Determining the architectures of macromolecular assemblies

feature-image

Play all audios:

Loading...

ABSTRACT To understand the workings of a living cell, we need to know the architectures of its macromolecular assemblies. Here we show how proteomic data can be used to determine such


structures. The process involves the collection of sufficient and diverse high-quality data, translation of these data into spatial restraints, and an optimization that uses the restraints


to generate an ensemble of structures consistent with the data. Analysis of the ensemble produces a detailed architectural map of the assembly. We developed our approach on a challenging


model system, the nuclear pore complex (NPC). The NPC acts as a dynamic barrier, controlling access to and from the nucleus, and in yeast is a 50 MDa assembly of 456 proteins. The resulting


structure, presented in an accompanying paper, reveals the configuration of the proteins in the NPC, providing insights into its evolution and architectural principles. The present approach


should be applicable to many other macromolecular assemblies. Access through your institution Buy or subscribe This is a preview of subscription content, access via your institution ACCESS


OPTIONS Access through your institution Subscribe to this journal Receive 51 print issues and online access $199.00 per year only $3.90 per issue Learn more Buy this article * Purchase on


SpringerLink * Instant access to full article PDF Buy now Prices may be subject to local taxes which are calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in * Learn about


institutional subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS INTEGRATIVE STRUCTURAL MODELING OF MACROMOLECULAR COMPLEXES USING ASSEMBLINE


Article 29 November 2021 A MULTI-SCALE MAP OF CELL STRUCTURE FUSING PROTEIN IMAGES AND INTERACTIONS Article 24 November 2021 A QUANTITATIVE MAP OF NUCLEAR PORE ASSEMBLY REVEALS TWO DISTINCT


MECHANISMS Article Open access 04 January 2023 REFERENCES * Sali, A., Glaeser, R., Earnest, T. & Baumeister, W. From words to literature in structural proteomics. _Nature_ 422, 216–225


(2003) Article  ADS  CAS  PubMed  Google Scholar  * Rout, M. P. et al. The yeast nuclear pore complex: composition, architecture, and transport mechanism. _J. Cell Biol._ 148, 635–651 (2000)


Article  CAS  PubMed  PubMed Central  Google Scholar  * Macara, I. G. Transport into and out of the nucleus. _Microbiol. Mol. Biol. Rev._ 65, 570–594 (2001) Article  CAS  PubMed  PubMed


Central  Google Scholar  * Weis, K. Nucleocytoplasmic transport: cargo trafficking across the border. _Curr. Opin. Cell Biol._ 14, 328–335 (2002) Article  CAS  PubMed  Google Scholar  *


Yang, Q., Rout, M. P. & Akey, C. W. Three-dimensional architecture of the isolated yeast nuclear pore complex: functional and evolutionary implications. _Mol. Cell_ 1, 223–234 (1998)


Article  CAS  PubMed  Google Scholar  * Beck, M., Lucic, V., Förster, F., Baumeister, E. & Medalia, O. Snapshots of nuclear pore complexes in action captured by cryo-electron tomography.


_Nature_ 449, 611–615 (2007) Article  ADS  CAS  PubMed  Google Scholar  * Devos, D. et al. Simple fold composition and modular architecture of the nuclear pore complex. _Proc. Natl Acad.


Sci. USA_ 103, 2172–2177 (2006) Article  ADS  CAS  PubMed  PubMed Central  Google Scholar  * Havel, T. F. & Wüthrich, K. A distance geometry program for determining the structures of


small proteins and other macromolecules from nuclear magnetic resonance measurements of intramolecular 1H–1H proximities in solution. _Bull. Math. Biol._ 46, 673–698 (1984) CAS  MATH  Google


Scholar  * Malhotra, A., Tan, R. K. & Harvey, S. C. Prediction of the three-dimensional structure of _Escherichia coli_ 30S ribosomal subunit: a molecular mechanics approach. _Proc.


Natl Acad. Sci. USA_ 87, 1950–1954 (1990) Article  ADS  CAS  PubMed  PubMed Central  Google Scholar  * Denning, D. P., Patel, S. S., Uversky, V., Fink, A. L. & Rexach, M. Disorder in the


nuclear pore complex: the FG repeat regions of nucleoporins are natively unfolded. _Proc. Natl Acad. Sci. USA_ 100, 2450–2455 (2003) Article  ADS  CAS  PubMed  PubMed Central  Google


Scholar  * Lim, R. Y. et al. Flexible phenylalanine-glycine nucleoporins as entropic barriers to nucleocytoplasmic transport. _Proc. Natl Acad. Sci. USA_ 103, 9512–9517 (2006) Article  ADS 


CAS  PubMed  PubMed Central  Google Scholar  * Devos, D. et al. Components of coated vesicles and nuclear pore complexes share a common molecular architecture. _PLoS Biol._ 2, e380 (2004)


Article  PubMed  PubMed Central  CAS  Google Scholar  * Siniossoglou, S. et al. Structure and assembly of the Nup84p complex. _J. Cell Biol._ 149, 41–54 (2000) Article  CAS  PubMed  PubMed


Central  Google Scholar  * Lutzmann, M., Kunze, R., Buerer, A., Aebi, U. & Hurt, E. Modular self-assembly of a Y-shaped multiprotein complex from seven nucleoporins. _EMBO J._ 21,


387–397 (2002) Article  CAS  PubMed  PubMed Central  Google Scholar  * Strambio-de-Castillia, C., Blobel, G. & Rout, M. P. Isolation and characterization of nuclear envelopes from the


Yeast _Saccharomyces_ . _J. Cell Biol._ 131, 19–31 (1995) Article  CAS  PubMed  Google Scholar  * Miller, A. L. et al. Cytoplasmic inositol hexakisphosphate production is sufficient for


mediating the Gle1-mRNA export pathway. _J. Biol. Chem._ 279, 51022–51032 (2004) Article  CAS  PubMed  Google Scholar  * Solsbacher, J., Maurer, P., Vogel, F. & Schlenstedt, G. Nup2p, a


yeast nucleoporin, functions in bidirectional transport of importin alpha. _Mol. Cell. Biol._ 20, 8468–8479 (2000) Article  CAS  PubMed  PubMed Central  Google Scholar  * Marelli, M.,


Aitchison, J. D. & Wozniak, R. W. Specific binding of the karyopherin Kap121p to a subunit of the nuclear pore complex containing Nup53p, Nup59p, and Nup170p. _J. Cell Biol._ 143,


1813–1830 (1998) Article  CAS  PubMed  PubMed Central  Google Scholar  * Archambault, V. et al. Genetic and biochemical evaluation of the importance of Cdc6 in regulating mitotic exit. _Mol.


Biol. Cell_ 14, 4592–4604 (2003) Article  CAS  PubMed  PubMed Central  Google Scholar  * Archambault, V. et al. Targeted proteomic study of the cyclin-Cdk module. _Mol. Cell_ 14, 699–711


(2004) Article  CAS  PubMed  Google Scholar  * Tackett, A. J. et al. I-DIRT, a general method for distinguishing between specific and nonspecific protein interactions. _J. Proteome Res._ 4,


1752–1756 (2005) Article  CAS  PubMed  Google Scholar  * Cristea, I. M., Williams, R., Chait, B. T. & Rout, M. P. Fluorescent proteins as proteomic probes. _Mol. Cell. Proteomics_ 4,


1933–1941 (2005) Article  CAS  PubMed  Google Scholar  * Niepel, M., Strambio-de-Castillia, C., Fasolo, J., Chait, B. T. & Rout, M. P. The nuclear pore complex-associated protein, Mlp2p,


binds to the yeast spindle pole body and promotes its efficient assembly. _J. Cell Biol._ 170, 225–235 (2005) Article  CAS  PubMed  PubMed Central  Google Scholar  * Cristea, I. M. et al.


Tracking and elucidating alphavirus-host protein interactions. _J. Biol. Chem._ 281, 30269–30278 (2006) Article  CAS  PubMed  Google Scholar  * Zhang, W. & Chait, B. T. ProFound: an


expert system for protein identification using mass spectrometric peptide mapping information. _Anal. Chem._ 72, 2482–2489 (2000) Article  CAS  PubMed  Google Scholar  * Krutchinsky, A. N.,


Kalkum, M. & Chait, B. T. Automatic identification of proteins with a MALDI-quadrupole ion trap mass spectrometer. _Anal. Chem._ 73, 5066–5077 (2001) Article  CAS  PubMed  Google Scholar


  * Stelter, P. et al. Molecular basis for the functional interaction of dynein light chain with the nuclear-pore complex. _Nature Cell Biol._ 9, 788–796 (2007) Article  CAS  PubMed  Google


Scholar  * Murphy, R., Watkins, J. L. & Wente, S. R. GLE2, a _Saccharomyces cerevisiae_ homologue of the _Schizosaccharomyces pombe_ export factor RAE1, is required for nuclear pore


complex structure and function. _Mol. Biol. Cell_ 7, 1921–1937 (1996) Article  CAS  PubMed  PubMed Central  Google Scholar  * Murphy, R. & Wente, S. R. An RNA-export mediator with an


essential nuclear export signal. _Nature_ 383, 357–360 (1996) Article  ADS  CAS  PubMed  Google Scholar  * Lutzmann, M. et al. Reconstitution of Nup157 and Nup145N into the Nup84 complex.


