Vibration-based cell engineering

feature-image

Play all audios:

Loading...

ABSTRACT Cell engineering has the aim of producing cells with controlled phenotype for medical use, for example, for cell therapy, cell transplantation or drug discovery. However, chemical


induction of cell phenotypes, in particular, the use of inductive media and growth factors, often lacks specificity, might be unsuitable for clinical use and remains costly and difficult to


scale up. Alternatively, mechanotransductive stimulation can be applied to engineer cells with specific phenotypes. In this Review, we discuss vibration as a mechanotransductive


cell-engineering tool for both in vitro phenotypic control and in vivo regenerative therapy. We examine how vibration devices can be designed to provide specific frequencies and amplitudes


to which cells respond through either adhesion-induced or channel-induced mechanotransduction pathways. We further highlight key applications of vibrational stimulation for bone regeneration


as well as whole-body vibration as regenerative therapy, identifying important mechanisms of action and gaps in translational pipelines. KEY POINTS * Cells can respond to their mechanical


environment through phenotypic and functional changes. * Vibration is being explored for cell engineering to modify cellular growth, motility and differentiation. * Various vibration


parameters (frequency, amplitude and duration) are being explored for cell engineering, but their relation to mechanotransductive signalling and phenotypic changes are yet to be fully


understood. * Vibrational stimulation might be clinically applied for cell therapy or regenerative medicine, but scalibility and optimization of parameters remain challenging. Access through


your institution Buy or subscribe This is a preview of subscription content, access via your institution ACCESS OPTIONS Access through your institution Subscribe to this journal Receive 12


digital issues and online access to articles $119.00 per year only $9.92 per issue Learn more Buy this article * Purchase on SpringerLink * Instant access to full article PDF Buy now Prices


may be subject to local taxes which are calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in * Learn about institutional subscriptions * Read our FAQs * Contact customer support


SIMILAR CONTENT BEING VIEWED BY OTHERS ULTRASOUND-ASSISTED TISSUE ENGINEERING Article 02 April 2024 EFFECTS OF EXTRACELLULAR MATRIX VISCOELASTICITY ON CELLULAR BEHAVIOUR Article 26 August


2020 HUMAN INDUCED MESENCHYMAL STEM CELLS DISPLAY INCREASED SENSITIVITY TO MATRIX STIFFNESS Article Open access 19 May 2022 REFERENCES * Jaklenec, A., Stamp, A., Deweerd, E., Sherwin, A.


& Langer, R. Progress in the tissue engineering and stem cell industry “are we there yet?”. _Tissue Eng. B_ 18, 155–166 (2012). Article  Google Scholar  * McPherson, J. M. & Tubo, R.


Autologous chondrocyte transplantation (Carticel®): lessons learned and future challenges. _In Vitro Cell. Dev. Biol._ 40, 6A (2004). Google Scholar  * Starzl, T. E. History of clinical


transplantation. _World J. Surg._ 24, 759–782 (2000). Article  Google Scholar  * Childs, P. G., Reid, S., Salmeron-Sanchez, M. & Dalby, M. J. Hurdles to uptake of mesenchymal stem cells


and their progenitors in therapeutic products. _Biochem. J._ 477, 3349–3366 (2020). Article  Google Scholar  * Yin, J. Q., Zhu, J. & Ankrum, J. A. Manufacturing of primed mesenchymal


stromal cells for therapy. _Nat. Biomed. Eng._ 3, 90–104 (2019). Article  Google Scholar  * Martins, J. P. et al. Towards an advanced therapy medicinal product based on mesenchymal stromal


cells isolated from the umbilical cord tissue: quality and safety data. _Stem Cell Res. Ther._ 5, 9 (2014). Article  Google Scholar  * Rozwadowska, N. et al. Optimization of human myoblasts


culture under different media conditions for application in the in vitro studies. _Am. J. Stem Cell_ 11, 1–11 (2022). Google Scholar  * Sonnet, W. & Aznar‐López, C. Treatment of


delayed-union fractures of long bones with minimally invasive administration of allogeneic bone-forming cells differentiated from mesenchymal stem cells: a pilot clinical trial. _Bone


Innov._ 1, 3–7 (2019). Google Scholar  * Czapla, J. et al. The effect of culture media on large-scale expansion and characteristic of adipose tissue-derived mesenchymal stromal cells. _Stem


Cell Res. Ther._ 10, 235 (2019). Article  Google Scholar  * Gualdi, T. et al. In vitro osteodifferentiation of intact human amniotic membrane is not beneficial in the context of bone repair.


_Cell Tissue Bank._ 20, 435–446 (2019). Article  Google Scholar  * Wang, N., Tytell, J. D. & Ingber, D. E. Mechanotransduction at a distance: mechanically coupling the extracellular


matrix with the nucleus. _Nat. Rev. Mol. Cell Biol._ 10, 75–82 (2009). Article  Google Scholar  * Vining, K. H. & Mooney, D. J. Mechanical forces direct stem cell behaviour in


development and regeneration. _Nat. Rev. Mol. Cell Biol._ 18, 728–742 (2017). Article  Google Scholar  * Wang, N. Review of cellular mechanotransduction. _J. Phys. D_ 50, 233002 (2017).


Article  Google Scholar  * Brusatin, G., Panciera, T., Gandin, A., Citron, A. & Piccolo, S. Biomaterials and engineered microenvironments to control YAP/TAZ-dependent cell behaviour.


_Nat. Mater._ 17, 1063–1075 (2018). Article  Google Scholar  * Melo-Fonseca, F. et al. Reengineering bone–implant interfaces for improved mechanotransduction and clinical outcomes. _Stem


Cell Rev. Rep._ 16, 1121–1138 (2020). Article  Google Scholar  * Discher, D. E., Janmey, P. & Wang, Y.-L. Tissue cells feel and respond to the stiffness of their substrate. _Science_


310, 1139–1143 (2005). Article  Google Scholar  * Cantini, M., Donnelly, H., Dalby, M. J. & Salmeron‐Sanchez, M. The plot thickens: the emerging role of matrix viscosity in cell


mechanotransduction. _Adv. Healthc. Mater._ 9, 1901259 (2020). Article  Google Scholar  * Luciano, M. et al. Cell monolayers sense curvature by exploiting active mechanics and nuclear


mechanoadaptation. _Nat. Phys._ 17, 1382–1390 (2021). Article  Google Scholar  * Roca-Cusachs, P., Conte, V. & Trepat, X. Quantifying forces in cell biology. _Nat. Cell Biol._ 19,


742–751 (2017). Article  Google Scholar  * Klumpers, D. D., Zhao, X., Mooney, D. J. & Smit, T. H. Cell mediated contraction in 3D cell-matrix constructs leads to spatially regulated


osteogenic differentiation. _Integr. Biol._ 5, 1174–1183 (2013). Article  Google Scholar  * Hodgkinson, T. et al. The use of nanovibration to discover specific and potent bioactive


metabolites that stimulate osteogenic differentiation in mesenchymal stem cells. _Sci. Adv._ 7, eabb7921 (2021). Article  Google Scholar  * Mirmalek-Sani, S. H. et al. Characterization and


multipotentiality of human fetal femur-derived cells: implications for skeletal tissue regeneration. _Stem Cell_ 24, 1042–1053 (2006). Article  Google Scholar  * Wu, J. et al. Joint


construction of micro-vibration stimulation and BCP scaffolds for enhanced bioactivity and self-adaptability tissue engineered bone grafts. _J. Mater. Chem. B_ 8, 4278–4288 (2020). Article 


Google Scholar  * ElDeeb, A. M. & Abdel-Aziem, A. A. Effect of whole-body vibration exercise on power profile and bone mineral density in postmenopausal women with osteoporosis: a


randomized controlled trial. _J. Manip. Physiol. Ther._ 43, 384–393 (2020). Article  Google Scholar  * Cooper, N. P., Vavakou, A. & van der Heijden, M. Vibration hotspots reveal


longitudinal funneling of sound-evoked motion in the mammalian cochlea. _Nat. Commun._ 9, 3054 (2018). Article  Google Scholar  * Brown, G. N., Sattler, R. L. & Guo, X. E. Experimental


studies of bone mechanoadaptation: bridging in vitro and in vivo studies with multiscale systems. _Interface Focus._ 6, 20150071 (2016). Article  Google Scholar  * Malone, A. M. et al.


Primary cilia mediate mechanosensing in bone cells by a calcium-independent mechanism. _Proc. Natl Acad. Sci. USA_ 104, 13325–13330 (2007). Article  Google Scholar  * Wang, J., Sun, Y.-X.


& Li, J. The role of mechanosensor Piezo1 in bone homeostasis and mechanobiology. _Dev. Biol._ 493, 80–88 (2022). Article  Google Scholar  * Vanmunster, M. et al. Mechanosensors control


skeletal muscle mass, molecular clocks, and metabolism. _Cell. Mol. Life Sci._ 79, 321 (2022). Article  Google Scholar  * Jaalouk, D. E. & Lammerding, J. Mechanotransduction gone awry.


_Nat. Rev. Mol. Cell Biol._ 10, 63–73 (2009). Article  Google Scholar  * Jiao, Y. et al. The crescendo pulse frequency of shear stress stimulates the endothelialization of bone marrow


mesenchymal stem cells on the luminal surface of decellularized scaffold in the bioreactor. _Bioengineered_ 13, 7925–7938 (2022). Article  Google Scholar  * Tan, Y. et al. Low-intensity


pulsed ultrasound stimulates proliferation of stem/progenitor cells: what we need to know to translate basic science research into clinical applications. _Asian J. Androl._ 23, 602 (2021).


Article  Google Scholar  * Markides, H. et al. Translation of remote control regenerative technologies for bone repair. _npj Regen. Med._ 3, 9 (2018). Article  Google Scholar  * Corrigan, M.


A. et al. TRPV4-mediates oscillatory fluid shear mechanotransduction in mesenchymal stem cells in part via the primary cilium. _Sci. Rep._ 8, 3824 (2018). Article  Google Scholar  * Hahn,


C. & Schwartz, M. A. Mechanotransduction in vascular physiology and atherogenesis. _Nat. Rev. Mol. Cell Biol._ 10, 53–62 (2009). Article  Google Scholar  * Dupont, S. et al. Role of


YAP/TAZ in mechanotransduction. _Nature_ 474, 179–183 (2011). Article  Google Scholar  * Beijer, N. R. et al. Dynamic adaptation of mesenchymal stem cell physiology upon exposure to surface


micropatterns. _Sci. Rep._ 9, 9099 (2019). Article  Google Scholar  * Pemberton, G. D. et al. Nanoscale stimulation of osteoblastogenesis from mesenchymal stem cells: nanotopography and


nanokicking. _Nanomedicine_ 10, 547–560 (2015). Article  Google Scholar  * Walther, B. K. et al. Mechanotransduction-on-chip: vessel-chip model of endothelial YAP mechanobiology reveals


matrix stiffness impedes shear response. _Lab Chip_ 21, 1738–1751 (2021). Article  Google Scholar  * Yarishkin, O. et al. Mechanotransduction and dynamic outflow regulation in trabecular


meshwork requires Piezo1 channels. Preprint at _bioRxiv_ https://doi.org/10.1101/2020.06.30.180653 (2020). * Melica, M. E. et al. Substrate stiffness modulates renal progenitor cell


properties via a ROCK-mediated mechanotransduction mechanism. _Cells_ 8, 1561 (2019). Article  Google Scholar  * Brown, T. D. Techniques for mechanical stimulation of cells in vitro: a


review. _J. Biomech._ 33, 3–14 (2000). Article  Google Scholar  * Stavenschi, E., Labour, M.-N. & Hoey, D. A. Oscillatory fluid flow induces the osteogenic lineage commitment of


mesenchymal stem cells: the effect of shear stress magnitude, frequency, and duration. _J. Biomech._ 55, 99–106 (2017). Article  Google Scholar  * Tsimbouri, P. M. et al. Stimulation of 3D


osteogenesis by mesenchymal stem cells using a nanovibrational bioreactor. _Nat. Biomed. Eng._ 1, 758–770 (2017). Article  Google Scholar  * Song, Z., Banks, R. W. & Bewick, G. S.


Modelling the mechanoreceptor’s dynamic behaviour. _J. Anat._ 227, 243–254 (2015). Article  Google Scholar  * Sawada, Y., Murase, M. & Sokabe, M. The gating mechanism of the bacterial


mechanosensitive channel MscL revealed by molecular dynamics simulations: from tension sensing to channel opening. _Channels_ 6, 317–331 (2012). Article  Google Scholar  * Appel, H. M. &


Cocroft, R. B. Plants respond to leaf vibrations caused by insect herbivore chewing. _Oecologia_ 175, 1257–1266 (2014). Article  Google Scholar  * von Muggenthaler, E. The felid purr: a


healing mechanism? _J. Acoust. Soc. Am._ 110, 2666–2666 (2001). Article  Google Scholar  * Nikukar, H. et al. Osteogenesis of mesenchymal stem cells by nanoscale mechanotransduction. _ACS


Nano_ 7, 2758–2767 (2013). Article  Google Scholar  * Yang, C., Tibbitt, M. W., Basta, L. & Anseth, K. S. Mechanical memory and dosing influence stem cell fate. _Nat. Mater._ 13, 645–652


(2014). Article  Google Scholar  * Thompson, M., Woods, K., Newberg, J., Oxford, J. T. & Uzer, G. Low-intensity vibration restores nuclear YAP levels and acute YAP nuclear shuttling in


mesenchymal stem cells subjected to simulated microgravity. _npj Microgravity_ 6, 35 (2020). Article  Google Scholar  * Kanchanawong, P. et al. Nanoscale architecture of integrin-based cell


adhesions. _Nature_ 468, 580–584 (2010). Article  Google Scholar  * Kilian, K. A., Bugarija, B., Lahn, B. T. & Mrksich, M. Geometric cues for directing the differentiation of mesenchymal


stem cells. _Proc. Natl Acad. Sci. USA_ 107, 4872–4877 (2010). Article  Google Scholar  * Lee, W. et al. The osteogenic differentiation of human dental pulp stem cells through G0/G1 arrest


and the p-ERK/Runx-2 pathway by sonic vibration. _Int. J. Mol. Sci._ 22, 10167 (2021). Article  Google Scholar  * Zhou, Y. et al. Osteogenic differentiation of bone marrow-derived


mesenchymal stromal cells on bone-derived scaffolds: effect of microvibration and role of ERK1/2 activation. _Eur. Cell Mater._ 22, 12–25 (2011). Article  Google Scholar  * Lu, Y. et al.


Vibration loading promotes osteogenic differentiation of bone marrow-derived mesenchymal stem cells via p38 MAPK signaling pathway. _J. Biomech._ 71, 67–75 (2018). Article  Google Scholar  *


Wu, R. W. et al. Piezoelectric microvibration mitigates estrogen loss-induced osteoporosis and promotes piezo1, microRNA-29a, and Wnt3a signaling in osteoblasts. _Int. J. Mol. Sci._ 22,


9476 (2021). Article  Google Scholar  * Bas, G. et al. Low intensity vibrations augment mesenchymal stem cell proliferation and differentiation capacity during in vitro expansion. _Sci.


Rep._ 10, 9369 (2020). Article  Google Scholar  * Halonen, H. T., Ihalainen, T. O., Hyväri, L., Miettinen, S. & Hyttinen, J. A. Cell adhesion and culture medium dependent changes in the


high frequency mechanical vibration induced proliferation, osteogenesis, and intracellular organization of human adipose stem cells. _J. Mech. Behav. Biomed. Mater._ 101, 103419 (2020).


Article  Google Scholar  * Hou, W., Zhang, D., Feng, X. & Zhou, Y. Low magnitude high frequency vibration promotes chondrogenic differentiation of bone marrow stem cells with involvement


of β-catenin signaling pathway. _Arch. Oral. Biol._ 118, 104860 (2020). Article  Google Scholar  * Safavi, A. S. et al. Efficacy of mechanical vibration in regulating mesenchymal stem cells


gene expression. _In Vitro Cell. Dev. Biol. Anim._ 55, 387–394 (2019). Article  Google Scholar  * Anggayasti, W. L., Imashiro, C., Kuribara, T., Totani, K. & Takemura, K. Low‐frequency


mechanical vibration induces apoptosis of A431 epidermoid carcinoma cells. _Eng. Life Sci._ 20, 232–238 (2020). Article  Google Scholar  * Zhao, Q., Lu, Y., Gan, X. & Yu, H. Low


magnitude high frequency vibration promotes adipogenic differentiation of bone marrow stem cells via P38 MAPK signal. _PLoS ONE_ 12, e0172954 (2017). Article  Google Scholar  *


Pongkitwitoon, S., Uzer, G., Rubin, J. & Judex, S. Cytoskeletal configuration modulates mechanically induced changes in mesenchymal stem cell osteogenesis, morphology, and stiffness.


_Sci. Rep._ 6, 34791 (2016). Article  Google Scholar  * Tapia-Rojo, R., Alonso-Caballero, Á. & Fernández, J. M. Talin folding as the tuning fork of cellular mechanotransduction. _Proc.


Natl Acad. Sci. USA_ 117, 21346–21353 (2020). Article  Google Scholar  * Griffin, X. L., Parsons, N., Costa, M. L. & Metcalfe, D. Ultrasound and shockwave therapy for acute fractures in


adults. _Cochrane Datab. Syst. Rev._ 3, CD008579 (2014). Google Scholar  * Lam, T. et al. Effect of whole body vibration (WBV) therapy on bone density and bone quality in osteopenic girls


with adolescent idiopathic scoliosis: a randomized, controlled trial. _Osteopor. Int._ 24, 1623–1636 (2013). Article  Google Scholar  * Ambattu, L. A. & Yeo, L. Y. Sonomechanobiology:


vibrational stimulation of cells and its therapeutic implications. _Biophys. Rev._ 4, 021301 (2023). Article  Google Scholar  * Ling, L. et al. Low‐intensity pulsed ultrasound activates


ERK1/2 and PI3K‐Akt signalling pathways and promotes the proliferation of human amnion‐derived mesenchymal stem cells. _Cell Prolif._ 50, e12383 (2017). Article  Google Scholar  * Wang, Y.


et al. Low-intensity pulsed ultrasound promotes periodontal ligament stem cell migration through TWIST1-mediated SDF-1 expression. _Int. J. Mol. Med._ 42, 322–330 (2018); corrigendum 49, 38


(2022). * Wang, Y. et al. Study of bilineage differentiation of human-bone-marrow-derived mesenchymal stem cells in oxidized sodium alginate/_N_-succinyl chitosan hydrogels and synergistic


effects of RGD modification and low-intensity pulsed ultrasound. _Acta Biomater._ 10, 2518–2528 (2014). Article  Google Scholar  * Snehota, M., Vachutka, J., Ter Haar, G., Dolezal, L. &


Kolarova, H. Therapeutic ultrasound experiments in vitro: review of factors influencing outcomes and reproducibility. _Ultrasonics_ 107, 106167 (2020). Article  Google Scholar  * Gupta, D.


et al. Traditional multiwell plates and petri dishes limit the evaluation of the effects of ultrasound on cells in vitro. _Ultrasound Med. Biol._ 48, 1745–1761 (2022). Article  Google


Scholar  * Campsie, P. et al. Design, construction and characterisation of a novel nanovibrational bioreactor and cultureware for osteogenesis. _Sci. Rep._ 9, 12944 (2019). Article  Google


Scholar  * Prè, D. et al. High-frequency vibration treatment of human bone marrow stromal cells increases differentiation toward bone tissue. _Bone Marrow Res._ 2013, 803450 (2013). Article


  Google Scholar  * Uzer, G. et al. Separating fluid shear stress from acceleration during vibrations in vitro: identification of mechanical signals modulating the cellular response. _Cell.


Mol. Bioeng._ 5, 266–276 (2012). Article  Google Scholar  * Ito, Y. et al. Effects of vibration on differentiation of cultured PC12 cells. _Biotechnol. Bioeng._ 108, 592–599 (2011). Article


  Google Scholar  * Choi, S. & Kuchenbecker, K. J. Vibrotactile display: perception, technology, and applications. _Proc. IEEE_ 101, 2093–2104 (2012). Article  Google Scholar  * Dong, S.


Review on piezoelectric, ultrasonic, and magnetoelectric actuators. _J. Adv. Dielectr._ 2, 1230001 (2012). Article  Google Scholar  * Hensel, K., Mienkina, M. P. & Schmitz, G. Analysis


of ultrasound fields in cell culture wells for in vitro ultrasound therapy experiments. _Ultrasound Med. Biol._ 37, 2105–2115 (2011). Article  Google Scholar  * Patel, U. S. et al.


Ultrasound field characterization and bioeffects in multiwell culture plates. _J. Ther. Ultrasound_ 3, 8 (2015). Article  Google Scholar  * LaGier, A. J., Elbe, A., Thamke, A. &


Anderson, P. Vibration, a treatment for migraine, linked to calpain driven changes in actin cytoskeleton. _PLoS ONE_ 17, e0262058 (2022). Article  Google Scholar  * Tirkkonen, L. et al. The


effects of vibration loading on adipose stem cell number, viability and differentiation towards bone-forming cells. _J. R. Soc. Interf._ 8, 1736–1747 (2011). Article  Google Scholar  *


Bacabac, R. G. et al. Bone cell responses to high-frequency vibration stress: does the nucleus oscillate within the cytoplasm? _FASEB J._ 20, 858–864 (2006). Article  Google Scholar  * Prè,


D., Ceccarelli, G., Benedetti, L., Magenes, G. & De Angelis, M. G. Effects of low-amplitude, high-frequency vibrations on proliferation and differentiation of SAOS-2 human osteogenic


cell line. _Tissue Eng. C_ 15, 669–679 (2009). Article  Google Scholar  * Prè, D. et al. The differentiation of human adipose-derived stem cells (hASCs) into osteoblasts is promoted by low


amplitude, high frequency vibration treatment. _Bone_ 49, 295–303 (2011). Article  Google Scholar  * Nikukar, H. et al. Production of nanoscale vibration for stimulation of human mesenchymal


stem cells. _J. Biomed. Nanotechnol._ 12, 1478–1488 (2016). Article  Google Scholar  * Childs, P. G. et al. Use of nanoscale mechanical stimulation for control and manipulation of cell


behaviour. _Acta Biomater._ 34, 159–168 (2016). Article  Google Scholar  * Orapiriyakul, W. et al. Nanovibrational stimulation of mesenchymal stem cells induces therapeutic reactive oxygen


species and inflammation for three-dimensional bone tissue engineering. _ACS Nano_ 14, 10027–10044 (2020). Article  Google Scholar  * Abbott, B. P. et al. Observation of gravitational waves


from a binary black hole merger. _Phys. Rev. Lett._ 116, 061102 (2016). Article  MathSciNet  Google Scholar  * Gao, H. et al. Low-level mechanical vibration enhances osteoblastogenesis via a


canonical Wnt signaling-associated mechanism. _Mol. Med. Rep._ 16, 317–324 (2017). Article  Google Scholar  * Enomoto, U., Imashiro, C. & Takemura, K. Collective cell migration of


fibroblasts is affected by horizontal vibration of the cell culture dish. _Eng. Life Sci._ 20, 402–411 (2020). Article  Google Scholar  * Mojena-Medina, D. et al. Design, implementation, and


validation of a piezoelectric device to study the effects of dynamic mechanical stimulation on cell proliferation, migration and morphology. _Sensors_ 20, 2155 (2020). Article  Google


Scholar  * Ota, T., Chiba, M. & Hayashi, H. Vibrational stimulation induces osteoblast differentiation and the upregulation of osteogenic gene expression in vitro. _Cytotechnology_ 68,


2287–2299 (2016). Article  Google Scholar  * Sancilio, S. et al. Effects of focused vibrations on human satellite cells. _Int. J. Mol. Sci._ 23, 6026 (2022). Article  Google Scholar  *


Takeuchi, R. et al. Effects of vibration and hyaluronic acid on activation of three-dimensional cultured chondrocytes. _Arthritis Rheum._ 54, 1897–1905 (2006). Article  Google Scholar  *


Grosman-Dziewiszek, P. et al. Influence of 40 Hz and 100 Hz vibration on SH-SY5Y cells growth and differentiation—a preliminary study. _Molecules_ 27, 3337 (2022). Article  Google Scholar  *


Lin, C. Y. et al. Yoda1 enhanced low-magnitude high-frequency vibration on osteocytes in regulation of MDA-MB-231 breast cancer cell migration. _Cancers_ 14, 3395 (2022). Article  Google


Scholar  * Uzer, G. et al. Cell mechanosensitivity to extremely low-magnitude signals is enabled by a LINCed nucleus. _Stem Cell_ 33, 2063–2076 (2015). Article  Google Scholar  * Lau, E. et


al. Effect of low-magnitude, high-frequency vibration on osteogenic differentiation of rat mesenchymal stromal cells. _J. Orthop. Res._ 29, 1075–1080 (2011). Article  Google Scholar  * Uzer,


G., Pongkitwitoon, S., Ete Chan, M. & Judex, S. Vibration induced osteogenic commitment of mesenchymal stem cells is enhanced by cytoskeletal remodeling but not fluid shear. _J.


Biomech._ 46, 2296–2302 (2013). Article  Google Scholar  * Lorusso, D., Nikolov, H. N., Holdsworth, D. W. & Dixon, S. J. Vibration of osteoblastic cells using a novel motion-control


platform does not acutely alter cytosolic calcium, but desensitizes subsequent responses to extracellular ATP. _J. Cell. Physiol._ 235, 5096–5110 (2020). Article  Google Scholar  * Coughlin,


T. R. & Niebur, G. L. Fluid shear stress in trabecular bone marrow due to low-magnitude high-frequency vibration. _J. Biomech._ 45, 2222–2229 (2012). Article  Google Scholar  * Ambattu,


L. A., Gelmi, A. & Yeo, L. Y. Short-duration high frequency megahertz-order nanomechanostimulation drives early and persistent osteogenic differentiation in mesenchymal stem cells.


_Small_ 18, 2106823 (2022). Article  Google Scholar  * Kennedy, J. W. et al. Nanovibrational stimulation inhibits osteoclastogenesis and enhances osteogenesis in co-cultures. _Sci. Rep._ 11,


22741 (2021). Article  Google Scholar  * Tong, Z., Duncan, R. & Jia, X. Modulating the behaviors of mesenchymal stem cells via the combination of high-frequency vibratory stimulations


and fibrous scaffolds. _Tissue Eng. A_ 19, 1862–1878 (2013). Article  Google Scholar  * Stein, G. S. & Lian, J. B. Molecular mechanisms mediating proliferation/differentiation


interrelationships during progressive development of the osteoblast phenotype. _Endocr. Rev._ 14, 424–442 (1993). Article  Google Scholar  * Yang, J. et al. Nanotopographical induction of


osteogenesis through adhesion, bone morphogenic protein cosignaling, and regulation of microRNAs. _ACS Nano_ 8, 9941–9953 (2014). Article  Google Scholar  * Li, Y. H. et al. Primary cilia


respond to intermittent low-magnitude, high-frequency vibration and mediate vibration-induced effects in osteoblasts. _Am. J. Physiol. Cell Physiol._ 318, C73–c82 (2020). Article  Google


Scholar  * Judex, S. & Pongkitwitoon, S. Differential efficacy of 2 vibrating orthodontic devices to alter the cellular response in osteoblasts, fibroblasts, and osteoclasts. _Dose


Response_ 16, 1559325818792112 (2018). Article  Google Scholar  * Marędziak, M., Lewandowski, D., Tomaszewski, K. A., Kubiak, K. & Marycz, K. The effect of low-magnitude low-frequency


vibrations (LMLF) on osteogenic differentiation potential of human adipose derived mesenchymal stem cells. _Cell Mol. Bioeng._ 10, 549–562 (2017). Article  Google Scholar  * Rosenberg, N.,


Levy, M. & Francis, M. Experimental model for stimulation of cultured human osteoblast-like cells by high frequency vibration. _Cytotechnology_ 39, 125–130 (2002). Article  Google


Scholar  * Marycz, K. et al. Low-frequency, low-magnitude vibrations (LFLM) enhances chondrogenic differentiation potential of human adipose derived mesenchymal stromal stem cells (hASCs).


_PeerJ_ 4, e1637 (2016). Article  Google Scholar  * Chen, X., He, F., Zhong, D.-Y. & Luo, Z.-P. Acoustic-frequency vibratory stimulation regulates the balance between osteogenesis and


adipogenesis of human bone marrow-derived mesenchymal stem cells. _Biomed. Res. Int._ 2015, 540731 (2015). Google Scholar  * Baskan, O., Mese, G. & Ozcivici, E. Low-intensity vibrations


normalize adipogenesis-induced morphological and molecular changes of adult mesenchymal stem cells. _Proc. Inst. Mech. Eng. H_ 231, 160–168 (2017). Article  Google Scholar  * Baskan, O.,


Sarigil, O., Mese, G. & Ozcivici, E. Frequency-specific sensitivity of 3T3-L1 preadipocytes to low-intensity vibratory stimulus during adipogenesis. _In Vitro Cell. Dev. Biol. Anim._ 58,


452–461 (2022). Article  Google Scholar  * Cashion, A. T. et al. Programmable mechanobioreactor for exploration of the effects of periodic vibratory stimulus on mesenchymal stem cell


differentiation. _Biores. Open Access_ 3, 19–28 (2014). Article  Google Scholar  * Zhang, C. et al. Influence of different intensities of vibration on proliferation and differentiation of


human periodontal ligament stem cells. _Arch. Med. Sci._ 11, 638–646 (2015). Article  Google Scholar  * Lee, J., Abdeen, A. A., Tang, X., Saif, T. A. & Kilian, K. A. Geometric guidance


of integrin mediated traction stress during stem cell differentiation. _Biomaterials_ 69, 174–183 (2015). Article  Google Scholar  * Kilian, K. A. & Mrksich, M. Directing stem cell fate


by controlling the affinity and density of ligand-receptor interactions at the biomaterials interface. _Angew. Chem. Int. Edn_ 51, 4891–4895 (2012). Article  Google Scholar  * McBeath, R.,


Pirone, D. M., Nelson, C. M., Bhadriraju, K. & Chen, C. S. Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. _Dev. Cell_ 6, 483–495 (2004). Article 


Google Scholar  * Engler, A. J., Sen, S., Sweeney, H. L. & Discher, D. E. Matrix elasticity directs stem cell lineage specification. _Cell_ 126, 677–689 (2006). Article  Google Scholar 


* Ross, E. A. et al. Nanotopography reveals metabolites that maintain the immunomodulatory phenotype of mesenchymal stromal cells. _Nat. Commun._ 14, 753 (2023). Article  Google Scholar  *


Tsimbouri, P. M. et al. Using nanotopography and metabolomics to identify biochemical effectors of multipotency. _ACS Nano_ 6, 10239–10249 (2012). Article  Google Scholar  * Knight, C. G. et


al. The collagen-binding A-domains of integrins α1β1 and α2β1 recognize the same specific amino acid sequence, GFOGER, in native (triple-helical) collagens. _J. Biol. Chem._ 275, 35–40


(2000). Article  Google Scholar  * Dalby, M. J., Garcia, A. J. & Salmeron-Sanchez, M. Receptor control in mesenchymal stem cell engineering. _Nat. Rev. Mater_. 3, 17091 (2018). * Dalby,


M. J., Gadegaard, N. & Oreffo, R. O. Harnessing nanotopography and integrin-matrix interactions to influence stem cell fate. _Nat. Mater._ 13, 558–569 (2014). Article  Google Scholar  *


Elosegui-Artola, A. et al. Mechanical regulation of a molecular clutch defines force transmission and transduction in response to matrix rigidity. _Nat. Cell Biol._ 18, 540–548 (2016).


Article  Google Scholar  * Bennett, M. et al. Molecular clutch drives cell response to surface viscosity. _Proc. Natl Acad. Sci. USA_ 115, 1192–1197 (2018). Article  Google Scholar  *


Malmstrom, J. et al. Focal complex maturation and bridging on 200 nm vitronectin but not fibronectin patches reveal different mechanisms of focal adhesion formation. _Nano Lett._ 11,


2264–2271 (2011). Article  Google Scholar  * Elosegui-Artola, A. et al. Force triggers YAP nuclear entry by regulating transport across nuclear pores. _Cell_ 171, 1397–1410.e14 (2017).


Article  Google Scholar  * Kim, J.-M. et al. The ERK MAPK pathway is essential for skeletal development and homeostasis. _Int. J. Mol. Sci._ 20, 1803 (2019). Article  Google Scholar  * Ge,


C. et al. Reciprocal control of osteogenic and adipogenic differentiation by ERK/MAP kinase phosphorylation of Runx2 and PPARγ transcription factors. _J. Cell Physiol._ 231, 587–596 (2016).


Article  Google Scholar  * Chen, Y. et al. Beta-catenin signaling pathway is crucial for bone morphogenetic protein 2 to induce new bone formation. _J. Biol. Chem._ 282, 526–533 (2007).


Article  Google Scholar  * Hou, W. W., Zhu, Z. L., Zhou, Y., Zhang, C. X. & Yu, H. Y. Involvement of Wnt activation in the micromechanical vibration-enhanced osteogenic response of


osteoblasts. _J. Orthopaedic Sci._ 16, 598–605 (2011). Article  Google Scholar  * Miyazaki, A. et al. Coordination of WNT signaling and ciliogenesis during odontogenesis by piezo type


mechanosensitive ion channel component 1. _Sci. Rep._ 9, 14762 (2019). Article  Google Scholar  * Liu, Y. et al. Hydrogen sulfide maintains mesenchymal stem cell function and bone


homeostasis via regulation of Ca2+ channel sulfhydration. _Cell Stem Cell_ 15, 66–78 (2014). Article  Google Scholar  * Gaur, T. et al. Canonical WNT signaling promotes osteogenesis by


directly stimulating Runx2 gene expression. _J. Biol. Chem._ 280, 33132–33140 (2005). Article  Google Scholar  * Choi, Y. et al. Sound waves induce neural differentiation of human bone


marrow-derived mesenchymal stem cells via ryanodine receptor-induced calcium release and Pyk2 activation. _Appl. Biochem. Biotechnol._ 180, 682–694 (2016). Article  Google Scholar  * Coste,


B. et al. Piezo proteins are pore-forming subunits of mechanically activated channels. _Nature_ 483, 176–181 (2012). Article  Google Scholar  * Kefauver, J. M., Ward, A. B. &


Patapoutian, A. Discoveries in structure and physiology of mechanically activated ion channels. _Nature_ 587, 567–576 (2020). Article  Google Scholar  * Li, Y. H. et al. Crosstalk between


the COX2–PGE2–EP4 signaling pathway and primary cilia in osteoblasts after mechanical stimulation. _J. Cell Physiol._ 236, 4764–4777 (2021). Article  Google Scholar  * Loi, F. et al.


Inflammation, fracture and bone repair. _Bone_ 86, 119–130 (2016). Article  Google Scholar  * Ranzinger, J. et al. Nanoscale arrangement of apoptotic ligands reveals a demand for a minimal


lateral distance for efficient death receptor activation. _Nano Lett._ 9, 4240–4245 (2009). Article  Google Scholar  * Varum, S. et al. Energy metabolism in human pluripotent stem cells and


their differentiated counterparts. _PLoS ONE_ 6, e20914 (2011). Article  Google Scholar  * Varum, S. et al. Enhancement of human embryonic stem cell pluripotency through inhibition of the


mitochondrial respiratory chain. _Stem Cell Res._ 3, 142–156 (2009). Article  Google Scholar  * Marín-Cascales, E. et al. Whole-body vibration training and bone health in postmenopausal


women: a systematic review and meta-analysis. _Medicine_ 97, e11918 (2018). Article  Google Scholar  * Leighton, R., Phillips, M., Bhandari, M. & Zura, R. Low intensity pulsed ultrasound


(LIPUS) use for the management of instrumented, infected, and fragility non-unions: a systematic review and meta-analysis of healing proportions. _BMC Musculoskelet. Disord._ 22, 1–9


(2021). Article  Google Scholar  * Auersperg, V. & Trieb, K. Extracorporeal shock wave therapy: an update. _EFORT Open. Rev._ 5, 584–592 (2020). Article  Google Scholar  * Köllmer, M.,


Buhrman, J. S., Zhang, Y. & Gemeinhart, R. A. Markers are shared between adipogenic and osteogenic differentiated mesenchymal stem cells. _J. Dev. Biol. Tissue Eng._ 5, 18 (2013).


Article  Google Scholar  * Pel, J. et al. Platform accelerations of three different whole-body vibration devices and the transmission of vertical vibrations to the lower limbs. _Med. Eng.


Phys._ 31, 937–944 (2009). Article  Google Scholar  * Rehn, B., Lidström, J., Skoglund, J. & Lindström, B. Effects on leg muscular performance from whole‐body vibration exercise: a


systematic review. _Scand. J. Med. Sci. Sports_ 17, 2–11 (2007). Article  Google Scholar  * Sitjà-Rabert, M. et al. Efficacy of whole body vibration exercise in older people: a systematic


review. _Disabil. Rehabil._ 34, 883–893 (2012). Article  Google Scholar  * Chanou, K., Gerodimos, V., Karatrantou, K. & Jamurtas, A. Whole-body vibration and rehabilitation of chronic


diseases: a review of the literature. _J. Sports Sci. Med._ 11, 187 (2012). Google Scholar  * Cardinale, M. & Wakeling, J. Whole body vibration exercise: are vibrations good for you?


_Br. J. Sports Med._ 39, 585–589 (2005). Article  Google Scholar  * Fischer, M. et al. Long-term effects of whole-body vibration on human gait: a systematic review and meta-analysis. _Front.


Neurol._ 10, 627 (2019). Article  Google Scholar  * Slatkovska, L., Alibhai, S., Beyene, J. & Cheung, A. Effect of whole-body vibration on BMD: a systematic review and meta-analysis.


_Osteoporos. Int._ 21, 1969–1980 (2010). Article  Google Scholar  * DadeMatthews, O. O. et al. Systematic review and meta-analyses on the effects of whole-body vibration on bone health.


_Complement. Ther. Med._ 65, 102811 (2022). Article  Google Scholar  * Peretti, A. L., Ciqueleiro, R. T., Flores, L. J. F. & Bertolini, G. R. F. Use of whole-body vibration as


osteoporosis treatment in postmenopausal women: a systematic review. _Eur. J. Clin. Exp. Med_. 17, 146–152 (2019). Article  Google Scholar  * Leung, K. S. et al. Low‐magnitude high‐frequency


vibration accelerates callus formation, mineralization, and fracture healing in rats. _J. Orthop. Res._ 27, 458–465 (2009). Article  Google Scholar  * Shi, H.-F., Cheung, W.-H., Qin, L.,


Leung, A. H.-C. & Leung, K.-S. Low-magnitude high-frequency vibration treatment augments fracture healing in ovariectomy-induced osteoporotic bone. _Bone_ 46, 1299–1305 (2010). Article 


Google Scholar  * Wong, R. M. Y. et al. Fibrinolysis as a target to enhance osteoporotic fracture healing by vibration therapy in a metaphyseal fracture model. _Bone Jt Res._ 10, 41–50


(2021). Article  Google Scholar  * Chow, S. et al. Mechanical stimulation enhanced estrogen receptor expression and callus formation in diaphyseal long bone fracture healing in


ovariectomy-induced osteoporotic rats. _Osteoporos. Int._ 27, 2989–3000 (2016). Article  Google Scholar  * Haffner-Luntzer, M., Lackner, I., Liedert, A., Fischer, V. & Ignatius, A.


Effects of low-magnitude high-frequency vibration on osteoblasts are dependent on estrogen receptor α signaling and cytoskeletal remodeling. _Biochem. Biophys. Res. Commun._ 503, 2678–2684


(2018). Article  Google Scholar  * Chow, S. et al. Vibration treatment modulates macrophage polarisation and enhances early inflammatory response in oestrogen-deficient osteoporotic-fracture


healing. _Eur. Cell Mater._ 38, 228–245 (2019). Article  Google Scholar  * Jawed, Y., Beli, E., March, K., Kaleth, A. & Loghmani, M. T. Whole-body vibration training increases


stem/progenitor cell circulation levels and may attenuate inflammation. _Military Med._ 185, 404–412 (2020). Article  Google Scholar  * Jing, D. et al. Effect of low-level mechanical


vibration on osteogenesis and osseointegration of porous titanium implants in the repair of long bone defects. _Sci. Rep._ 5, 17134 (2015). Article  Google Scholar  * Wang, J. et al.


Vibration and β‐hydroxy‐β‐methylbutyrate treatment suppresses intramuscular fat infiltration and adipogenic differentiation in sarcopenic mice. _J. Cachexia, Sarcopenia Muscle_ 11, 564–577


(2020). Article  Google Scholar  * Judex, S. & Rubin, C. Is bone formation induced by high-frequency mechanical signals modulated by muscle activity? _J. Musculoskelet. Neuronal


Interact._ 10, 3 (2010). Google Scholar  * Seo, B. R. et al. Skeletal muscle regeneration with robotic actuation–mediated clearance of neutrophils. _Sci. Transl. Med._ 13, eabe8868 (2021).


Article  Google Scholar  * Lara-Castillo, N. et al. In vivo mechanical loading rapidly activates β-catenin signaling in osteocytes through a prostaglandin mediated mechanism. _Bone_ 76,


58–66 (2015). Article  Google Scholar  * Liu, C. et al. Effects of mechanical loading on cortical defect repair using a novel mechanobiological model of bone healing. _Bone_ 108, 145–155


(2018). Article  Google Scholar  * Birmingham, E. et al. Mechanical stimulation of bone marrow in situ induces bone formation in trabecular explants. _Ann. Biomed. Eng._ 43, 1036–1050


(2015). Article  Google Scholar  * Zhao, C., Liu, H., Tian, C., Zhang, C. & Wang, W. Multi-scale numerical simulation on mechano-transduction of osteocytes in different gravity fields.


_Comput. Meth. Biomech. Biomed. Eng._ 26, 1419–1430 (2023). Article  Google Scholar  * Williams, J. A. et al. Developing and investigating a nanovibration intervention for the


prevention/reversal of bone loss following spinal cord injury. _ACS Nano_ 18, 17630–17641 (2024). Article  Google Scholar  * McKnight, C. L., Doman, D. A., Brown, J. A., Bance, M. &


Adamson, R. B. Direct measurement of the wavelength of sound waves in the human skull. _J. Acoust. Soc. Am._ 133, 136–145 (2013). Article  Google Scholar  * McLeod, R., Roberts, W., Perry,


I., Richardson, B. & Culling, J. Scanning laser Doppler vibrometry of the cranium when stimulated by a B71 bone transducer. _Appl. Acoust._ 142, 53–58 (2018). Article  Google Scholar  *


Dobrev, I. et al. Sound wave propagation on the human skull surface with bone conduction stimulation. _Hearing Res._ 355, 1–13 (2017). Article  Google Scholar  * Busse, J. W. et al.


Re-evaluation of low intensity pulsed ultrasound in treatment of tibial fractures (TRUST): randomized clinical trial. _BMJ_ 355, i5351 (2016). Google Scholar  * Poolman, R. W. et al. Low


intensity pulsed ultrasound (LIPUS) for bone healing: a clinical practice guideline. _BMJ_ 356, j576 (2017). Article  Google Scholar  * Dolgin, E. Sizzling interest in lab-grown meat belies


lack of basic research. _Nature_ 566, 161–163 (2019). Article  Google Scholar  * Stout, A. J. et al. Simple and effective serum-free medium for sustained expansion of bovine satellite cells


for cell cultured meat. _Commun. Biol._ 5, 466 (2022). Article  Google Scholar  * Coords, M. et al. The effects of low-intensity pulsed ultrasound upon diabetic fracture healing. _J. Orthop.


Res._ 29, 181–188 (2011). Article  Google Scholar  * Curtis, A. S. et al. Cell interactions at the nanoscale: piezoelectric stimulation. _IEEE Trans. Nanobiosci._ 12, 247–254 (2013).


Article  Google Scholar  * Karimi, E. et al. Nanoscale vibration could promote tenogenic differentiation of umbilical cord mesenchymal stem cells. _In Vitro Cell. Dev. Biol. Anim._ 59,


401–409 (2023). Article  Google Scholar  * Kim, I. S., Song, Y. M., Lee, B. & Hwang, S. J. Human mesenchymal stromal cells are mechanosensitive to vibration stimuli. _J. Dent. Res._ 91,


1135–1140 (2012). Article  Google Scholar  * Demiray, L. & Ozcivici, E. Bone marrow stem cells adapt to low-magnitude vibrations by altering their cytoskeleton during quiescence and


osteogenesis. _Turk. J. Biol._ 39, 88–97 (2015). Article  Google Scholar  * Pravitharangul, A., Suttapreyasri, S. & Leethanakul, C. Iliac and mandible osteoblasts exhibit varied


responses to LMHF vibration. _Cell Biol. Int._ 42, 1349–1357 (2018). Article  Google Scholar  * Chen, B. et al. Low-magnitude, high-frequency vibration promotes the adhesion and the


osteogenic differentiation of bone marrow-derived mesenchymal stem cells cultured on a hydroxyapatite-coated surface: The direct role of Wnt/β-catenin signaling pathway activation. _Int. J.


Mol. Med._ 38, 1531–1540 (2016). Article  Google Scholar  * Macione, J. et al. Stimulation of osteoblast differentiation with guided ultrasound waves. _J. Ther. Ultrasound_ 3, 12 (2015).


Article  Google Scholar  * Chu, Y. C., Lim, J., Hwang, W. H., Lin, Y. X. & Wang, J. L. Piezoelectric stimulation by ultrasound facilitates chondrogenesis of mesenchymal stem cells. _J.


Acoust. Soc. Am._ 148, El58 (2020). Article  Google Scholar  * Hortobagyi, D. et al. In vitro mechanical vibration down-regulates pro-inflammatory and pro-fibrotic signaling in human vocal


fold fibroblasts. _PLoS ONE_ 15, e0241901 (2020). Article  Google Scholar  * García-López, S., Villanueva, R. E., Massó-Rojas, F., Páez-Arenas, A. & Meikle, M. C. Micro-vibrations at 30 


Hz on bone cells cultivated in vitro produce soluble factors for osteoclast inhibition and osteoblast activity. _Arch. Oral. Biol._ 110, 104594 (2020). Article  Google Scholar  * Sun, T. et


al. Effects of mechanical vibration on cell morphology, proliferation, apoptosis, and cytokine expression/secretion in osteocyte-like MLO-Y4 cells exposed to high glucose. _Cell Biol. Int._


44, 216–228 (2019). Article  Google Scholar  * Wang, C.-Z. et al. Low-magnitude vertical vibration enhances myotube formation in C2C12 myoblasts. _J. Appl. Physiol._ 109, 840–848 (2010).


Article  Google Scholar  * Lin, Y. H. et al. The essential role of stathmin in myoblast C2C12 for vertical vibration-induced myotube formation. _Biomolecules_ 11, 1583 (2021). Article 


Google Scholar  * Choi, Y. K., Cho, H., Seo, Y. K., Yoon, H. H. & Park, J. K. Stimulation of sub-sonic vibration promotes the differentiation of adipose tissue-derived mesenchymal stem


cells into neural cells. _Life Sci._ 91, 329–337 (2012). Article  Google Scholar  * Cho, H., Seo, Y.-K., Yoon, H.-H., Choi, Y.-K. & Park, J.-K. Neural differentiation of umbilical cord


mesenchymal stem cells by sub-sonic vibration. _Life Sci._ 90, 591–599 (2012). Article  Google Scholar  * Cho, H., Park, H. J. & Seo, Y. K. Induction of _PLXNA4_ gene during neural


differentiation in human umbilical-cord-derived mesenchymal stem cells by low-intensity sub-sonic vibration. _Int. J. Mol. Sci._ 23, 1522 (2022). Article  Google Scholar  * Benjakul, S.,


Leethanakul, C. & Jitpukdeebodintra, S. Low magnitude high frequency vibration induces RANKL via cyclooxygenase pathway in human periodontal ligament cells in vitro. _J. Oral. Biol.


Craniofac. Res._ 9, 251–255 (2019). Article  Google Scholar  * Ye, M. et al. Vibration induces BAFF overexpression and aberrant O-glycosylation of IgA1 in cultured human tonsillar


mononuclear cells in IgA nephropathy. _Biomed. Res. Int._ 2016, 9125960 (2016). Article  Google Scholar  * Touchstone, H. et al. Recovery of stem cell proliferation by low intensity


vibration under simulated microgravity requires LINC complex. _npj Microgravity_ 5, 11 (2019). Article  Google Scholar  * Robertson, S. N. et al. Reduction of _Pseudomonas aeruginosa_


biofilm formation through the application of nanoscale vibration. _J. Biosci. Bioeng._ 129, 379–386 (2020). Article  Google Scholar  * Tanaka, S. M. et al. Effects of broad frequency


vibration on cultured osteoblasts. _J. Biomech._ 36, 73–80 (2003). Article  Google Scholar  * Ballikaya, S. et al. Process data of allogeneic ex vivo-expanded ABCB5+ mesenchymal stromal


cells for human use: off-the-shelf GMP-manufactured donor-independent ATMP. _Stem Cell Res. Ther._ 11, 482 (2020). Article  Google Scholar  * Simaria, A. S. et al. Allogeneic cell therapy


bioprocess economics and optimization: single‐use cell expansion technologies. _Biotechnol. Bioeng._ 111, 69–83 (2014). Article  Google Scholar  * Lawson, T. et al. Process development for


expansion of human mesenchymal stromal cells in a 50L single-use stirred tank bioreactor. _Biochem. Eng. J._ 120, 49–62 (2017). Article  Google Scholar  * Karnieli, O. et al. A consensus


introduction to serum replacements and serum-free media for cellular therapies. _Cytotherapy_ 19, 155–169 (2017). Article  Google Scholar  Download references ACKNOWLEDGEMENTS We thank EPSRC


for grants EP/N013905/1 and EP/P001114/1. AUTHOR INFORMATION AUTHORS AND AFFILIATIONS * Centre for the Cellular Microenvironment (CeMi), Department of Biomedical Engineering, University of


Strathclyde, Glasgow, UK Olivia Johnson-Love, Stuart Reid & Peter G. Childs * Centre for the Cellular Microenvironment (CeMi), University of Glasgow, Glasgow, UK Manuel Salmeron-Sanchez 


& Matthew J. Dalby Authors * Olivia Johnson-Love View author publications You can also search for this author inPubMed Google Scholar * Manuel Salmeron-Sanchez View author publications


You can also search for this author inPubMed Google Scholar * Stuart Reid View author publications You can also search for this author inPubMed Google Scholar * Peter G. Childs View author


publications You can also search for this author inPubMed Google Scholar * Matthew J. Dalby View author publications You can also search for this author inPubMed Google Scholar CONTRIBUTIONS


O.J.-L., P.G.C. and M.J.D. led the writing of the review, with all authors involved in contributing to different sections. All authors critically read the review. CORRESPONDING AUTHORS


Correspondence to Peter G. Childs or Matthew J. Dalby. ETHICS DECLARATIONS COMPETING INTERESTS The authors declare no competing interests. PEER REVIEW PEER REVIEW INFORMATION _Nature Reviews


Bioengineering_ thanks Benoit Ladoux, Sylvain Gabriele, Marine Luciano and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. ADDITIONAL INFORMATION


PUBLISHER’S NOTE Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. RELATED LINKS THE FAILURE OF A PHASE IIB TRIAL OF


ALLOB: https://www.fiercebiotech.com/biotech/bone-therapeutics-final-asset-buried-after-failure-phase-2-fracture-study RIGHTS AND PERMISSIONS Springer Nature or its licensor (e.g. a society


or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of


this article is solely governed by the terms of such publishing agreement and applicable law. Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Johnson-Love, O.,


Salmeron-Sanchez, M., Reid, S. _et al._ Vibration-based cell engineering. _Nat Rev Bioeng_ 3, 408–429 (2025). https://doi.org/10.1038/s44222-025-00273-x Download citation * Published: 03


February 2025 * Issue Date: May 2025 * DOI: https://doi.org/10.1038/s44222-025-00273-x SHARE THIS ARTICLE Anyone you share the following link with will be able to read this content: Get


shareable link Sorry, a shareable link is not currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative