mohr, D., Frey, S., Fischer, T., Guttler, T. & Gorlich, D. Characterisation of the passive permeability barrier of nuclear


pore complexes. _EMBO J._ 28, 2541–2553 (2009). CAS  PubMed  PubMed Central  Google Scholar  * Macara, I. G. Transport into and out of the nucleus. _Microbiol. Mol. Biol. Rev._ 65, 570–594


(2001). CAS  PubMed  PubMed Central  Google Scholar  * Wente, S. R. & Rout, M. P. The nuclear pore complex and nuclear transport. _Cold Spring Harb. Perspect. Biol._ 2, a000562 (2010).


CAS  PubMed  PubMed Central  Google Scholar  * Timney, B. L. et al. Simple kinetic relationships and nonspecific competition govern nuclear import rates _in vivo_ . _J. Cell Biol._ 175,


579–593 (2006). CAS  PubMed  PubMed Central  Google Scholar  * Dange, T., Grünwald, D., Grünwald, A., Peters, R. & Kubitscheck, U. Autonomy and robustness of translocation through the


nuclear pore complex: a single-molecule study. _J. Cell Biol._ 183, 77–86 (2008). CAS  PubMed  PubMed Central  Google Scholar  * Nachury, M. V. & Weis, K. The direction of transport


through the nuclear pore can be inverted. _Proc. Natl Acad. Sci. USA_ 96, 9622–9627 (1999). ADS  CAS  PubMed  PubMed Central  Google Scholar  * Kopito, R. B. & Elbaum, M. Reversibility


in nucleocytoplasmic transport. _Proc. Natl Acad. Sci. USA_ 104, 12743–12748 (2007). ADS  CAS  PubMed  PubMed Central  Google Scholar  * Terry, L. J. & Wente, S. R. Flexible gates:


dynamic topologies and functions for FG nucleoporins in nucleocytoplasmic transport. _Eukaryot. Cell_ 8, 1814–1827 (2009). CAS  PubMed  PubMed Central  Google Scholar  * Denning, D. P.,


Patel, S. S., Uversky, V., Fink, A. L. & Rexach, M. Disorder in the nuclear pore complex: the FG repeat regions of nucleoporins are natively unfolded. _Proc. Natl Acad. Sci. USA_ 100,


2450–2455 (2003). ADS  CAS  PubMed  PubMed Central  Google Scholar  * Lim, R. Y. et al. Nanomechanical basis of selective gating by the nuclear pore complex. _Science_ 318, 640–643 (2007).


ADS  CAS  PubMed  Google Scholar  * Frey, S., Richter, R. P. & Gorlich, D. FG-rich repeats of nuclear pore proteins form a three-dimensional meshwork with hydrogel-like properties.


_Science_ 314, 815–817 (2006). ADS  CAS  PubMed  Google Scholar  * Frey, S. & Gorlich, D. A saturated FG-repeat hydrogel can reproduce the permeability properties of nuclear pore


complexes. _Cell_ 130, 512–523 (2007). CAS  PubMed  Google Scholar  * Eisele, N. B., Frey, S., Piehler, J., Gorlich, D. & Richter, R. P. Ultrathin nucleoporin phenylalanine–glycine


repeat films and their interaction with nuclear transport receptors. _EMBO Rep._ 11, 366–372 (2010). CAS  PubMed  PubMed Central  Google Scholar  * Rout, M. P. et al. The yeast nuclear pore


complex: composition, architecture, and transport mechanism. _J. Cell Biol._ 148, 635–651 (2000). CAS  PubMed  PubMed Central  Google Scholar  * Rout, M. P., Aitchison, J. D., Magnasco, M.


O. & Chait, B. T. Virtual gating and nuclear transport: the hole picture. _Trends Cell Biol._ 13, 622–628 (2003). CAS  PubMed  Google Scholar  * Peters, R. The nanopore connection to


cell membrane unitary permeability. _Traffic_ 6, 199–204 (2005). CAS  PubMed  Google Scholar  * Yamada, J. et al. A bimodal distribution of two distinct categories of intrinsically


disordered structures with separate functions in FG nucleoporins. _Mol. Cell. Proteomics_ 9, 2205–2224 (2010). CAS  PubMed  PubMed Central  Google Scholar  * Lim, R. Y. et al. Flexible


phenylalanine-glycine nucleoporins as entropic barriers to nucleocytoplasmic transport. _Proc. Natl Acad. Sci. USA_ 103, 9512–9517 (2006). ADS  CAS  PubMed  PubMed Central  Google Scholar  *


Zilman, A., Di Talia, S., Chait, B. T., Rout, M. P. & Magnasco, M. O. Efficiency, selectivity, and robustness of nucleocytoplasmic transport. _PLoS Comput. Biol._ 3, e125 (2007). ADS 


PubMed  PubMed Central  Google Scholar  * Zilman, A. et al. Enhancement of transport selectivity through nano-channels by non-specific competition. _PLoS Comput. Biol._ 6, e1000804 (2010).


MathSciNet  PubMed  PubMed Central  Google Scholar  * Huve, J., Wesselmann, R., Kahms, M. & Peters, R. 4Pi microscopy of the nuclear pore complex. _Biophys. J._ 95, 877–885 (2008).


PubMed  PubMed Central  Google Scholar  * Kahms, M., Lehrich, P., Huve, J., Sanetra, N. & Peters, R. Binding site distribution of nuclear transport receptors and transport complexes in


single nuclear pore complexes. _Traffic_ 10, 1228–1242 (2009). CAS  PubMed  Google Scholar  * Ma, J. & Yang, W. Three-dimensional distribution of transient interactions in the nuclear


pore complex obtained from single-molecule snapshots. _Proc. Natl Acad. Sci. USA_ 107, 7305–7310 (2010). IN THIS STUDY, VERY HIGH SPATIAL RESOLUTION IS ACHIEVED BY A COMBINATION OF CONFOCAL


EXCITATION WITH CAMERA DETECTION AND MODELLING OF DATA, SUPPORTING THE EXISTENCE OF DEFINED CARGO TRANSPORT ROUTES WITHIN THE NPC. ADS  CAS  PubMed  PubMed Central  Google Scholar  * Kopito,


R. B. & Elbaum, M. Nucleocytoplasmic transport: a thermodynamic mechanism. _HFSP J._ 3, 130–141 (2009). CAS  PubMed  PubMed Central  Google Scholar  * Yang, W., Gelles, J. & Musser,


S. M. Imaging of single-molecule translocation through nuclear pore complexes. _Proc. Natl Acad. Sci. USA_ 101, 12887–12892 (2004). ADS  CAS  PubMed  PubMed Central  Google Scholar  * Mor,


A. et al. Dynamics of single mRNP nucleocytoplasmic transport and export through the nuclear pore in living cells. _Nature Cell Biol._ 12, 543–552 (2010). IN THIS PAPER, VARIOUS LARGE


EXOGENOUS MRNP CARGOS ARE FOLLOWED _IN VIVO_ , AND THEIR PROGRESS FROM THE TRANSCRIPTION SITE TO THE NPC IS SHOWN TO BE SLOW (MINUTES), WHEREAS NUCLEAR TRANSPORT IS MORE RAPID (SECONDS). CAS


  PubMed  Google Scholar  * Feldherr, C. M., Kallenbach, E. & Schultz, N. Movement of a karyophilic protein through the nuclear pores of oocytes. _J. Cell Biol._ 99, 2216–2222 (1984).


CAS  PubMed  Google Scholar  * Dworetzky, S. I. & Feldherr, C. M. Translocation of RNA-coated gold particles through the nuclear pores of oocytes. _J. Cell Biol._ 106, 575–584 (1988).


CAS  PubMed  Google Scholar  * Richardson, W. D., Mills, A. D., Dilworth, S. M., Laskey, R. A. & Dingwall, C. Nuclear protein migration involves two steps: rapid binding at the nuclear


envelope followed by slower translocation through nuclear pores. _Cell_ 52, 655–664 (1988). CAS  PubMed  Google Scholar  * Yang, W. & Musser, S. M. Nuclear import time and transport


efficiency depend on importin β concentration. _J. Cell. Biol._ 174, 951–961 (2006). CAS  PubMed  PubMed Central  Google Scholar  * Ribbeck, K. & Gorlich, D. Kinetic analysis of


translocation through nuclear pore complexes. _EMBO J._ 20, 1320–1330 (2001). CAS  PubMed  PubMed Central  Google Scholar  * Tokunaga, M., Imamoto, N. & Sakata-Sogawa, K. Highly inclined


thin illumination enables clear single-molecule imaging in cells. _Nature Methods_ 5, 159–161 (2008). THIS STUDY INTRODUCES A CAREFUL CALIBRATION OF A SIMPLE LIGHT SHIELD TECHNIQUE FOR


FLUORESCENCE IMAGING, AND IS THE FIRST DIRECT VISUALIZATION OF THE HIGH OCCUPANCY OF NPCS WITH SEVERAL INDIVIDUAL TRANSPORT RECEPTORS _IN VIVO_. CAS  PubMed  Google Scholar  * Ellis, R. J.