_J. Biol. Chem._ 280, 18442–18451 (2005) Article  CAS  PubMed  Google Scholar  * Bailer, S. M. et al. Nup116p associates with the Nup82p-Nsp1p-Nup159p nucleoporin complex. _J. Biol. Chem._


275, 2354–23548 (2000) Article  Google Scholar  * Grandi, P., Doye, V. & Hurt, E. C. Purification of NSP1 reveals complex formation with ‘GLFG’ nucleoporins and a novel nuclear pore


protein NIC96. _EMBO. J._ 12, 3061–3071 (1993) Article  CAS  PubMed  PubMed Central  Google Scholar  * Shen, M. Y. & Sali, A. Statistical potential for assessment and prediction of


protein structures. _Protein Sci._ 15, 2507–2524 (2006) Article  CAS  PubMed  PubMed Central  Google Scholar  * Harding, S. E. Determination of macromolecular homogeneity, shape, and


interactions using sedimentation velocity analytical ultracentrifugation. _Methods Mol. Biol._ 22, 61–73 (1994) CAS  PubMed  Google Scholar  * Krogh, A., Larsson, B., von Heijne, G. &


Sonnhammer, E. L. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. _J. Mol. Biol._ 305, 567–580 (2001) Article  CAS  PubMed  Google


Scholar  * Alber, F., Kim, M. F. & Sali, A. Structural characterization of assemblies from overall shape and subcomplex compositions. _Structure_ 13, 435–445 (2005) Article  CAS  PubMed


  Google Scholar  * Alber, F. et al. The molecular architecture of the nuclear pore complex. _Nature_ doi: 10.1038/nature06405 (this issue). * Akey, C. W. & Radermacher, M. Architecture


of the _Xenopus_ nuclear pore complex revealed by three-dimensional cryo-electron microscopy. _J. Cell Biol._ 122, 1–19 (1993) Article  CAS  PubMed  Google Scholar  * Stoffler, D. et al.


Cryo-electron tomography provides novel insights into nuclear pore architecture: implications for nucleocytoplasmic transport. _J. Mol. Biol._ 328, 119–130 (2003) Article  CAS  PubMed 


Google Scholar  * Kiseleva, E. et al. Yeast nuclear pore complexes have a cytoplasmic ring and internal filaments. _J. Struct. Biol._ 145, 272–288 (2004) Article  CAS  PubMed  Google Scholar


  * Hinshaw, J. E., Carragher, B. O. & Milligan, R. A. Architecture and design of the nuclear pore complex. _Cell_ 69, 1133–1141 (1992) Article  CAS  PubMed  Google Scholar  * Beck, M.


et al. Nuclear pore complex structure and dynamics revealed by cryoelectron tomography. _Science_ 306, 1387–1390 (2004) Article  ADS  CAS  PubMed  Google Scholar  * Pante, N. & Kann, M.


Nuclear pore complex is able to transport macromolecules with diameters of about 39 nm. _Mol. Biol. Cell_ 13, 425–434 (2002) Article  CAS  PubMed  PubMed Central  Google Scholar  * Drin, G.


et al. A general amphipathic α-helical motif for sensing membrane curvature. _Nature Struct. Mol. Biol._ 14, 138–146 (2007) Article  CAS  Google Scholar  * Schurmann, G., Haspel, J., Grumet,


M. & Erickson, H. P. Cell adhesion molecule L1 in folded (horseshoe) and extended conformations. _Mol. Biol. Cell_ 12, 1765–1773 (2001) Article  CAS  PubMed  PubMed Central  Google


Scholar  Download references ACKNOWLEDGEMENTS We thank H. Shio for performing the electron microscopic studies; J. Fanghänel, M. Niepel and C. Strambio-de-Castillia for help in developing


the affinity purification techniques; M. Magnasco for discussions and advice; A. Kruchinsky for assistance with mass spectrometry; M. Topf, D. Korkin, F. Davis, M.-Y. Shen, F. Foerster, N.


Eswar, M. Kim, D. Russel, B. Peterson and B. Webb for many discussions about structure characterization by satisfaction of spatial restraints; C. Johnson, S. G. Parker and C. Silva, T.


Ferrin and T. Goddard for preparation of some figures; and S. Pulapura and X. J. Zhou for their help with the design of the conditional diameter restraint. We are grateful to J. Aitchison


for discussion and insightful suggestions. We also thank all other members of the Chait, Rout and Sali laboratories for their assistance. We acknowledge support from an Irma T. Hirschl


Career Scientist Award (M.P.R.), a Sinsheimer Scholar Award (M.P.R.), a grant from the Rita Allen Foundation (M.P.R.), a grant from the American Cancer Society (M.P.R.), the Sandler Family


Supporting Foundation (A.S.), the Human Frontier Science Program (A.S., L.M.V.), NSF (A.S.), and grants from the National Institutes of Health (B.T.C., M.P.R., A.S.), as well as computer


hardware gifts from R. Conway, M. Homer, Intel, Hewlett-Packard, IBM and Netapp (A.S.). AUTHOR INFORMATION Author notes * Svetlana Dokudovskaya, Liesbeth M. Veenhoff, Julia Kipper, Damien


Devos, Adisetyantari Suprapto & Orit Karni-Schmidt Present address: Present addresses: Laboratory of Nucleocytoplasmic Transport, Institut Jacques Monod, 2 place Jussieu, Tour 43, Paris


75251, France (S.D.); Department of Biochemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands (L.M.V.); German Aerospace Center (PT-DLR), Heinrich-Konen-Strasse


1, D-53227 Bonn, Germany (J.K.); Structural Bioinformatics, EMBL, Meyerhofstrasse 1, D-69117 Heidelberg, Germany (D.D.); Office of Technology Transfer, The Rockefeller University, 1230 York


Avenue, New York, New York 10065, USA (A.S.); Herbert Irving Comprehensive Cancer Center, Columbia University, 1130 St Nicholas Avenue, New York, New York 10032, USA (O.K.-S.)., New York *


Frank Alber, Svetlana Dokudovskaya and Liesbeth M. Veenhoff: These authors contributed equally to this work. AUTHORS AND AFFILIATIONS * Department of Bioengineering and Therapeutic Sciences,


Department of Pharmaceutical Chemistry, and California Institute for Quantitative Biosciences, Byers Hall, Suite 503B, 1700 4th Street, University of California at San Francisco, San


Francisco, California 94158-2330, USA, California Frank Alber, Damien Devos & Andrej Sali * Laboratory of Cellular and Structural Biology, and,, California Svetlana Dokudovskaya, 


Liesbeth M. Veenhoff, Julia Kipper, Adisetyantari Suprapto, Orit Karni-Schmidt, Rosemary Williams & Michael P. Rout * Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The


Rockefeller University, 1230 York Avenue, New York, New York 10065, USA , New York Wenzhu Zhang & Brian T. Chait Authors * Frank Alber View author publications You can also search for


this author inPubMed Google Scholar * Svetlana Dokudovskaya View author publications You can also search for this author inPubMed Google Scholar * Liesbeth M. Veenhoff View author


publications You can also search for this author inPubMed Google Scholar * Wenzhu Zhang View author publications You can also search for this author inPubMed Google Scholar * Julia Kipper


View author publications You can also search for this author inPubMed Google Scholar * Damien Devos View author publications You can also search for this author inPubMed Google Scholar *


Adisetyantari Suprapto View author publications You can also search for this author inPubMed Google Scholar * Orit Karni-Schmidt View author publications You can also search for this author


inPubMed Google Scholar * Rosemary Williams View author publications You can also search for this author inPubMed Google Scholar * Brian T. Chait View author publications You can also search


for this author inPubMed Google Scholar * Michael P. Rout View author publications You can also search for this author inPubMed Google Scholar * Andrej Sali View author publications You can


also search for this author inPubMed Google Scholar CORRESPONDING AUTHORS Correspondence to Brian T. Chait, Michael P. Rout or Andrej Sali. SUPPLEMENTARY INFORMATION SUPPLEMENTARY


INFORMATION The file contains Supplementary Methods, Supplementary Figures 1-27, Supplementary Tables 1-10 and additional references. (PDF 8230 kb) RIGHTS AND PERMISSIONS Reprints and


permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Alber, F., Dokudovskaya, S., Veenhoff, L. _et al._ Determining the architectures of macromolecular assemblies. _Nature_ 450, 683–694 (2007).


https://doi.org/10.1038/nature06404 Download citation * Received: 30 August 2007 * Accepted: 22 October 2007 * Published: 29 November 2007 * Issue Date: 29 November 2007 * DOI:


https://doi.org/10.1038/nature06404 SHARE THIS ARTICLE Anyone you share the following link with will be able to read this content: Get shareable link Sorry, a shareable link is not currently


available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative