Nanometre-scale spectroscopic visualization of catalytic sites during a hydrogenation reaction on a Pd/Au bimetallic catalyst

feature-image

Play all audios:

    

Article Published: 21 September 2020 Nanometre-scale spectroscopic visualization of catalytic sites during a hydrogenation reaction on a Pd/Au bimetallic catalyst Hao Yin  ORCID:


orcid.org/0000-0002-9469-83011,2, Li-Qing Zheng  ORCID: orcid.org/0000-0001-7848-69851, Wei Fang  ORCID: orcid.org/0000-0001-9584-84661, Yin-Hung Lai1, Nikolaus Porenta1, Guillaume Goubert1,


Hua Zhang2, Hai-Sheng Su2, Bin Ren  ORCID: orcid.org/0000-0002-9821-58642, Jeremy O. Richardson  ORCID: orcid.org/0000-0002-9429-151X1, Jian-Feng Li  ORCID: orcid.org/0000-0003-1598-68562 &


…Renato Zenobi  ORCID: orcid.org/0000-0001-5211-43581 Show authors Nature Catalysis volume 3, pages 834–842 (2020)Cite this article


9676 Accesses


110 Citations


5 Altmetric


Metrics details

Subjects Catalytic mechanismsCharacterization and analytical techniquesHeterogeneous catalysisImaging studiesImaging techniques Abstract


Understanding the mechanism of catalytic hydrogenation at the local environment requires chemical and topographic information involving catalytic sites, active hydrogen species, and their


spatial distribution. Here we used tip-enhanced Raman spectroscopy (TERS) to study the catalytic hydrogenation of chloronitrobenzenethiol on a well-defined Pd(submonolayer)/Au(111)


bimetallic catalyst (\(p_{\rm{H}_{2}}\) = 1.5 bar, 298 K), where the surface topography and chemical fingerprint information were simultaneously mapped with nanoscale resolution (~10 nm).


TERS imaging of the surface after catalytic hydrogenation confirms that the reaction occurs beyond the location of Pd sites. The results demonstrate that hydrogen spillover accelerates


hydrogenation at Au sites as far as 20 nm from the bimetallic Pd/Au boundary. Density functional theory was used to elucidate the thermodynamics of interfacial hydrogen transfers. We


demonstrate TERS to be a powerful analytical tool that provides a unique approach to spatially investigate the local structure–reactivity relationship in catalysis.


Access through your institution Buy or subscribe This is a preview of subscription content, access via your institution

Access options Access through your institution Additional access


options: Log in Learn about institutional subscriptions Read our FAQs Contact customer support Fig. 1: TERS studies of monometallic and bimetallic model catalysts.Fig. 2: TERS line scan


results.Fig. 3: TERS 2D maps.Fig. 4: TERS maps revealing hydrogen spillover.Fig. 5: Hydrogen spillover region identification.Fig. 6: DFT calculations. Similar content being viewed by others


Real-space imaging of a phenyl group migration reaction on metal surfaces Article Open access 21 February 2023 Small molecule binding to surface-supported single-site transition-metal


reaction centres Article Open access 01 December 2022 Single hydrogen atom manipulation for reversible deprotonation of water on a rutile TiO2 (110) surface Article Open access 19 January


2021 Data availability


The original data used in this publication are made available in a curated data archive at ETH Zurich (https://www.researchcollection.ethz.ch) under https://doi.org/10.3929/ethz-b-000423837,


or are available from the corresponding authors upon reasonable request. Source data are provided with this paper.

Code availability


The MATLAB codes used for processing the data are made available in a curated data archive at ETH Zurich (https://www.researchcollection.ethz.ch) under


https://doi.org/10.3929/ethz-b-000423837, or are available from the corresponding authors upon reasonable request.


References Buurmans, I. L. C. & Weckhuysen, B. M. Heterogeneities of individual catalyst particles in space and time as monitored by spectroscopy. Nat. Chem. 4, 873–886 (2012).


CAS  PubMed  Google Scholar 


Sambur, J. B. et al. Sub-particle reaction and photocurrent mapping to optimize catalyst-modified photoanodes. Nature 530, 77–80 (2016).


CAS  PubMed  Google Scholar 


Agarwal, N. et al. Aqueous Au–Pd colloids catalyze selective CH4 oxidation to CH3OH with O2 under mild conditions. Science 358, 223–227 (2017).


CAS  PubMed  Google Scholar 


Cárdenas-Lizana, F. et al. Pd-promoted selective gas phase hydrogenation of p-chloronitrobenzene over alumina supported Au. J. Catal. 262, 235–243 (2009).


Google Scholar 


Lucci, F. R. et al. Controlling hydrogen activation, spillover, and desorption with Pd−Au single-atom alloys. J. Phys. Chem. Lett. 7, 480–485 (2016).


CAS  PubMed  Google Scholar 


Marcinkowski, M. et al. Controlling a spillover pathway with the molecular cork effect. Nat. Mater. 12, 523–528 (2013).


CAS  PubMed  Google Scholar 


Huizinga, T. & Prins, R. Behavior of titanium (3+) centers in the low- and high-temperature reduction of platinum/titanium dioxide, studied by ESR. J. Phys. Chem. 85, 2156–2158 (1981).


CAS  Google Scholar 


Briggs, N. M. et al. Identification of active sites on supported metal catalysts with carbon nanotube hydrogen highways. Nat. Commun. 9, 3827 (2018).


PubMed  PubMed Central  Google Scholar 


Kyriakou, G. et al. Isolated metal atom geometries as a strategy for selective heterogeneous hydrogenations. Science 335, 1209–1212 (2012).


CAS  PubMed  Google Scholar 


Miller, J. T. et al. Hydrogen temperature-programmed desorption (H2 TPD) of supported platinum catalysts. J. Catal. 143, 395–408 (1993).


CAS  Google Scholar 


Karim, W. et al. Catalyst support effects on hydrogen spillover. Nature 541, 68–71 (2017).


CAS  PubMed  Google Scholar 


van Lent, R. et al. Site-specific reactivity of molecules with surface defects—the case of H2 dissociation on Pt. Science 363, 155–157 (2019).


PubMed  Google Scholar 


Dong, J. et al. In situ Raman spectroscopic evidence for oxygen reduction reaction intermediates at platinum single-crystal surfaces. Nat. Energy 4, 60–67 (2019).


CAS  Google Scholar 


Zhong, J. et al. Probing the electronic and catalytic properties of a bimetallic surface with 3 nm resolution. Nat. Nanotechnol. 12, 132–136 (2017).


CAS  PubMed  Google Scholar 


Zhang, R. et al. Chemical mapping of a single molecule by plasmon-enhanced Raman scattering. Nature 498, 82–86 (2013).


CAS  PubMed  Google Scholar 


Lee, J., Crampton, K. T., Tallarida, N. & Apkarian, V. A. Visualizing vibrational normal modes of a single molecule with atomically confined light. Nature 568, 78–82 (2019).


CAS  PubMed  Google Scholar 


van Schrojenstein Lantman, E. M., Deckert-Gaudig, T., Mank, A. J. G., Deckert, V. & Weckhuysen, B. M. Catalytic processes monitored at the nanoscale with tip-enhanced Raman spectroscopy.


Nat. Nanotechnol. 7, 583–586 (2012).


PubMed  Google Scholar 


Herrero, E., Buller, L. J. & Abruña, H. D. Underpotential deposition at single crystal surfaces of Au, Pt, Ag and other materials. Chem. Rev. 101, 1897–1930 (2001).


CAS  PubMed  Google Scholar 


Lin, L. et al. A highly CO-tolerant atomically dispersed Pt catalyst for chemoselective hydrogenation. Nat. Nanotechnol. 14, 354–361 (2019).


CAS  PubMed  Google Scholar 


Pan, M. et al. Model studies of heterogeneous catalytic hydrogenation reactions with gold. Chem. Soc. Rev. 42, 5002–5013 (2013).


CAS  PubMed  Google Scholar 


Kibler, L. A., Kleinert, M., Randler, R. & Kolb, D. M. Initial stages of Pd deposition on Au (hkl). Part I: Pd on Au (111). Surf. Sci. 443, 19–30 (1999).


CAS  Google Scholar 


Chen, C., Hayazawa, N. & Kawata, S. A 1.7 nm resolution chemical analysis of carbon nanotubes by tip-enhanced Raman imaging in the ambient. Nat. Commun. 5, 3312 (2014).


PubMed  Google Scholar 


Su, H. et al. Probing the local generation and diffusion of active oxygen species on a Pd/Au bimetallic surface by tip-enhanced Raman spectroscopy. J. Am. Chem. Soc. 142, 1341–1347 (2020).


CAS  PubMed  Google Scholar 


Lopez, N., Łodziana, Z., Illas, F. & Salmeron, M. When Langmuir is too simple: H2 dissociation on Pd(111) at high coverage. Phys. Rev. Lett. 93, 146103 (2004).


PubMed  Google Scholar 


Groß, A. & Dianat, A. Hydrogen dissociation dynamics on precovered Pd surfaces: Langmuir is still right. Phys. Rev. Lett. 98, 206107 (2007).


PubMed  Google Scholar 


Lauhon, L. J. & Ho, W. Direct observation of the quantum tunneling of single hydrogen atoms with a scanning tunneling microscope. Phys. Rev. Lett. 89, 079901 (2002).


Google Scholar 


Marshall, S. et al. Controlled selectivity for palladium catalysts using self-assembled monolayers. Nat. Mater. 9, 853–858 (2010).


CAS  PubMed  Google Scholar 


Abazari, R., Heshmatpour, F. & Balalaie, S. Pt/Pd/Fe trimetallic nanoparticle produced via reverse micelle technique: synthesis, characterization, and its use as an efficient catalyst for


reductive hydrodehalogenation of aryl and aliphatic halides under mild conditions. ACS Catal. 3, 139–149 (2013).


CAS  Google Scholar 


de Pedro, Z. M., Casas, J. A., Gomez-Sainero, L. M. & Rodriguez, J. J. Hydrodechlorination of dichloromethane with a Pd/AC catalyst: reaction pathway and kinetics. Appl. Catal. B 98, 79–85


(2010).


Google Scholar 


Qian, X., Emory, S. R. & Nie, S. Anchoring molecular chromophores to colloidal gold nanocrystals: surface-enhanced Raman evidence for strong electronic coupling and irreversible structural


locking. J. Am. Chem. Soc. 134, 2000–2003 (2012).


CAS  PubMed  PubMed Central  Google Scholar 


Coq, B., Ferrat, G. & Figueras, F. Conversion of chlorobenzene over palladium and rhodium catalysts of widely varying dispersion. J. Catal. 101, 434–445 (1986).


CAS  Google Scholar 


Stadler, J., Schmid, T. & Zenobi, R. Nanoscale chemical imaging using top-illumination tip-enhanced Raman spectroscopy. Nano Lett. 10, 4514–4520 (2010).


CAS  PubMed  Google Scholar 


Clavilier, J., Faure, R., Guinet, G. & Durand, R. Preparation of monocrystalline Pt microelectrodes and electrochemical study of the plane surfaces cut in the direction of the {111} and


{110} planes. J. Electroanal. Chem. 107, 205–209 (1979).


Google Scholar 


Weiss, E. A. et al. Si/SiO2-templated formation of ultrafast metal surfaces on glass, polymer, and solder supports: their use as substrates for self-assembled monolayers. Langmuir 23,


9686–9694 (2007).


CAS  PubMed  Google Scholar 


Zhang, Y.-J. et al. Probing the electronic structure of heterogeneous metal interfaces by transition metal shelled gold nanoparticle-enhanced Raman spectroscopy. J. Phys. Chem. C. 120,


20684–20691 (2016).


CAS  Google Scholar 


Gyr, L., Klute, F. D., Franzke, J. & Zenobi, R. Characterization of a nitrogen-based dielectric barrier discharge ionization source for mass spectrometry reveals factors important for soft


ionization. Anal. Chem. 91, 6865–6871 (2019).


CAS  PubMed  Google Scholar 


Szczerbiński, J., Gyr, L., Kaeslin, J. & Zenobi, R. Plasmon-driven photocatalysis leads to products known from E-beam and X-ray-induced surface chemistry. Nano Lett. 18, 6740–6749 (2018).


PubMed  Google Scholar 


Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996).


CAS  Google Scholar 


Klimeš, J., Bowler, D. R. & Michaelides, A. Chemical accuracy for the van der Waals density functional. J. Phys. Condens. Matter 22, 022201 (2010).


PubMed  Google Scholar 


Carrasco, J., Klimeš, J. & Michaelides, A. The role of van der Waals forces in water adsorption on metals. J. Chem. Phys. 138, 024708 (2013).


PubMed  Google Scholar 


Berland, K. et al. van der Waals forces in density functional theory: a review of the vdW-DF method. Rep. Prog. Phys. 78, 066501 (2015).


PubMed  Google Scholar 


Klimeš, J., Bowler, D. R. & Michaelides, A. van der Waals density functionals applied to solids. Phys. Rev. B 83, 195131 (2011).


Google Scholar 


Henkelman, G., Uberuaga, B. P. & Jónsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 113, 9901 (2000).


CAS  Google Scholar 


Download references

Acknowledgements


This work was supported financially by the European Research Council program (grant number 741431—2DNanoSpec), the Natural Science Foundation of China (grant numbers 21925404, 21775127 and


21703181), the Fundamental Research Funds for the Central Universities (20720190044) and MOST (2019YFA0705402). L.-Q.Z. was financially supported by the Chinese Scholarship Council for a PhD


student fellowship. H.Y. was financially supported by the Sino‐Swiss Science and Technology Cooperation program (grant number EG22‐122016). W.F. and J.O.R. are supported by the Swiss


National Science Foundation (project number 175696.) We thank A. Rossi (ETH Zurich) and G. Cossu (ETH Zurich) for help with the XPS measurements. DFT computations were supported by the


High-Performance Computing Team at ETH Zurich. H.Y. and L.-Q.Z. also thank A. Begley, J.B. Metternich, J. Szczerbińsky and J.A. van Bokhoven (all from ETH Zurich) for insightful discussions.


H.Y. thanks W.-Q. Li (Xiamen University) for the coverage measurements.


Author informationAuthors and Affiliations Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland


Hao Yin, Li-Qing Zheng, Wei Fang, Yin-Hung Lai, Nikolaus Porenta, Guillaume Goubert, Jeremy O. Richardson & Renato Zenobi


State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering,


College of Energy, College of Materials, Xiamen University, Xiamen, China


Hao Yin, Hua Zhang, Hai-Sheng Su, Bin Ren & Jian-Feng Li


AuthorsHao YinView author publications You can also search for this author inPubMed Google Scholar


Li-Qing ZhengView author publications You can also search for this author inPubMed Google Scholar


Wei FangView author publications You can also search for this author inPubMed Google Scholar


Yin-Hung LaiView author publications You can also search for this author inPubMed Google Scholar


Nikolaus PorentaView author publications You can also search for this author inPubMed Google Scholar


Guillaume GoubertView author publications You can also search for this author inPubMed Google Scholar


Hua ZhangView author publications You can also search for this author inPubMed Google Scholar


Hai-Sheng SuView author publications You can also search for this author inPubMed Google Scholar


Bin RenView author publications You can also search for this author inPubMed Google Scholar


Jeremy O. RichardsonView author publications You can also search for this author inPubMed Google Scholar


Jian-Feng LiView author publications You can also search for this author inPubMed Google Scholar


Renato ZenobiView author publications You can also search for this author inPubMed Google Scholar

Contributions


R.Z. and J.-F.L. supervised the project. L.-Q.Z. conceived of the ideas. L.-Q.Z. and H.Y. designed the experiments. H.Y., L.-Q.Z. and N.P. performed the experiments. W.F. and J.O.R.


performed the DFT calculations. Y.-H.L. and L.-Q.Z. performed the TPD-MS experiments. G.G., H.-S.S. and B.R. contributed to the electrochemistry. H.Y., L.-Q.Z. and W.F. wrote the manuscript


with the help of G.G. and H.Z. All authors discussed the results and commented on the manuscript.


Corresponding authors Correspondence to Li-Qing Zheng, Jeremy O. Richardson, Jian-Feng Li or Renato Zenobi.

Ethics declarationsCompeting interests


The authors declare no competing interests.

Additional information


Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary informationSupplementary information


Supplementary Figs. 1–25, discussion and Tables 1 & 2.

Supplementary data 1


Cartesian coordinates (Å) for the optimized geometries in DFT calculations.

Source dataSource data Fig. 1


Cyclic voltammetry data and Raman signals for Fig. 1.

Source data Fig. 2


Raw spectrum data without background subtraction for Fig. 2.

Source data Fig. 3


Statistical source data for Fig. 3.

Source data Fig. 4


Statistical source data for Fig. 4.

Source data Fig. 5


Statistical source data for Fig. 5.

Source data Fig. 6


Statistical source data for Fig. 6.


Rights and permissions Reprints and permissions


About this articleCite this article Yin, H., Zheng, LQ., Fang, W. et al. Nanometre-scale spectroscopic visualization of catalytic sites during a hydrogenation reaction on a Pd/Au bimetallic


catalyst. Nat Catal 3, 834–842 (2020). https://doi.org/10.1038/s41929-020-00511-y


Download citation


Received: 21 January 2020


Accepted: 06 August 2020


Published: 21 September 2020


Issue Date: October 2020


DOI: https://doi.org/10.1038/s41929-020-00511-y


Share this article Anyone you share the following link with will be able to read this content:


Get shareable link Sorry, a shareable link is not currently available for this article.


Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative


This article is cited by Strategies to improve hydrogen activation on gold catalysts Nikolaos DimitratosGianvito ViléRobert Wojcieszak Nature Reviews Chemistry (2024)


Direct observation of accelerating hydrogen spillover via surface-lattice-confinement effect Yijing LiuRankun ZhangQiang Fu Nature Communications (2023)


Toward conformational identification of molecules in 2D and 3D self-assemblies on surfaces Ali HamadehFrank PalminoFrédéric Chérioux Communications Chemistry (2023)


Chemically identifying single adatoms with single-bond sensitivity during oxidation reactions of borophene Linfei LiJeremy F. SchultzNan Jiang Nature Communications (2022)


In-situ nanospectroscopic imaging of plasmon-induced two-dimensional [4+4]-cycloaddition polymerization on Au(111) Feng ShaoWei WangRenato Zenobi Nature Communications (2021)