Protein folding — inside the cage. _Nature_ 442, 360–362 (2006). ADS  CAS  PubMed  Google Scholar  * Marenduzzo, D., Finan, K. & Cook, P. R. The depletion attraction: an underappreciated


force driving cellular organization. _J. Cell Biol._ 175, 681–686 (2006). CAS  PubMed  PubMed Central  Google Scholar  * Lowe, A. R. et al. Selectivity mechanism of the nuclear pore complex


characterized by single cargo tracking. _Nature_ 467, 600–603 (2010). THIS PAPER PRESENTS THE CONSTRAINTS ON LARGE CARGO TRANSPORT FOR ARTIFICIAL, NOT DEFORMABLE, CARGO, SHOWING THE LOWER


TIME LIMIT FOR NPC TRANSLOCATION AND THE UPPER LIMIT FOR CARGO DIAMETER. ADS  CAS  PubMed  PubMed Central  Google Scholar  * Sun, C., Yang, W., Tu, L. C. & Musser, S. M. Single-molecule


measurements of importin α-cargo complex dissociation at the nuclear pore. _Proc. Natl Acad. Sci. USA_ 105, 8613–8618 (2008). ADS  CAS  PubMed  PubMed Central  Google Scholar  * Fiserova,


J., Richards, S. A., Wente, S. R. & Goldberg, M. W. Facilitated transport and diffusion take distinct spatial routes through the nuclear pore complex. _J. Cell Sci._ 123, 2773–2780


(2010). REFERENCES 37 AND 51 USE ULTRASTRUCTURAL STUDIES AND SUPER-FAST FREEZING OF SAMPLES TO CAPTURE CARGO WITHIN THE NPC IN INTACT CELLS, DEMONSTRATING THAT CARGO CAN TRAVEL ALONG


SPECIFIC ROUTES IN THE NPC. CAS  PubMed  PubMed Central  Google Scholar  * Peters, R. Translocation through the nuclear pore complex: selectivity and speed by reduction-of-dimensionality.


_Traffic_ 6, 421–427 (2005). CAS  PubMed  Google Scholar  * Dimitrov, D. I., Milchev, A. & Binder, K. Polymer brushes in cylindrical pores: simulation versus scaling theory. _J. Chem.


Phys._ 125, 34905 (2006). CAS  PubMed  Google Scholar  * Mehlin, H., Daneholt, B. & Skoglund, U. Translocation of a specific premessenger ribonucleoprotein particle through the


nuclear-pore studied with electron-microscope tomography. _Cell_ 69, 605–613 (1992). CAS  PubMed  Google Scholar  * Köhler, A. & Hurt, E. C. Exporting RNA from the nucleus to the


cytoplasm. _Nature Rev. Mol. Cell Biol._ 8, 761–773 (2007). Google Scholar  * Akey, C. W. Visualization of transport-related configurations of the nuclear pore transporter. _Biophys. J._ 58,


341–355 (1990). ADS  CAS  PubMed  PubMed Central  Google Scholar  * Iborra, F. J., Jackson, D. A. & Cook, P. R. The path of RNA through nuclear pores: apparent entry from the sides into


specialized pores. _J. Cell Sci._ 113, 291–302 (2000). CAS  PubMed  Google Scholar  * Siebrasse, J. P. & Kubitscheck, U. Single molecule tracking for studying nucleocytoplasmic


transport and intranuclear dynamics. _Methods Mol. Biol._ 464, 343–361 (2009). PubMed  Google Scholar  * Galy, V. et al. Nuclear retention of unspliced mRNAs in yeast is mediated by


perinuclear Mlp1. _Cell_ 116, 63–73 (2004). CAS  PubMed  Google Scholar  * Siebrasse, J. P. et al. Discontinuous movement of mRNP particles in nucleoplasmic regions devoid of chromatin.


_Proc. Natl Acad. Sci. USA_ 105, 20291–20296 (2008). THIS CAREFUL ANALYSIS OF RNP MOBILITY WITHIN THE NUCLEUS DEMONSTRATES THAT DIFFERENT MOBILITY DISTRIBUTIONS OBSERVED FOR AN RNP ARE BEST


EXPLAINED BY SINGLE MOLECULES ALTERNATING BETWEEN TETHERING AND DIFFUSION. ADS  CAS  PubMed  PubMed Central  Google Scholar  * Kiseleva, E., Goldberg, M. W., Allen, T. D. & Akey, C. W.


Active nuclear pore complexes in _Chironomus_: visualization of transporter configurations related to mRNP export. _J. Cell Sci._ 111, 223–236 (1998). CAS  PubMed  Google Scholar  * Soop, T.


et al. Nup153 affects entry of messenger and ribosomal ribonucleoproteins into the nuclear basket during export. _Mol. Biol. Cell_ 16, 5610–5620 (2005). CAS  PubMed  PubMed Central  Google


Scholar  * Dargemont, C. & Kuhn, L. C. Export of mRNA from microinjected nuclei of _Xenopus laevis_ oocytes. _J. Cell Biol._ 118, 1–9 (1992). CAS  PubMed  Google Scholar  * Montpetit, B.


et al. A conserved mechanism of DEAD-box ATPase activation by nucleoporins and InsP6 in mRNA export. _Nature_ 472, 238–242 (2011). THIS STUDY PRESENTS THE ATOMIC STRUCTURES OF PROTEIN


COMPLEXES FOR MRNA AND FACTORS THAT HAVE BEEN IMPLICATED IN NPC-RELATED EXPORT, AND PROVIDES A MODEL FOR HOW THE RELEASE STEP OF LARGE CARGO FROM THE NPC IS ACHIEVED. ADS  CAS  PubMed 


PubMed Central  Google Scholar  * Conti, E. & Izaurralde, E. Nucleocytoplasmic transport enters the atomic age. _Curr. Opin. Cell Biol._ 13, 310–319 (2001). CAS  PubMed  Google Scholar 


* Reed, R. & Hurt, E. A conserved rnRNA export machinery coupled to pre-mRNA splicing. _Cell_ 108, 523–531 (2002). CAS  PubMed  Google Scholar  * Kota, K. P., Wagner, S. R., Huerta, E.,


Underwood, J. M. & Nickerson, J. A. Binding of ATP to UAP56 is necessary for mRNA export. _J. Cell Sci._ 121, 1526–1537 (2008). CAS  PubMed  Google Scholar  * Carmody, S. R. & Wente,


S. R. mRNA nuclear export at a glance. _J. Cell Sci._ 122, 1933–1937 (2009). CAS  PubMed  PubMed Central  Google Scholar  * Stewart, M. Ratcheting mRNA out of the nucleus. _Mol. Cell_ 25,


327–330 (2007). CAS  PubMed  Google Scholar  * Rodriguez-Navarro, S. & Hurt, E. Linking gene regulation to mRNA production and export. _Curr. Opin. Cell Biol._ 23, 302–309 (2011). CAS 


PubMed  Google Scholar  * Braun, I. C., Herold, A., Rode, M. & Izaurralde, E. Nuclear export of mRNA by TAP/NXF1 requires two nucleoporin-binding sites but not p15. _Mol. Cell. Biol._


22, 5405–5418 (2002). CAS  PubMed  PubMed Central  Google Scholar  * Segref, A. et al. Mex67p, a novel factor for nuclear mRNA export, binds to both poly(A)+ RNA and nuclear pores. _EMBO J._


16, 3256–3271 (1997). CAS  PubMed  PubMed Central  Google Scholar  * Li, Y. et al. An intron with a constitutive transport element is retained in a _Tap_ messenger RNA. _Nature_ 443,


234–237 (2006). ADS  CAS  PubMed  Google Scholar  * Hutten, S. & Kehlenbach, R. H. CRM1-mediated nuclear export: to the pore and beyond. _Trends Cell Biol._ 17, 193–201 (2007). CAS 


PubMed  Google Scholar  * Schmitt, C. et al. Dbp5, a DEAD-box protein required for mRNA export, is recruited to the cytoplasmic fibrils of nuclear pore complex via a conserved interaction


with CAN/Nup159p. _EMBO J._ 18, 4332–4347 (1999). CAS  PubMed  PubMed Central  Google Scholar  * Forler, D. et al. RanBP2/Nup358 provides a major binding site for NXF1-p15 dimers at the


nuclear pore complex and functions in nuclear mRNA export. _Mol. Cell. Biol._ 24, 1155–1167 (2004). CAS  PubMed  PubMed Central  Google Scholar  * Weirich, C. S. et al. Activation of the


DExD/H-box protein Dbp5 by the nuclear-pore protein Gle1 and its coactivator InsP6 is required for mRNA export. _Nature Cell Biol._ 8, 668–676 (2006). CAS  PubMed  Google Scholar  * Hodge,


C. A., Colot, H. V., Stafford, P. & Cole, C. N. Rat8p/Dbp5p is a shuttling transport factor that interacts with Rat7p/Nup159p and Gle1p and suppresses the mRNA export defect of xpo1-1


cells. _EMBO J._ 18, 5778–5788 (1999). CAS  PubMed  PubMed Central  Google Scholar  * Lund, M. K. & Guthrie, C. The DEAD-box protein Dbp5p is required to dissociate Mex67p from exported


mRNPs at the nuclear rim. _Mol. Cell_ 20, 645–651 (2005). CAS  PubMed  Google Scholar  * Linder, P. mRNA export: RNP remodeling by DEAD-box proteins. _Curr. Biol._ 18, R297–R299 (2008). CAS


  PubMed  Google Scholar  * Zhao, J., Jin, S. B., Bjorkroth, B., Wieslander, L. & Daneholt, B. The mRNA export factor Dbp5 is associated with Balbiani ring mRNP from gene to cytoplasm.


_EMBO J._ 21, 1177–1187 (2002). CAS  PubMed  PubMed Central  Google Scholar  * Cole, C. N. & Scarcelli, J. J. Transport of messenger RNA from the nucleus to the cytoplasm. _Curr. Opin.


Cell Biol._ 18, 299–306 (2006). CAS  PubMed  Google Scholar  * Bolger, T. A., Folkmann, A. W., Tran, E. J. & Wente, S. R. The mRNA export factor Gle1 and inositol hexakisphosphate


regulate distinct stages of translation. _Cell_ 134, 624–633 (2008). CAS  PubMed  PubMed Central  Google Scholar  * von Moeller, H., Basquin, C. & Conti, E. The mRNA export protein DBP5


binds RNA and the cytoplasmic nucleoporin NUP214 in a mutually exclusive manner. _Nature Struct. Mol. Biol._ 16, 247–254 (2009). CAS  Google Scholar  * Alcazar-Roman, A. R., Bolger, T. A.


& Wente, S. R. Control of mRNA export and translation termination by inositol hexakisphosphate requires specific interaction with Gle1. _J. Biol. Chem._ 285, 16683–16692 (2010). CAS 


PubMed  PubMed Central  Google Scholar  * Noble, K. N., Tran, E. J., Alcázar-Román, A. R., Hodge, C. A., Cole, C. N. & Wente, S. R. The Dbp5 cycle at the nuclear pore complex during mRNA


export II: nucleotide cycling and mRNP remodeling by Dbp5 are controlled by Nup159 and Gle1. _Genes Dev._ 25, 1065–1077 (2011). CAS  PubMed  PubMed Central  Google Scholar  * Gatfield, D.


et al. The DExH/D box protein HEL/UAP56 is essential for mRNA nuclear export in _Drosophila_ . _Curr. Biol._ 11, 1716–1721 (2001). CAS  PubMed  Google Scholar  * Stutz, F. & Izaurralde,


E. The interplay of nuclear mRNP assembly, mRNA surveillance and export. _Trends Cell Biol._ 13, 319–327 (2003). CAS  PubMed  Google Scholar  * Ellis, R. J. Macromolecular crowding: an


important but neglected aspect of the intracellular environment. _Curr. Opin. Struct. Biol._ 11, 114–119 (2001). CAS  PubMed  Google Scholar  * Schermelleh, L. et al. Subdiffraction


multicolor imaging of the nuclear periphery with 3D structured illumination microscopy. _Science_ 320, 1332–1336 (2008). USING FIXED CELLS, THIS WORK GIVES A FIRST GLANCE AT THE POSSIBLE


CONTRIBUTIONS OF SUPER-RESOLUTION MICROSCOPY, PROVIDING HIGH-RESOLUTION IMAGES OF NUCLEAR STRUCTURE AND SHOWING HOW NPCS MAY BE MADE ACCESSIBLE FOR LARGE CARGO. ADS  CAS  PubMed  PubMed


Central  Google Scholar  * Terry, L. J. & Wente, S. R. Nuclear mRNA export requires specific FG nucleoporins for translocation through the nuclear pore complex. _J. Cell Biol._ 178,


1121–1132 (2007). CAS  PubMed  PubMed Central  Google Scholar  * Lo, K. Y. & Johnson, A. W. Reengineering ribosome export. _Mol. Biol. Cell_ 20, 1545–1554 (2009). CAS  PubMed  PubMed


Central  Google Scholar  * Shitashige, M. et al. Regulation of Wnt signaling by the nuclear pore complex. _Gastroenterology_ 134, 1961–1971 (2008). CAS  PubMed  Google Scholar  * Alvisi, G.,


Rawlinson, S. M., Ghildyal, R., Ripalti, A. & Jans, D. A. Regulated nucleocytoplasmic trafficking of viral gene products: a therapeutic target? _Biochim. Biophys. Acta_ 1784, 213–227


(2008). CAS  PubMed  Google Scholar  * Hurt, J. A. & Silver, P. A. mRNA nuclear export and human disease. _Dis. Model Mech._ 1, 103–108 (2008). CAS  PubMed  PubMed Central  Google


Scholar  * D'Angelo, M. A., Raices, M., Panowski, S. H. & Hetzer, M. W. Age-dependent deterioration of nuclear pore complexes causes a loss of nuclear integrity in postmitotic


cells. _Cell_ 136, 284–295 (2009). CAS  PubMed  PubMed Central  Google Scholar  * Powrie, E. A., Zenklusen, D. & Singer, R. H. A nucleoporin, Nup60p, affects the nuclear and cytoplasmic


localization of _ASH1_ mRNA in _S. cerevisiae_ . _RNA_ 17, 134–144 (2010). PubMed  Google Scholar  * Isken, O. & Maquat, L. E. Quality control of eukaryotic mRNA: safeguarding cells from


abnormal mRNA function. _Genes Dev._ 21, 1833–1856 (2007). CAS  PubMed  Google Scholar  * Satterly, N. et al. Influenza virus targets the mRNA export machinery and the nuclear pore complex.


_Proc. Natl Acad. Sci. USA_ 104, 1853–1858 (2007). ADS  CAS  PubMed  PubMed Central  Google Scholar  * Lee, C. P. & Chen, M. R. Escape of herpesviruses from the nucleus. _Rev. Med.


Virol._ 20, 214–230 (2010). CAS  PubMed  Google Scholar  Download references ACKNOWLEDGEMENTS We apologize to those colleagues whose work, through space considerations, could not be


discussed or cited in this review. This work has been supported by funds from the Kavli Foundation to D.G., National Institutes of Health grants GM86217 and GM84364 to R.H.S., and GM062427,


RR022220 and GM071329 to M.R. We thank A. Joseph for critically reading the manuscript. AUTHOR INFORMATION AUTHORS AND AFFILIATIONS * Department of Bionanoscience, Delft University of


Technology, Faculty of Applied Sciences, Kavli Institute of NanoScience, 2628 CJ Delft, The Netherlands., David Grünwald * Department of Anatomy and Structural Biology, Gruss Lipper


Biophotonics Center, Albert Einstein College of Medicine, Bronx, 10461, New York, USA Robert H. Singer * The Rockefeller University, 1230 York Avenue, New York, 10065, New York, USA Michael


Rout Authors * David Grünwald View author publications You can also search for this author inPubMed Google Scholar * Robert H. Singer View author publications You can also search for this


author inPubMed Google Scholar * Michael Rout View author publications You can also search for this author inPubMed Google Scholar CORRESPONDING AUTHOR Correspondence to Robert H. Singer.


ETHICS DECLARATIONS COMPETING INTERESTS The authors declare no competing financial interests. ADDITIONAL INFORMATION Reprints and permissions information is available at


http://www.nature.com/reprints. RIGHTS AND PERMISSIONS Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Grünwald, D., Singer, R. & Rout, M. Nuclear export dynamics of


RNA–protein complexes. _Nature_ 475, 333–341 (2011). https://doi.org/10.1038/nature10318 Download citation * Published: 20 July 2011 * Issue Date: 21 July 2011 * DOI:


https://doi.org/10.1038/nature10318 SHARE THIS ARTICLE Anyone you share the following link with will be able to read this content: Get shareable link Sorry, a shareable link is not currently


available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative