Identifying and alleviating the durability challenges in membrane-electrode-assembly devices for high-rate co electrolysis

feature-image

Play all audios:

Loading...

ABSTRACT CO electrolysis (COE) has emerged as an important alternative technology to couple with other sustainable techniques for transitioning towards a carbon-neutral future. A large


challenge for the deployment of high-rate COE is the limited durability of membrane-electrode assembly (MEA) devices. Here, by using an operando wide-angle X-ray scattering technique and


monitoring the change of electrolyte, we identified several degradation mechanisms of the MEA during high-rate COE. Cathodic gas-diffusion electrode (GDE) flooding and Ir contaminants


(crossover from anode) are two main issues causing excessive hydrogen evolution, which can be partly alleviated by increasing the polytetrafluoroethylene content in GDEs and using an


alkaline stable Ni-based anode. During long-term stability, the dynamic evolution of anolyte became the main issue: the pH would continuously drop due to cathodic acetate formation and


anodic ethanol oxidation. By compensating for this issue, we maintained a Faradaic efficiency of C2+ products at more than 70% for 136 hours. Access through your institution Buy or subscribe


This is a preview of subscription content, access via your institution ACCESS OPTIONS Access through your institution Access Nature and 54 other Nature Portfolio journals Get Nature+, our


best-value online-access subscription $29.99 / 30 days cancel any time Learn more Subscribe to this journal Receive 12 digital issues and online access to articles $119.00 per year only


$9.92 per issue Learn more Buy this article * Purchase on SpringerLink * Instant access to full article PDF Buy now Prices may be subject to local taxes which are calculated during checkout


ADDITIONAL ACCESS OPTIONS: * Log in * Learn about institutional subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS UPSCALED PRODUCTION OF AN


ULTRAMICROPOROUS ANION-EXCHANGE MEMBRANE ENABLES LONG-TERM OPERATION IN ELECTROCHEMICAL ENERGY DEVICES Article Open access 12 May 2023 A SCALABLE MEMBRANE ELECTRODE ASSEMBLY ARCHITECTURE FOR


EFFICIENT ELECTROCHEMICAL CONVERSION OF CO2 TO FORMIC ACID Article Open access 22 November 2023 AQUEOUS ALTERNATING ELECTROLYSIS PROLONGS ELECTRODE LIFESPANS UNDER HARSH OPERATION


CONDITIONS Article Open access 23 July 2024 DATA AVAILABILITY The authors declare that the data supporting the findings of this study are available within the paper and its Supplementary


Information. Raw X-ray data generated at the ESRF large-scale facility are available at https://doi.org/10.15151/ESRF-ES-703258873 from 2025. Alternatively, this data can be available from


the corresponding author upon request. Source data are provided with this paper. REFERENCES * Davis, S. J. et al. Net-zero emissions energy systems. _Science_ 360, eaas9793 (2018). Article 


PubMed  Google Scholar  * Jouny, M., Hutchings, G. S. & Jiao, F. Carbon monoxide electroreduction as an emerging platform for carbon utilization. _Nat. Catal._ 2, 1062–1070 (2019).


Article  CAS  Google Scholar  * Molitor, B. et al. Carbon recovery by fermentation of CO-rich off gases—turning steel mills into biorefineries. _Bioresour. Technol._ 215, 386–396 (2016). *


Ozden, A. et al. Carbon-efficient carbon dioxide electrolysers. _Nat. Sustain._ 5, 563–573 (2022). Article  Google Scholar  * Ma, M. et al. Local reaction environment for selective


electroreduction of carbon monoxide. _Energy Environ. Sci._ 15, 2470–2478 (2022). Article  CAS  Google Scholar  * Xu, Q. et al. Enriching surface-accessible CO2 in the zero-gap


anion-exchange-membrane-based CO2 electrolyzer. _Angew. Chem. Int. Ed._ 62, e202214383 (2022). Article  Google Scholar  * Haas, T., Krause, R., Weber, R., Demler, M. & Schmid, G.


Technical photosynthesis involving CO2 electrolysis and fermentation. _Nat. Catal._ 1, 32–39 (2018). Article  CAS  Google Scholar  * Song, Y., Zhang, X., Xie, K., Wang, G. & Bao, X.


High-temperature CO2 electrolysis in solid oxide electrolysis cells: developments, challenges, and prospects. _Adv. Mater._ 31, 1902033 (2019). Article  CAS  Google Scholar  * Li, C. W.,


Ciston, J. & Kanan, M. W. Electroreduction of carbon monoxide to liquid fuel on oxide-derived nanocrystalline copper. _Nature_ 508, 504–507 (2014). Article  CAS  PubMed  Google Scholar 


* Wang, L. et al. Electrochemically converting carbon monoxide to liquid fuels by directing selectivity with electrode surface area. _Nat. Catal._ 2, 702–708 (2019). Article  CAS  Google


Scholar  * Wakerley, D. et al. Gas diffusion electrodes, reactor designs and key metrics of low-temperature CO2 electrolysers. _Nat. Energy_ 7, 130–143 (2022). Article  CAS  Google Scholar 


* Rabiee, H. et al. Gas diffusion electrodes (GDEs) for electrochemical reduction of carbon dioxide, carbon monoxide, and dinitrogen to value-added products: a review. _Energy Environ. Sci._


14, 1959–2008 (2021). Article  CAS  Google Scholar  * Jouny, M., Luc, W. & Jiao, F. High-rate electroreduction of carbon monoxide to multi-carbon products. _Nat. Catal._ 1, 748–755


(2018). Article  CAS  Google Scholar  * Overa, S. et al. Enhancing acetate selectivity by coupling anodic oxidation to carbon monoxide electroreduction. _Nat. Catal._ 5, 738–745 (2022).


Article  CAS  Google Scholar  * Ji, Y. et al. Selective CO-to-acetate electroreduction via intermediate adsorption tuning on ordered Cu–Pd sites. _Nat. Catal._ 5, 251–258 (2022). Article 


CAS  Google Scholar  * Li, J. et al. Constraining CO coverage on copper promotes high-efficiency ethylene electroproduction. _Nat. Catal._ 2, 1124–1131 (2019). Article  CAS  Google Scholar 


* Li, J. et al. Copper adparticle enabled selective electrosynthesis of n-propanol. _Nat. Commun._ 9, 4614 (2018). Article  PubMed  PubMed Central  Google Scholar  * Zhuang, T.-T. et al.


Copper nanocavities confine intermediates for efficient electrosynthesis of C3 alcohol fuels from carbon monoxide. _Nat. Catal._ 1, 946–951 (2018). Article  CAS  Google Scholar  * Li, J. et


al. Effectively increased efficiency for electroreduction of carbon monoxide using supported polycrystalline copper powder electrocatalysts. _ACS Catal._ 9, 4709–4718 (2019). Article  CAS 


Google Scholar  * Sullivan, I. et al. A hybrid catalyst-bonded membrane device for electrochemical carbon monoxide reduction at different relative humidities. _ACS Sustain. Chem. Eng._ 7,


16964–16970 (2019). Article  CAS  Google Scholar  * Ripatti, D. S., Veltman, T. R. & Kanan, M. W. Carbon monoxide gas diffusion electrolysis that produces concentrated C2 products with


high single-pass conversion. _Joule_ 3, 240–256 (2019). Article  CAS  Google Scholar  * Luc, W. et al. Two-dimensional copper nanosheets for electrochemical reduction of carbon monoxide to


acetate. _Nat. Catal._ 2, 423–430 (2019). Article  CAS  Google Scholar  * Pang, Y. et al. Efficient electrocatalytic conversion of carbon monoxide to propanol using fragmented copper. _Nat.


Catal._ 2, 251–258 (2019). Article  CAS  Google Scholar  * Zhu, P. et al. Direct and continuous generation of pure acetic acid solutions via electrocatalytic carbon monoxide reduction.


_Porc. Natl Acad. Sci. USA_ 118, e2010868118 (2021). Article  CAS  Google Scholar  * Yadegari, H. et al. Glycerol oxidation pairs with carbon monoxide reduction for low-voltage generation of


C2 and C3 product streams. _ACS Energy Lett._ 6, 3538–3544 (2021). Article  CAS  Google Scholar  * Zhou, Y., Ganganahalli, R., Verma, S., Tan, H. R. & Yeo, B. S. Production of C3–C6


acetate esters via CO electroreduction in a membrane electrode assembly cell. _Angew. Chem. Int. Ed._ 61, e202202859 (2022). Article  CAS  Google Scholar  * Yan, Y. et al. Interface


regulation promoting carbon monoxide gas diffusion electrolysis towards C2+ products. _Chem. Commun._ 58, 3645–3648 (2022). Article  CAS  Google Scholar  * Wang, X. et al. Efficient


electrosynthesis of _n_-propanol from carbon monoxide using a Ag–Ru–Cu catalyst. _Nat. Energy_ 7, 170–176 (2022). Article  Google Scholar  * Ji, Y., Guan, A. & Zheng, G. Copper-based


catalysts for electrochemical carbon monoxide reduction. _Cell Rep. Phys. Sci._ 3, 101072 (2022). Article  CAS  Google Scholar  * Kastlunger, G. et al. Using pH dependence to understand


mechanisms in electrochemical CO reduction. _ACS Catal._ 12, 4344–4357 (2022). Article  CAS  Google Scholar  * Wang, L. et al. Electrochemical carbon monoxide reduction on polycrystalline


copper: effects of potential, pressure, and pH on selectivity toward multicarbon and oxygenated products. _ACS Catal._ 8, 7445–7454 (2018). Article  CAS  Google Scholar  * Heenen, H. H. et


al. The mechanism for acetate formation in electrochemical CO(2) reduction on Cu: selectivity with potential, pH, and nanostructuring. _Energy Environ. Sci._ 15, 3978–3990 (2022). Article 


CAS  Google Scholar  * Li, D. et al. Durability of anion exchange membrane water electrolyzers. _Energy Environ. Sci._ 14, 3393–3419 (2021). Article  CAS  Google Scholar  * Xu, Q. et al.


Anion exchange membrane water electrolyzer: electrode design, lab-scaled testing system and performance evaluation. _EnergyChem._ 4, 100087 (2022). Article  CAS  Google Scholar  * Moss, A.


B. et al. Versatile high energy X-ray transparent electrolysis cell for operando measurements. _J. Power Sources_ 562, 232754 (2023). Article  CAS  Google Scholar  * Moss, A. B. et al. In


operando investigations of oscillatory water and carbonate effects in MEA-based CO2 electrolysis devices. _Joule_ 7, 350–365 (2023). Article  CAS  Google Scholar  * Yang, K., Kas, R., Smith,


W. A. & Burdyny, T. Role of the carbon-based gas diffusion layer on flooding in a gas diffusion electrode cell for electrochemical CO2 reduction. _ACS Energy Lett._ 6, 33–40 (2021).


Article  CAS  Google Scholar  * Wang, Z., Guo, X., Montoya, J. & Nørskov, J. K. Predicting aqueous stability of solid with computed Pourbaix diagram using SCAN functional. _NPJ Comput.


Mater._ 6, 160 (2020). Article  Google Scholar  * Disch, J. et al. High-resolution neutron imaging of salt precipitation and water transport in zero-gap CO2 electrolysis. _Nat. Commun._ 13,


6099 (2022). Article  CAS  PubMed  PubMed Central  Google Scholar  * Xing, Z., Hu, L., Ripatti, D. S., Hu, X. & Feng, X. Enhancing carbon dioxide gas-diffusion electrolysis by creating a


hydrophobic catalyst microenvironment. _Nat. Commun._ 12, 136 (2021). Article  CAS  PubMed  PubMed Central  Google Scholar  * Wu, Y. et al. Mitigating electrolyte flooding for


electrochemical CO2 reduction via infiltration of hydrophobic particles in a gas diffusion layer. _ACS Energy Lett._ 7, 2884–2892 (2022). Article  CAS  Google Scholar  * Garg, S., Giron


Rodriguez, C. A., Rufford, T. E., Varcoe, J. R. & Seger, B. How membrane characteristics influence the performance of CO2 and CO electrolysis. _Energy Environ. Sci._ 15, 4440–4469


(2022). Article  CAS  Google Scholar  * Vass, Á., Kormányos, A., Kószó, Z., Endrődi, B. & Janáky, C. Anode catalysts in CO2 electrolysis: challenges and untapped opportunities. _ACS


Catal._ 12, 1037–1051 (2022). Article  CAS  PubMed  PubMed Central  Google Scholar  * Xu, Q. et al. Fluorination-enabled reconstruction of NiFe electrocatalysts for efficient water


oxidation. _Nano Lett._ 21, 492–499 (2021). Article  CAS  PubMed  Google Scholar  * Lai, S. C. S. et al. Effects of electrolyte pH and composition on the ethanol electro-oxidation reaction.


_Catal. Today_ 154, 92–104 (2010). Article  CAS  Google Scholar  * Monyoncho, E. A., Woo, T. K. & Baranova, E. A. in _Electrochemistry_ Vol. 15 (eds Banks, C. & McIntosh, S.) 1–57


(The Royal Society of Chemistry, 2019). * Guo, J., Chen, R., Zhu, F.-C., Sun, S.-G. & Villullas, H. M. New understandings of ethanol oxidation reaction mechanism on Pd/C and Pd2Ru/C


catalysts in alkaline direct ethanol fuel cells. _Appl. Catal. B_ 224, 602–611 (2018). Article  CAS  Google Scholar  * Hasa, B. et al. Benchmarking anion-exchange membranes for


electrocatalytic carbon monoxide reduction. _Chem. Catal._ 3, 100450 (2023). Article  CAS  Google Scholar  * Larrazábal, G. O., Okatenko, V., Chorkendorff, I., Buonsanti, R. & Seger, B.


Investigation of ethylene and propylene production from CO2 reduction over copper nanocubes in an MEA-type electrolyzer. _ACS Appl. Mater. Interfaces_ 14, 7779–7787 (2022). Article  PubMed 


Google Scholar  * Ashiotis, G. et al. The fast azimuthal integration Python library: pyFAI. _J. Appl. Crystallogr._ 48, 510–519 (2015). Article  CAS  PubMed  PubMed Central  Google Scholar 


Download references ACKNOWLEDGEMENTS The research leading to these results has received funding from the ECOEthylene project from Innovation Fund Denmark (grant no. 8057-00018B), and the


Villum Center for the Science of Sustainable Fuels and Chemicals grant no. 9455. We thank the ESRF for providing the high-energy X-ray beam and ID31 beamline staff for experimental support.


AUTHOR INFORMATION Author notes * These authors contributed equally: Qiucheng Xu, Sahil Garg. AUTHORS AND AFFILIATIONS * Surface Physics and Catalysis (Surf Cat) Section, Department of


Physics, Technical University of Denmark, Lyngby, Denmark Qiucheng Xu, Sahil Garg, Asger B. Moss, Ib Chorkendorff & Brian Seger * Experimental Division, European Synchrotron Radiation


Facility, Grenoble, France Marta Mirolo & Jakub Drnec Authors * Qiucheng Xu View author publications You can also search for this author inPubMed Google Scholar * Sahil Garg View author


publications You can also search for this author inPubMed Google Scholar * Asger B. Moss View author publications You can also search for this author inPubMed Google Scholar * Marta Mirolo


View author publications You can also search for this author inPubMed Google Scholar * Ib Chorkendorff View author publications You can also search for this author inPubMed Google Scholar *


Jakub Drnec View author publications You can also search for this author inPubMed Google Scholar * Brian Seger View author publications You can also search for this author inPubMed Google


Scholar CONTRIBUTIONS Q.X. and S.G. are the lead authors. Q.X. wrote the manuscript with input from all coauthors. S.G. helped revise the manuscript and participated in all results


discussions. Q.X., S.G. and A.B.M. carried out beamline electrochemical measurements and conducted X-ray data analysis. M.M. and J.D. assisted in performing in operando experiments at ESRF.


J.D., I.C. and B.S. guided the project and oversaw its development. B.S. set the overall direction of the project and helped edit the overall manuscript. CORRESPONDING AUTHOR Correspondence


to Brian Seger. ETHICS DECLARATIONS COMPETING INTERESTS The authors declare no competing interests. PEER REVIEW PEER REVIEW INFORMATION _Nature Catalysis_ thanks the anonymous reviewers for


their contribution to the peer review of this work. ADDITIONAL INFORMATION PUBLISHER’S NOTE Springer Nature remains neutral with regard to jurisdictional claims in published maps and


institutional affiliations. SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION Supplementary Figs. 1–31, Note 1 and Tables 1 and 2. SOURCE DATA SOURCE DATA FIG. 3 Statistical source data.


SOURCE DATA FIG. 4 Statistical source data. SOURCE DATA FIG. 5 Statistical source data. RIGHTS AND PERMISSIONS Springer Nature or its licensor (e.g. a society or other partner) holds


exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely


governed by the terms of such publishing agreement and applicable law. Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Xu, Q., Garg, S., Moss, A.B. _et al._ Identifying and


alleviating the durability challenges in membrane-electrode-assembly devices for high-rate CO electrolysis. _Nat Catal_ 6, 1042–1051 (2023). https://doi.org/10.1038/s41929-023-01034-y


Download citation * Received: 18 January 2023 * Accepted: 31 August 2023 * Published: 28 September 2023 * Issue Date: November 2023 * DOI: https://doi.org/10.1038/s41929-023-01034-y SHARE


THIS ARTICLE Anyone you share the following link with will be able to read this content: Get shareable link Sorry, a shareable link is not currently available for this article. Copy to


clipboard Provided by the Springer Nature SharedIt content-sharing initiative