Katp channel dependent heart multiome atlas

feature-image

Play all audios:

Loading...

ABSTRACT Plasmalemmal ATP sensitive potassium (KATP) channels are recognized metabolic sensors, yet their cellular reach is less well understood. Here, transgenic Kir6.2 null hearts devoid


of the KATP channel pore underwent multiomics surveillance and systems interrogation versus wildtype counterparts. Despite maintained organ performance, the knockout proteome deviated beyond


a discrete loss of constitutive KATP channel subunits. Multidimensional nano-flow liquid chromatography tandem mass spectrometry resolved 111 differentially expressed proteins and their


expanded network neighborhood, dominated by metabolic process engagement. Independent multimodal chemometric gas and liquid chromatography mass spectrometry unveiled differential expression


of over one quarter of measured metabolites discriminating the Kir6.2 deficient heart metabolome. Supervised class analogy ranking and unsupervised enrichment analysis prioritized


nicotinamide adenine dinucleotide (NAD+), affirmed by extensive overrepresentation of NAD+ associated circuitry. The remodeled metabolome and proteome revealed functional convergence and an


integrated signature of disease susceptibility. Deciphered cardiac patterns were traceable in the corresponding plasma metabolome, with tissue concordant plasma changes offering surrogate


metabolite markers of myocardial latent vulnerability. Thus, Kir6.2 deficit precipitates multiome reorganization, mapping a comprehensive atlas of the KATP channel dependent landscape.


SIMILAR CONTENT BEING VIEWED BY OTHERS DECIPHERING METABOLOMICS AND LIPIDOMICS LANDSCAPE IN ZEBRAFISH HYPERTROPHIC CARDIOMYOPATHY MODEL Article Open access 19 September 2024 A MULTI-OMICS


APPROACH IDENTIFIES THE KEY ROLE OF DISORDERS OF SPHINGOLIPID METABOLISM IN ANG II-INDUCED HYPERTENSIVE CARDIOMYOPATHY MYOCARDIAL REMODELING Article Open access 05 December 2024 OUTLINING


CARDIAC ION CHANNEL PROTEIN INTERACTORS AND THEIR SIGNATURE IN THE HUMAN ELECTROCARDIOGRAM Article Open access 13 July 2023 INTRODUCTION ATP sensitive potassium (KATP) channels operate as


high fidelity rheostats in response to metabolic stress1,2,3,4,5. Abundant in the cardiomyocyte sarcolemma, where originally discovered6, KATP channels adjust membrane electrical activity to


match cellular energetic demand7,8. Channel opening under diverse stressor challenges is a recognized cardioprotective event, with channel deficiency associated with poor


outcome9,10,11,12,13,14,15. The KATP channel dependent molecular landscape, however, remains only partially understood. Myocardial KATP channels assemble into a heteromeric complex of the


_KCNJ11_ encoded Kir6.2 potassium conductive pore and the regulatory ATP binding cassette sulfonylurea receptor 2A (SUR2A) partner16,17,18. Channel metabolic sensing relies on intrinsic ATP


mediated gating of Kir6.2, governed by ATP/ADP dependent conformations of tandem SUR2A nucleotide binding domains19,20,21. Under physiological workload, hearts lacking KATP channels exhibit


a switch in metabolic substrate and an augmented oxygen consumption, indicating excessive energy cost compared to hearts containing intact channels22,23. Channel linkage to the cellular


bioenergetic machinery involves communication with energy shuttles facilitated by near equilibrium enzymatic transfer24,25. Messaging with NAD+/NADH interconverting enzymes (lactate


dehydrogenase), phosphotransferring enzymes (creatine kinase and adenylate kinase), and glycolytic enzymes (glyceraldehyde-3-phosphate dehydrogenase, triose-phosphate isomerase, and pyruvate


kinase) have been implicated in KATP channel contribution to cellular metabolism26,27,28,29,30,31. Comprehensive molecular profiling would enable decoding the full extent of the cardiac


KATP channel interactome. In this regard, systems biology approaches provide unbiased means of resolving the complex cellular milieu32,33. Downstream from genetic and epigenetic inputs,


proteomic surveillance captures infrastructure constituents while metabolomic assessment provides a readout of functional activity34,35,36. These complementary approaches facilitate


expression analysis and function prioritization based on objective dataset interrogation37, and when used in conjunction provide greater insight into complex biological processes than can be


achieved from either approach alone. Multiomics data offer extraction of distilled biological signatures, identification of cross-strata common denominators, and merged interpretation.


Integrated consideration mitigates misinterpretation due to potential single perspective idiosyncrasy and can alleviate the risk of overlooking pertinent information. These attributes help


address the molecular intricacy of the cardiovascular system38. The present study drafts an integrated map of the cardiac plasmalemmal KATP channel dependent multiome, leveraging a systems


strategy applied to a transgenic model lacking the channel pore. Parallel application of proteomics and metabolomics deciphered differential molecular expression segregating Kir6.2 knockout


from wildtype hearts. Molecular reorganization induced by KATP channel loss prioritized a metabo-centric adaptation, handicapped by risk of compromised cardiac resilience. Corroborated in


the corresponding plasma metabolome, the resolved multilevel cartography provides an expanded omics guide of KATP channel reliant cardiac homeostasis. RESULTS KIR6.2 KNOCKOUT DEVIATES BEYOND


KATP CHANNELS _Kcnj11_ ablation produced viable offspring that reached adulthood with no apparent adverse cardiac phenotype at the organ level (Fig. 1A). Adult (3–4 months) Kir6.2 KATP


channel knockout hearts (KO; n = 7) did not differ from age, sex, and environment matched wildtype (WT; n = 7) counterparts on echocardiography and catheterization. Left ventricular


end-diastolic/end-systolic dimensions, pressures, volumes, and ejection fraction were all comparable in WT and KO (Fig. 1A). Concordant with KATP channel ablation, under whole-cell patch


clamp, metabolic stress-induced outward current was evident in WT but not in KO cardiomyocytes (Fig. 1B). Mean current density provoked by the oxidative phosphorylation uncoupler


2-[2-[4-(trifluoromethoxy)phenyl] hydrazinylidene]-propanedinitrile was 14.4 ± 1.5 pA/pF in WT (n = 7) versus 0.09 ± 0.08 pA/pF in KO (n = 6) cardiomyocytes (_P_ = 0.0002). At the molecular


level, high mass accuracy nano-flow liquid chromatography tandem mass spectrometry (LC–MS/MS) of ventricular tissue homogenates (WT, n = 10; KO, n = 10) identified 56,086 peptides assigned


to 4846 proteins of which 4205 were quantifiable (Supplementary Table 1). Resolved by label-free relative quantitation (median coefficient of variance: WT = 2.3%, KO = 2.4%), Kir6.2 protein


was found abundant in WT but absent in KO (Fig. 1C). In addition to the discrete loss of channel pore expression, extensive KO proteome deviation away from WT was prominent (Fig. 1C). Kir6.2


deletion, while apparently phenotypically silent, causes molecular departure beyond the KATP channel proper. KIR6.2 ABLATION RESTRUCTURES MYOCARDIAL PROTEOME Cardiac proteome remodeling


imposed by Kir6.2 deletion segregated KO (n = 10) from WT (n = 10) hearts, as visualized by 3-D principal component analysis (PCA, Fig. 2A). Contrasting WT, cardiac plasmalemmal KATP channel


subunits were absent (Kir6.2) or significantly reduced (SUR2A, false discovery rate [FDR] _P_ = 0.016) in KO (Fig. 2B). The distinct mitochondrial KATP channel subunits, Mitok (_Ccdc51_)


and Mitosur (_Abcb8_), remained equivalent in WT and KO (see Supplementary Table 1). Of the 4205 quantifiable proteins, 111 were differentially expressed in KO versus WT (limma FDR corrected


_P_ < 0.05; Fig. 2C). The 68 upregulated and 43 downregulated proteins demarcated a distinct KO molecular substrate delineated by PCA loading plot (Fig. 2C). The resulting agglomerative


heatmap distinguished the cohorts based on the differential proteome (Fig. 2D). The Kir6.2 dependent proteome changes spanned 11 primary biological process categories (Fig. 3A). Metabolic or


catabolic processes harbored the greatest change, accounting for over 25% of all proteins (28 of 111, with 16 upregulated, 12 downregulated), followed by: signaling, transport, and motility


(23%, 12 up, 14 down); immunity or inflammation (13%, 14 up); morphology or structure (9%, 9 up, 1 down); stress or stimulus response (7%, 3 up, 5 down); protein post-translational


modification (PTM) or processing (5%, 4 up, 2 down); transcription, epigenetics, or DNA related processes (5%, 3 up, 3 down); differentiation or development (5%, 1 up, 4 down); biosynthesis


(4%, 2 up, 2 down); cell cycle (1%, 1 up); apoptosis or cell death (1%, 1 up); with 2 upregulated proteins uncharacterized (Fig. 3A). The spectrum of associated biological processes was


validated at the network level, upon integration of the differential proteome within an expanded 239 node neighborhood composed of molecules with known interactions (Supplementary Figure,


left). Gene ontology analysis of the network specified 223 associated biological processes enriched at _P_ < 0.001 (Supplementary Figure, right, and Supplementary Table 2). Grouping of


these processes further highlighted the prioritization of ‘Metabolism, Catabolism’, which harbored the largest proportion of enriched processes (> 27%) and exhibited the greatest extent


of significance (−log harmonic mean _P_-value = 20.97) compared to other enriched clusters (Fig. 3B). Thus, metabolism-centric processes dominated the proteome makeover engendered by Kir6.2


ablation. REORGANIZED CARDIAC METABOLOME DISTINGUISHES KIR6.2 ABSENCE From the WT (n = 10) and KO (n = 10) hearts, distinct metabotypes were independently resolved by high throughput


chemometric surveillance using multimodal untargeted mass spectrometry, with prominent cohort segregation evident by 3-D PCA (Fig. 4A). Over one quarter of the measured cardiac metabolome


(Supplementary Table 3) was significantly altered by Kir6.2 deletion (59/219 metabolites, _P_ < 0.05), with 73% of changing metabolites upregulated and 27% downregulated (Fig. 4B),


underscored by differential metabolite loading plots in WT and KO (Fig. 4C). The KATP channel dependent metabolome, arrayed by unsupervised agglomerative clustering, spanned 6 of the 7


pathway macroclusters encompassing all measured metabolites. Downregulated metabolites contributed to 4 and upregulated metabolites to all 6 pathway macroclusters (Fig. 4D). Kir6.2 deletion


precipitated a distinct pattern of change. The percent of metabolites changed in each pathway macrocluster ranged from 17 to 35% (Fig. 4D, upper inset). Specifically, the number of


metabolites significantly changed were: 16 (12 up, 4 down) out of 53 in the amino acid cluster; 6 (up) out of 27 in the carbohydrate cluster; 2 (1 up, 1 down) out of 6 in the


cofactor/vitamin cluster; 1 (up) out of 6 in the energy cluster; 26 (18 up, 8 down) out of 100 in the lipid cluster; and 8 (5 up, 3 down) out of 23 in the nucleotide cluster. Notably, 100%


predictive classification accuracy across cohorts was achieved in Random Forest modeling using the top 30 differential metabolites (Fig. 4D, lower inset). Thus, the resolved chemometric


fingerprint mapping the extent and diversity of metabolite changes readily distinguished KO from WT hearts, underscoring the impact of KATP channel deficiency on the cardiac metabolome.


KIR6.2 DEPENDENT METABOLIC PRIORITIZATION Supervised classification of the metabolome by soft independent modeling of class analogy (SIMCA) validated KO and WT intra-group consistency and


inter-cohort separation, as evident by partial least squares—discriminant analysis (PLS-DA; Fig. 5A). Systems modeling by SIMCA identified 28 metabolites with variable importance in


projection (VIP) scores exceeding 1.5, affirming their prominence in group segregation (Fig. 5B). The top scoring metabolite was nicotinamide adenine dinucleotide (NAD+; reduced in KO by ≈


30% from WT levels). In parallel, nicotinate and nicotinamide metabolism was the top pathway for cohort discrimination. The Kir6.2 dependent differential metabolome was expanded to a 135


node scale-free interactome (Fig. 5C). Unsupervised classification by Metabolite Pathway Analysis (MetPA) of the interactome corroborated the preeminence of NAD+ and the nicotinate and


nicotinamide pathway (Fig. 5D), with 75% of the most significant MetPA pathways confirmed among the top pathways modeled by VIP scoring (Fig. 5D, bold italicized font). While NAD+ levels


were significantly reduced in response to Kir6.2 ablation (_P_ = 1.37 × 10−7; Fig. 5E, left), flavin adenine dinucleotide (the other primary electron acceptor) did not differ between WT and


KO cohorts (_P_ = 0.55; Fig. 5E, right). Consistent with NAD+ prioritization by unsupervised and supervised systems interrogation, NAD+ was associated with the greatest number of metabolic


and signaling pathways enriched in KO hearts (Fig. 6A,B). Notably, 61% (22/36) of enriched Ingenuity Pathway Analysis (IPA) canonical pathways were NAD+ related (Fig. 6A). Less preeminent


was glycine linked to 12 enriched pathways, followed by l-glutamine (7 pathways), xanthine (6), l-tyrosine (5), and 4 or fewer IPA enriched pathways for the remaining 22 metabolites.


Likewise, 95% (60/63) of enriched Metabolite Set Enrichment Analysis (MSEA) pathways were associated with NAD+ (Fig. 6B). In contrast, second-ranked glycine was associated with only 9 of the


63 pathways. Additional metabolites linking to MSEA enriched pathways included l-glutamine (7 pathways), glycerol-3-phosphate (6), and β-alanine (4), with 3 or fewer enriched pathways


linking to each of the remaining 21 differential metabolites. Concordant with an NAD+-centric KO metabotype, the corresponding Kir6.2 dependent proteome displayed altered expression of 9


proteins associated with NAD+ biosynthesis, consumption, or utilization (Fig. 6C). Complementary interrogation thus identified altered metabolites prioritizing key pathways delineating the


metabolic identity of the Kir6.2 deficient state. CARDIAC SUSCEPTIBILITY IMPRINTED IN THE REMODELED MULTIOME Integrated multiomics analysis was used to query the influence of the remodeled


metabolome and proteome in the setting of Kir6.2 deficiency. Metabolome enrichment profiling in response to Kir6.2 ablation revealed 36 overrepresented functions, prioritizing metabolism (11


functions), followed by development (7), homeostasis and survival (6), signaling, transport, and motility (5), morphology and structure (4), as well as functions (3) involved in cell cycle,


DNA, and gene expression (Fig. 7A, left). Of note, 97% of proteome-enriched functions (35/37) matched the metabolome-enriched functions, revealing synonymity across platform readouts (Fig. 


7A, Venn diagram). Collective analysis of metabolome and proteome datasets unmasked disease and adverse outcome susceptibility in response to Kir6.2 ablation. Specifically, multiomics


interrogation demonstrated an enrichment of metabolic disease, developmental and hereditary disorders, organismal injury, inflammatory and immunological dysfunction, and muscle-related


disorder including cardiovascular disease (Fig. 7B). Moreover, an array of cardiac adverse outcomes was overrepresented, with predicted susceptibility to enlargement, dysfunction,


arrhythmia, dilation, tachycardia, necrosis/cell death, congenital heart anomaly, and damage (Fig. 7C). Thus, Kir6.2 deficit induces congruent remodeling of the proteome and metabolome,


yielding a multiome imprint of cardiac compromise. PLASMA METABOLOME DISTINCT IN KIR6.2 KNOCKOUT To assess the utility of peripheral plasma in distinguishing Kir6.2 KO, plasma metabolites


from corresponding WT (n = 10) and KO (n = 10) mice were isolated and analyzed. Of the 257 measured plasma metabolites (Supplementary Table 4), a quarter (or 61 metabolites) were


significantly altered (_P_ < 0.05) in response to Kir6.2 ablation. Supervised classification of the plasma metabolome by PLS-DA documented separation of KO from WT (Fig. 8A), with


_p_-cresol sulfate and N-acetylornithine the top metabolites in predicting cohort discrimination. Unsupervised agglomerative clustering documented 34 elevated and 27 decreased metabolites,


segregating WT and KO cohorts (Fig. 8B). Random Forest modeling achieved 95% predictive classification across cohorts (i.e., correctly allocating 10/10 WT and 9/10 KO; Fig. 8C, upper), and


specified _p_-cresol sulfate and N-acetylornithine as top ranked discriminatory metabolites (Fig. 8C, lower). Rank ordered by mean decrease accuracy scores, the top 30 differential plasma


metabolites used for classification spanned metabolic pathways (Fig. 8C, lower), with inter-group separation articulated by 3-D PCA (Fig. 8D). Thus, plasma profiling discriminated KO from WT


at the metabolome level. DISTINCT KIR6.2 KNOCKOUT PLASMA REFLECTS HEART METABOLOME Functional enrichment analysis of the resolved differential plasma metabolome recapitulated 94% of the 36


functional traits enriched in the corresponding heart metabolome (Supplementary Table 5). Over one quarter of Kir6.2 dependent tissue metabolome changes (16/59) were also detected as


differentially expressed in plasma (Fig. 9A, upper). Of these common changes, 94% (15/16) exhibited concordant direction of change in response to Kir6.2 deletion, with 10 upregulated and 5


downregulated metabolites spanning metabolic pathways (Fig. 9A, lower). This shared core included the metabolites prioritized by both SIMCA VIP scoring and Random Forest modeling, namely


_p_-cresol sulfate and N-acetylornithine (see also Fig. 8A,C), offering a plasma readout of tissue level change (Fig. 9B). The differential plasma metabolome reproduced the disease and


disorder enrichment associations prioritized in the corresponding heart tissue (Fig. 9C). Matching the extent of heart damage susceptibility predicted from the tissue metabolome, the plasma


metabolome prognosticated cardiovascular adverse outcome (Fig. 9D). Tissue concordant differential metabolites within the plasma metabolome thus represent potential reporter molecules of


latent cardiac susceptibility associated with Kir6.2 deficiency. DISCUSSION The present study demonstrates that hearts deprived of the Kir6.2 KATP channel pore undergo a proteomic and


metabolomic overhaul beyond constitutive channel subunits. The distinct proteome and metabolome conversion underpinned adaptation in hearts lacking functional KATP channels. Deep phenotyping


characterized a metabo-centric metamorphosis across the molecular infrastructure and biochemical output of Kir6.2 devoid hearts, compromised by an imprint of disease susceptibility. The


resolved Kir6.2 dependent interactome highlights the centrality of intact KATP channels in proteome and metabolome maintenance ensuring heart resilience. A systems biology strategy was here


employed to acquire and interpret molecular information sampled in vivo across complementary proteomic and metabolomic dimensions39 (Fig. 10). Proteomic surveillance of the myocardium


identified over 56,000 peptides representing 4846 proteins, enabling untargeted capture of the Kir6.2 dependent expression change spectrum. The high stringency design pinpointed 111 altered


proteins across a range of vital cellular processes, demonstrating metabolic primacy of the remodeled KATP channel deficient heart proteome. Comprehensive protein cataloging extended the


findings of more targeted approaches linking metabolism with the cardiac KATP channel at local partner, associated pathway, or subproteome levels40,41,42,43,44,45. Specificity of observed


changes attributed to plasmalemmal KATP channel integrity was supported by unaltered expression of Mitok and Mitosur, in line with a distinct, non-redundant, channel identity in subcellular


compartments46. Underpinnings of metabolic prioritization were further mined by unbiased evaluation of the cardiac KATP channel dependent metabolome. Multidimensional chemometric profiling


revealed that 27% of ventricular metabolites were altered in response to Kir6.2 ablation, spanning metabolic families. The metabolomic changes provoked by Kir6.2 ablation are comparable in


magnitude to those characterizing hearts with compromised energy regulators or failing hearts47,48. Notably, Kir6.2 dependent metabolome and proteome enriched functions exhibited remarkable


overlap (97% for the metabolome and 95% for the proteome), revealing convergence across platform readouts. Screening multiple omics layers from the same source, in conjunction with data


inclusivity free of selection and interpretation bias, supports the validity and utility of considering unique yet interrelated datasets49,50. Taken together, the congruent interrogation


over multiple molecular strata underscored the impact of KATP channels as an influential nexus in cardiac metabolism. Across the breadth of KATP channel dependent reorganization, systems


deconvolution prioritized the multivalent coenzyme NAD+ and its associated metabolic pathways. The decrease in NAD+ in Kir6.2 deficient hearts was paralleled by change in NAD+ associated


proteins, including upregulation of NAD+ salvage enzymes, namely the metazoan spot homologue 1 (_Hddc3_)51 and renalase (_Rnls_)52. Maintenance of NAD+ is vital to tissue homeostasis53,54,


with myocardial NAD+ pool derangement associated with metabolic remodeling in heart failure and supplementation preserving cardiac performance55,56,57. Notably, NAD+ at physiological


concentrations regulates KATP channel activity58, and a nicotinamide-rich diet upregulates KATP channel expression and increases myocardial resilience59. In this context, the present


findings support a reciprocal relationship of KATP channels and metabolism, and reveal that the Kir6.2 null heart is typified by NAD+ deficit, a prominent feature of cardiomyopathy prone


environments60. Indeed, dual metabolome and proteome assessment of the Kir6.2 knockout heart exposed an acquired predisposition to disease susceptibility. This vulnerability signature was


herein evident in the young adult at an age apparently free from Kir6.2 dependent extracardiac confounders such as altered insulin secretion, glucose tolerance, and muscle properties61. The


molecular imprint of heart disease susceptibility was present in advance of overt physiological dysfunction, suggesting that molecular reorganization in response to Kir6.2 deletion is a


compensatory adaptation in the young adult animal. Documented independently or collectively across profiling modalities, the current multiomics findings build on initial single omic


exploration of Kir6.2 loss62. The predictive imprint of disease risk is further reinforced by overt organ failure compromising KATP channel deficient hearts subjected to


stress63,64,65,66,67,68,69. KATP channels are implicated in the maintenance of cellular homeostasis, recognized as early responders to metabolic challenge70. The mechanism by which Kir6.2


ablation mediates subcellular adaptation needs further study. In principle the observed proteome and metabolome remodelling could be related to the energetically costly KO heart’s propensity


for exaggerated Ca2+ loading9,11,12,22. Calcium overload has been directly implicated in cellular transformation at the protein and metabolite level71. Here none of the identified proteins


involved in Ca2+ handling, regulation, or homeostasis differed in expression between WT and KO (see Supplemental Table 1). This would suggest that omic alterations could be mediated by a


proclivity for Ca2+ loading on a beat-to-beat basis, rather than a structural change across the Ca2+ regulatory proteome. Corroborating the cardiac disease risk exposed at the tissue level,


the resolved KATP channel dependent plasma metabolome independently reflected myocardial susceptibility. Diverse pathological processes associated with organ failure can be monitored by


blood biomarkers, serving as molecular surrogates for early disease diagnosis, stratification, and detection at an asymptomatic state72. Among concordant differential metabolites shared


between tissue and plasma, _p_-cresol sulfate and N-acetylornithine were consistently prioritized across applied modeling algorithms. Upregulation of _p_-cresol sulfate and downregulation of


N-acetylornithine have been associated with cardiovascular disease, namely in (a)symptomatic cardiac dysfunction and incident heart failure73,74,75,76. These candidate biomarkers offer a


clinically applicable and readily accessible source for detecting KATP channel dependent vulnerability. Limitations in proteomic and metabolomic analyses may arise from small sample number,


restricted data inclusivity, absence of cross-validation, or inadequate application of interrogation resources77,78,79,80. Here, quality control ensured that the extended cohort size used


was adequately powered to capture distinct patterns at high resolution. Moreover, high throughput screening was applied without imposed constraints for inclusive data input, avoiding


inadvertent biases. Examining datasets with, and extracting common signatures from, multiple algorithms here provided added confidence in interpretation. Accordingly, supervised and


unsupervised approaches were systematically employed following best practices, generating matching output across platforms. Additionally, examination of the heart and plasma in a global


deletion model must account for potential confounding effects arising from extracardiac influences. To mitigate this possibility in the present study where Kir6.2 expression in pancreas and


skeletal muscle was also impacted, young adult mice (< 4 months of age) were chosen for analysis at an age when insulin secretion, glucose tolerance, and skeletal muscle properties are


known to be equivalent between WT animals and those with Kir6.2 deletion61. In conclusion, an atlas of KATP channel dependent interactome was here constructed using an unbiased systems


strategy integrating proteome and metabolome strata. Multiomics surveillance of Kir6.2 null hearts mapped a metabo-centric landscape, exposing latent vulnerability further traceable in the


plasma metabolome. The captured multidimensionality of the KATP channel reliant bioenergetic system offers a broadened perspective on a vital contributor to cardiac homeostasis. METHODS


ETHICS APPROVAL Protocols were approved by the Mayo Clinic Institutional Animal Care and Use Committee, following National Institutes of Health guidelines. Reporting of animal studies here


follows the recommendations in the ARRIVE guidelines81. Mice were young adult (up to 4 month-old) male WT (C57BL6) and age-, sex-, environment-matched Kir6.2 null KATP channel KO


counterparts. Of note, up to this age, KO mice maintain insulin secretion, glucose tolerance, and skeletal muscle properties within a normal range61. IN VIVO PHYSIOLOGY Group-housed


sedentary mice (≤ 5 siblings per cage) received standard chow, with WT and KO exhibiting equivalent glycemic levels61. Cardiac structure and function were evaluated under 1–2% isoflurane


anesthesia (n = 14). Left ventricular (LV) dimension and wall thickness were measured by echocardiography M-mode parasternal long-axis view (MX400 transducer, Vevo3100 system; MS-400


transducer, Vevo2100; FUJIFILM VisualSonics, Toronto, Canada)82,83. Hemodynamics was assessed by LV catheterization (PVR-1045 catheter, MPVS-400; PowerLab 8/30; Miller Instruments, Houston,


TX; ADInstruments, Colorado Springs, CO). LV ejection fraction (EF) was calculated as EF% = 100 × (LVEDV − LVESV)/LVEDV, where LVEDV and LVESV are end‐diastolic and end‐systolic


volumes84,85. First derivatives (dP/dT maximum and minimum) evaluated LV systolic and diastolic pressure86. Difference between groups was assessed by Mann‐Whitney _U_ test (JMP Pro 14.1.0,


SAS Institute Inc., Cary, NC). Data are presented as mean ± standard deviation with _P_ < 0.05 significant. CELL ELECTROPHYSIOLOGY Cardiomyocytes were isolated by enzymatic


dissociation87. Under anesthesia, following thoracotomy, the right ventricle was perfused with 7 mL of HEPES buffer (in mM: 10 4-(2-hydroxyethyl)-1-piperazine ethanesulfonic acid [HEPES], pH


7.8; 130 NaCl; 5 KCl; 0.5 NaH2PO4; 10 glucose; 10 2,3-butanedione monoxime; 10 taurine) containing 5 mM EDTA. Following aortic clamping, the coronary arteries were perfused through the left


ventricle with 10 mL HEPES buffer + 5 mM EDTA, followed by 3 mL HEPES buffer + 1 mM MgCl2, and 30–40 mL HEPES collagenase buffer + 1 mM MgCl2 (with 0.5 mg/ml collagenase II, 0.5 mg/ml


collagenase IV, and 0.05 mg/ml protease XIV). Released cells were filtered through 100 μm nylon mesh and gravity settled, with CaCl2 increased to 1.2 mM. Whole cell voltage-clamp was


conducted by patch-clamp amplifier (Axopatch 200B, Molecular Devices, San Jose, CA) for cardiomyocytes bathed in (in mM) 136.5 NaCl, 5.4 KCl, 1.0 MgCl2, 5.5 glucose, and 10 HEPES–NaOH (pH


7.3) at 31 ± 0.5 °C using an HCC-100A temperature controller (Dagan Corp., Minneapolis, MN). Pipettes (resistance: 4–5 MΩ) contained (in mM) 140 KCl, 1 MgCl2, 5 EGTA-KOH, 5 HEPES–KOH, and 5


MgATP (pH 7.3). Stimulation protocol, data acquisition, and cell parameter determination were performed using BioQuest software88. MULTIOMICS SAMPLING For molecular profile sampling, excised


hearts were rinsed with ice-cold phosphate buffered saline. For proteomics, ventricular apex was placed in cryovials, snap frozen in liquid N2, and stored at −80 °C, with remaining


ventricle snap frozen and stored at −80 °C for tissue metabolomics. For plasma metabolomics, blood collected in cryovials containing 5 µL of 0.5 M EDTA was centrifuged at 2000×_g_ (10 min at


4 °C), with supernatant transferred to fresh cryovials, frozen in liquid N2, and stored at −80 °C. PROTEOMICS PROTEIN EXTRACTION Ventricular proteins were extracted by 3 rounds of


homogenization and centrifugation in 150 µL of 25 mM HEPES, pH 7.4, Mini-Complete™ protease inhibitor (−)EDTA cocktail (Roche Applied Science, Indianapolis, IN), and 1% phosphatase inhibitor


cocktails 2 and 3 (Sigma, St. Louis, MO) at 4 °C, followed by 3 rounds of pellet extraction in 150 µL of 7 M urea, 2 M thiourea, and 2% 3-((3-cholamidopropyl)


dimethylammonio)-1-propanesulfonic acid89. Extracts were quantified by Bio-Rad protein assay (Bio-Rad, Hercules, CA) using bovine γ-globulin standard. Samples (30 µg per extract) were


resolved by 10.5–14% gradient Criterion Tris–HCL precast (Bio-Rad) sodium dodecyl sulfate–polyacrylamide gel electrophoresis and stained with Coomassie blue R-250, with gel lanes sectioned


for individual mass spectrometry runs. NANO-FLOW LIQUID CHROMATOGRAPHY TANDEM MASS SPECTROMETRY Gel tranches were de-stained, with protein reduced, alkylated, digested with trypsin, and


peptides extracted and dried89. Peptides were resuspended in 0.2% formic acid, 0.1% trifluoroacetic acid, and 0.002% zwittergent 3–16 (Calbiochem, San Diego, CA), and analyzed by nano-flow


LC–MS/MS using a Q-Exactive Hybrid Quadrupole Orbitrap mass spectrometer (Thermo Fisher Scientific, Bremen, Germany) coupled to a Thermo UltiMate 3000 RSLCnano HPLC system. Peptides were


loaded onto a 250 nL OPTI-PAK trap (Optimize Technologies, Oregon City, OR) packed with Michrom Magic C8, 5 µm solid phase (Michrom Bioresources, Auburn, CA). Chromatography was performed


using 0.2% formic acid in solvents A (98% water, 2% acetonitrile) and B (80% acetonitrile, 10% isopropanol, 10% water), over a 2–45% B gradient for 60 min at 400 nL/min through a 100 µm × 35


 cm PicoFrit column (New Objective, Woburn, MA) packed with Agilent Poroshell 120 EC-C18 (Agilent Scientific Instruments, Santa Clara, CA). MS1 survey scans 350–2000 m/z were acquired at


70,000 resolution targeting 3 × 106 ions and 60 ms maximum inject time, followed by data dependent high energy collisional dissociation MS2 on the top 15 ions at 17,500 resolution targeting


2 × 105 ions with 60 ms maximum inject time, using dynamic exclusion of measured ions for 60 s. MASS SPECTROMETRY DATA ANALYSIS Raw files consisting of 10 LC–MS/MS runs per sample were


processed in MaxQuant 1.6.7.090, using Andromeda search engine for label-free quantification (LFQ), with applied fastLFQ settings. Spectra were searched against UniProt mouse entries,


combining forward and reverse peptides as decoys to estimate FDR, with peptide match and protein assignment FDR set at 0.01. Search parameters included trypsin/P digestion, cysteine


carbamido-methylation, and variable modifications of amino-terminal protein acetylation, glutamate to pyro-glutamate, and methionine oxidation. Maximum charge was + 7, with up to 3 dynamic


modifications, maximum of 2 missed cleavages, and minimum of 7 amino acids. Mass tolerance was 20 and 10 ppm for first and main searches. LFQ identification was maximized by MaxQuant’s


‘Match Between Runs’ feature, assigning identified spectra from one LC–MS/MS run to corresponding aligned mass and retention time spectra in other runs. Peptides were rolled into protein


assignments, requiring ≥ 2 peptides per protein. DIFFERENTIAL EXPRESSION Relative protein abundance was calculated in R (cran.r-project.org) using Proteus91, for limma analysis92 of


label-free MaxQuant data. Peptide information acquired from MaxQuant evidence files was filtered for contaminants and reverse peptides without imputing missing values. Peptides were rolled


into corresponding proteins, data median normalized, and the high-flyer method applied to calculate relative protein abundance. Proteins with FDR corrected _P_ < 0.05 were considered


differentially expressed. METABOLOMICS Tissue (> 50 mg) and plasma (> 150 µL) metabolites were processed for untargeted gas chromatography (GC)/MS, and for positive and negative ion


mode liquid chromatography (+ LC and − LC)/MS (Metabolon, Research Triangle Park, NC). Protein was removed using organic and aqueous buffers, placed on a TurboVap® (Zymark, Hopkinton, MA),


frozen, and small molecules dried under vacuum. GAS CHROMATOGRAPHY MASS SPECTROMETRY For GC/MS of volatile metabolites, samples were re-dried under vacuum prior to derivatization under N2


using bistrimethyl-silyl-triflouroacetamide. Samples were analyzed on a Thermo-Finnigan Trace DSQ single-quadrupole MS by electron impact ionization using a 5% phenyl GC column with a 40–300


 °C ramp over 16 min. LIQUID CHROMATOGRAPHY MASS SPECTROMETRY LC/MS samples were resolved on a Waters ACQUITY UPLC and Thermo-Finnigan LTQ-FT mass spectrometer. For + LC/MS and − LC/MS,


extracts were gradient eluted using water and methanol buffers containing 0.1% formic acid or 6.5 mM ammonium bicarbonate, respectively, alternating between MS1 and MS2 injection scans using


dynamic exclusion. IDENTITY AND EXPRESSION Metabolites were identified by matching spectral chromatographic elution properties to Metabolon’s curated library. Expression values were log


transformed, and imputation applied using the minimum measured value. Random Forest classification was carried out to model individual cohort allocation, generating decision tree ensembles


of the top 30 predictive metabolites. Boxplots of metabolite expression were generated with JMP 14.1.0 (SAS Institute Inc., Cary, NC). Statistical analysis was performed in R, using Welch’s


Two-Sample t-test with _P_ < 0.05 significant. SYSTEMS BIOINFORMATICS CLUSTERING Hierarchical agglomerative clustering (with z-score transformed normalization) and PCA visualization were


conducted using ClustVis93. For 3-D PCA, principal components were plotted in Spotfire 10.0.0 (TIBCO, Palo Alto, CA). SOFT INDEPENDENT MODELING OF CLASS ANALOGY Metabolome grouping and class


membership was predicted by soft independent modeling of class analogy (SIMCA 15.0.2, Sartorius, Bohemia, NY) using PLS-DA. Individual metabolite PLS-DA contributions were rank ordered by


VIP scores. FUNCTIONAL ENRICHMENT Differential metabolome interrogation was carried out by MSEA and MetPA within MetaboAnalyst 4.0 (metaboanalyst.ca)94. Using Human Metabolome Database


(HMDB) identifiers, normalized expression values were analyzed by MSEA, screening Small Molecule Pathway Database (smpdb.ca) libraries. For pathway analysis, the HMDB identifier expression


matrix was uploaded in MetPA, surveying the Kyoto Encyclopedia of Genes and Genomes _Mus musculus_ metabolic pathway library. In MetPA a global enrichment test was applied, with calculation


of the relative betweenness centrality, a network topological parameter of metabolite contribution to shortest paths within the enriched pathway. The entire library served as reference for


MSEA and MetPA calculations. PATHWAY AND NETWORK ANALYSIS Proteins and metabolites were submitted to IPA (QIAGEN Bioinformatics, Hilden, Germany), prescribing cutoffs of corrected _P_ < 


0.05 for proteins, _P_ < 0.05 for metabolites. IPA output included: enriched canonical pathways; molecular, cellular, and physiological functions; diseases and disorders; cardiac adverse


outcomes; and network interactions. Significance was calculated using Fisher’s Exact Test, screening proteins against the gene background and metabolites against the compound library, or


both when interpreting merged data. Merged pairwise interactions generated composite networks, exported to Cytoscape 3.8.295. In Cytoscape, NetworkAnalyzer yielded degree distributions to


evaluate network topology96, with Gene Ontology (GO) Biological Process enrichment assessed in BiNGO (Biological Network Gene Ontology), applying a hypergeometric distribution and


Benjamini–Hochberg FDR correction97. Enriched processes were clustered and visualized as a bubble plot, with bubble diameters proportional to the number of annotations and vertically


centered at the harmonic mean _P_-value98. DATA AVAILABILITY Data supporting findings are available in article/supplementary material. REFERENCES * Nichols, C. G. KATP channels as molecular


sensors of cellular metabolism. _Nature_ 440, 470–476. https://doi.org/10.1038/nature04711 (2006). Article  ADS  CAS  PubMed  Google Scholar  * Ashcroft, F. M. ATP-sensitive K+ channels and


disease: From molecule to malady. _Am. J. Physiol. Endocrinol. Metab._ 293, E880–E889. https://doi.org/10.1152/ajpendo.00348.2007 (2007). Article  CAS  PubMed  Google Scholar  * Olson, T. M.


& Terzic, A. Human KATP channelopathies: Diseases of metabolic homeostasis. _Pflugers Arch._ 460, 295–306. https://doi.org/10.1007/s00424-009-0771-y (2010). Article  CAS  PubMed  Google


Scholar  * Foster, M. N. & Coetzee, W. A. KATP channels in the cardiovascular system. _Physiol. Rev._ 96, 177–252. https://doi.org/10.1152/physrev.00003.2015 (2016). Article  CAS 


PubMed  Google Scholar  * Tinker, A., Aziz, Q., Li, Y. & Specterman, M. ATP-sensitive potassium channels and their physiological and pathophysiological roles. _Compr. Physiol._ 8,


1463–1511. https://doi.org/10.1002/cphy.c170048 (2018). Article  PubMed  Google Scholar  * Noma, A. ATP-regulated K+ channels in cardiac muscle. _Nature_ 305, 147–148.


https://doi.org/10.1038/305147a0 (1983). Article  ADS  CAS  PubMed  Google Scholar  * Flagg, T. P., Enkvetchakul, D., Koster, J. C. & Nichols, C. G. Muscle KATP channels: Recent insights


to energy sensing and myoprotection. _Physiol. Rev._ 90, 799–829. https://doi.org/10.1152/physrev.00027.2009 (2010). Article  CAS  PubMed  Google Scholar  * Terzic, A., Alekseev, A. E.,


Yamada, S., Reyes, S. & Olson, T. M. Advances in cardiac ATP-sensitive K+ channelopathies from molecules to populations. _Circ. Arrhythm. Electrophysiol._ 4, 577–585.


https://doi.org/10.1161/CIRCEP.110.957662 (2011). Article  CAS  PubMed  PubMed Central  Google Scholar  * Zingman, L. V. _et al._ Kir6.2 is required for adaptation to stress. _Proc. Natl.


Acad. Sci. USA_ 99, 13278–13283. https://doi.org/10.1073/pnas.212315199 (2002). Article  ADS  CAS  PubMed  PubMed Central  Google Scholar  * Hodgson, D. M. _et al._ Cellular remodeling in


heart failure disrupts KATP channel-dependent stress tolerance. _EMBO J._ 22, 1732–1742. https://doi.org/10.1093/emboj/cdg192 (2003). Article  CAS  PubMed  PubMed Central  Google Scholar  *


Kane, G. C. _et al._ _KCNJ11_ gene knockout of the Kir6.2 KATP channel causes maladaptive remodeling and heart failure in hypertension. _Hum. Mol. Genet._ 15, 2285–2297.


https://doi.org/10.1093/hmg/ddl154mcga (2006). Article  CAS  PubMed  Google Scholar  * Yamada, S. _et al._ Protection conferred by myocardial ATP-sensitive K+ channels in pressure


overload-induced congestive heart failure revealed in _KCNJ11_ Kir6.2-null mutant. _J. Physiol._ 577, 1053–1065. https://doi.org/10.1113/jphysiol.2006.119511 (2006). Article  CAS  PubMed 


PubMed Central  Google Scholar  * Stoller, D. A. _et al._ Cardiomyocyte sulfonylurea receptor 2-KATP channel mediates cardioprotection and ST segment elevation. _Am. J. Physiol. Heart Circ.


Physiol._ 299, H1100–H1108. https://doi.org/10.1152/ajpheart.00084.2010 (2010). Article  CAS  PubMed  PubMed Central  Google Scholar  * Storey, N. M., Stratton, R. C., Rainbow, R. D.,


Standen, N. B. & Lodwick, D. Kir6.2 limits Ca2+ overload and mitochondrial oscillations of ventricular myocytes in response to metabolic stress. _Am. J. Physiol. Heart Circ. Physiol._


305, H1508–H1518. https://doi.org/10.1152/ajpheart.00540.2013 (2013). Article  CAS  PubMed  PubMed Central  Google Scholar  * Nichols, C. G. Adenosine triphosphate-sensitive potassium


currents in heart disease and cardioprotection. _Card. Electrophysiol. Clin._ 8, 323–335. https://doi.org/10.1016/j.ccep.2016.01.005 (2016). Article  PubMed  PubMed Central  Google Scholar 


* Inagaki, N. _et al._ A family of sulfonylurea receptors determines the pharmacological properties of ATP-sensitive K+ channels. _Neuron_ 16, 1011–1017.


https://doi.org/10.1016/s0896-6273(00)80124-5 (1996). Article  CAS  PubMed  Google Scholar  * Babenko, A. P., Gonzalez, G., Aguilar-Bryan, L. & Bryan, J. Reconstituted human cardiac KATP


channels: Functional identity with the native channels from the sarcolemma of human ventricular cells. _Circ. Res._ 83, 1132–1143. https://doi.org/10.1161/01.res.83.11.1132 (1998). Article


  CAS  PubMed  Google Scholar  * Lorenz, E. & Terzic, A. Physical association between recombinant cardiac ATP-sensitive K+ channel subunits Kir6.2 and SUR2A. _J. Mol. Cell Cardiol._ 31,


425–434. https://doi.org/10.1006/jmcc.1998.0876 (1999). Article  CAS  PubMed  Google Scholar  * Zingman, L. V. _et al._ Tandem function of nucleotide binding domains confers competence to


sulfonylurea receptor in gating ATP-sensitive K+ channels. _J. Biol. Chem._ 277, 14206–14210. https://doi.org/10.1074/jbc.M109452200 (2002). Article  CAS  PubMed  Google Scholar  * Alekseev,


A. E. _et al._ ATP-sensitive K+ channel channel/enzyme multimer: Metabolic gating in the heart. _J. Mol. Cell Cardiol._ 38, 895–905. https://doi.org/10.1016/j.yjmcc.2005.02.022 (2005).


Article  CAS  PubMed  PubMed Central  Google Scholar  * Zingman, L. V., Alekseev, A. E., Hodgson-Zingman, D. M. & Terzic, A. ATP-sensitive potassium channels: Metabolic sensing and


cardioprotection. _J. Appl. Physiol._ 103, 1888–1893. https://doi.org/10.1152/japplphysiol.00747.2007 (2007). Article  CAS  PubMed  Google Scholar  * Alekseev, A. E. _et al._ Sarcolemmal


ATP-sensitive K+ channels control energy expenditure determining body weight. _Cell Metab._ 11, 58–69. https://doi.org/10.1016/j.cmet.2009.11.009 (2010). Article  CAS  PubMed  PubMed Central


  Google Scholar  * Youssef, N. _et al._ Hearts lacking plasma membrane KATP channels display changes in basal aerobic metabolic substrate preference and AMPK activity. _Am. J. Physiol.


Heart Circ. Physiol._ 313, H469–H478. https://doi.org/10.1152/ajpheart.00612.2016 (2017). Article  PubMed  Google Scholar  * Abraham, M. R. _et al._ Coupling of cell energetics with membrane


metabolic sensing. Integrative signaling through creatine kinase phosphotransfer disrupted by M-CK gene knock-out. _J. Biol. Chem._ 277, 24427–24434. https://doi.org/10.1074/jbc.M201777200


(2002). Article  CAS  PubMed  Google Scholar  * Alekseev, A. E., Reyes, S., Selivanov, V. A., Dzeja, P. P. & Terzic, A. Compartmentation of membrane processes and nucleotide dynamics in


diffusion-restricted cardiac cell microenvironment. _J. Mol. Cell Cardiol._ 52, 401–409. https://doi.org/10.1016/j.yjmcc.2011.06.007 (2012). Article  CAS  PubMed  Google Scholar  * Carrasco,


A. J. _et al._ Adenylate kinase phosphotransfer communicates cellular energetic signals to ATP-sensitive potassium channels. _Proc. Natl. Acad. Sci. USA_ 98, 7623–7628.


https://doi.org/10.1073/pnas.121038198 (2001). Article  ADS  CAS  PubMed  PubMed Central  Google Scholar  * Crawford, R. M. _et al._ M-LDH serves as a sarcolemmal KATP channel subunit


essential for cell protection against ischemia. _EMBO J._ 21, 3936–3948. https://doi.org/10.1093/emboj/cdf388 (2002). Article  CAS  PubMed  PubMed Central  Google Scholar  * Selivanov, V.


A., Alekseev, A. E., Hodgson, D. M., Dzeja, P. P. & Terzic, A. Nucleotide-gated KATP channels integrated with creatine and adenylate kinases: Amplification, tuning and sensing of


energetic signals in the compartmentalized cellular environment. _Mol. Cell Biochem._ 256–257, 243–256. https://doi.org/10.1023/b:mcbi.0000009872.35940.7d (2004). Article  PubMed  PubMed


Central  Google Scholar  * Dhar-Chowdhury, P. _et al._ The glycolytic enzymes, glyceraldehyde-3-phosphate dehydrogenase, triose-phosphate isomerase, and pyruvate kinase are components of the


KATP channel macromolecular complex and regulate its function. _J. Biol. Chem._ 280, 38464–38470. https://doi.org/10.1074/jbc.M508744200 (2005). Article  CAS  PubMed  Google Scholar  *


Jovanović, S. _et al._ Glyceraldehyde 3-phosphate dehydrogenase serves as an accessory protein of the cardiac sarcolemmal KATP channel. _EMBO Rep._ 6, 848–852.


https://doi.org/10.1038/sj.embor.7400489 (2005). Article  CAS  PubMed  PubMed Central  Google Scholar  * Hong, M. _et al._ Cardiac ATP-sensitive K+ channel associates with the glycolytic


enzyme complex. _FASEB J._ 25, 2456–2467. https://doi.org/10.1096/fj.10-176669 (2011). Article  CAS  PubMed  PubMed Central  Google Scholar  * Arrell, D. K. & Terzic, A. Interpreting


networks in systems biology. _Clin. Pharmacol. Ther._ 93, 389–392. https://doi.org/10.1038/clpt.2013.28 (2013). Article  CAS  PubMed  Google Scholar  * Trachana, K. _et al._ Taking systems


medicine to heart. _Circ. R.es_ 122, 1276–1289. https://doi.org/10.1161/CIRCRESAHA.117.310999 (2018). Article  CAS  Google Scholar  * Lindsey, M. L. _et al._ Transformative impact of


proteomics on cardiovascular health and disease: A scientific statement from the American Heart Association. _Circulation_ 132, 852–872. https://doi.org/10.1161/CIR.0000000000000226 (2015).


Article  CAS  PubMed  Google Scholar  * McGarrah, R. W., Crown, S. B., Zhang, G. F., Shah, S. H. & Newgard, C. B. Cardiovascular metabolomics. _Circ. Res._ 122, 1238–1258.


https://doi.org/10.1161/CIRCRESAHA.117.311002 (2018). Article  CAS  PubMed  PubMed Central  Google Scholar  * Diz, A. P., Martínez-Fernández, M. & Rolán-Alvarez, E. Proteomics in


evolutionary ecology: Linking the genotype with the phenotype. _Mol. Ecol._ 21, 1060–1080. https://doi.org/10.1111/j.1365-294X.2011.05426.x (2012). Article  CAS  PubMed  Google Scholar  *


Vakili, D., Radenkovic, D., Chawla, S. & Bhatt, D. L. Panomics: New databases for advancing cardiology. _Front. Cardiovasc. Med._ 8, 587768. https://doi.org/10.3389/fcvm.2021.587768


(2021). Article  PubMed  PubMed Central  Google Scholar  * Joshi, A., Rienks, M., Theofilatos, K. & Mayr, M. Systems biology in cardiovascular disease: A multiomics approach. _Nat. Rev.


Cardiol._ 18, 313–330. https://doi.org/10.1038/s41569-020-00477-1 (2021). Article  PubMed  Google Scholar  * Bäckhed, F. _et al._ The next decade of metabolism. _Nat. Metab._ 1, 2–4.


https://doi.org/10.1038/s42255-018-0022-7 (2019). Article  PubMed  Google Scholar  * Park, S., Lim, B. B. C., Perez-Terzic, C., Mer, G. & Terzic, A. Interaction of asymmetric


ABCC9-encoded nucleotide binding domains determines KATP channel SUR2A catalytic activity. _J. Proteome Res._ 7, 1721–1728. https://doi.org/10.1021/pr7007847 (2008). Article  CAS  PubMed 


PubMed Central  Google Scholar  * Arrell, D. K., Zlatkovic, J., Kane, G. C., Yamada, S. & Terzic, A. ATP-sensitive K+ channel knockout induces cardiac proteome remodeling predictive of


heart disease susceptibility. _J. Proteome Res._ 8, 4823–4834. https://doi.org/10.1021/pr900561g (2009). Article  CAS  PubMed  PubMed Central  Google Scholar  * Jovanović, S., Du, Q.,


Sukhodub, A. & Jovanović, A. M-LDH physically associated with sarcolemmal KATP channels mediates cytoprotection in heart embryonic H9C2 cells. _Int. J. Biochem. Cell Biol._ 41,


2295–2301. https://doi.org/10.1016/j.biocel.2009.05.012 (2009). Article  CAS  PubMed  PubMed Central  Google Scholar  * Zlatkovic, J. _et al._ Proteomic profiling of KATP channel-deficient


hypertensive heart maps risk for maladaptive cardiomyopathic outcome. _Proteomics_ 9, 1314–1325. https://doi.org/10.1002/pmic.200800718 (2009). Article  CAS  PubMed  PubMed Central  Google


Scholar  * Yoshida, H. _et al._ AMP-activated protein kinase connects cellular energy metabolism to KATP channel function. _J. Mol. Cell Cardiol._ 52, 410–418.


https://doi.org/10.1016/j.yjmcc.2011.08.013 (2012). Article  CAS  PubMed  Google Scholar  * Kefaloyianni, E. _et al._ Comparative proteomic analysis of the ATP-sensitive K+ channel complex


in different tissue types. _Proteomics_ 13, 368–378. https://doi.org/10.1002/pmic.201200324 (2013). Article  CAS  PubMed  PubMed Central  Google Scholar  * Paggio, A. _et al._ Identification


of an ATP-sensitive potassium channel in mitochondria. _Nature_ 572, 609–613. https://doi.org/10.1038/s41586-019-1498-3 (2019). Article  ADS  CAS  PubMed  PubMed Central  Google Scholar  *


Sansbury, B. E. _et al._ Metabolomic analysis of pressure-overloaded and infarcted mouse hearts. _Circ. Heart Fail._ 7, 634–642. https://doi.org/10.1161/CIRCHEARTFAILURE.114.001151 (2014).


Article  CAS  PubMed  PubMed Central  Google Scholar  * Warren, J. S. _et al._ Histone methyltransferase Smyd1 regulates mitochondrial energetics in the heart. _Proc. Natl. Acad. Sci. USA_


115, E7871–E7880. https://doi.org/10.1073/pnas.1800680115 (2018). Article  CAS  PubMed  PubMed Central  Google Scholar  * Arrell, D. K. & Terzic, A. Proteomic network systems analysis.


In _Manual of Cardiovascular Proteomics_ (eds Agnetti, G. _et al._), 321–342. ISBN: 978-3-319-31826-4 https://doi.org/10.1007/978-3-319-31828-8_14 (Springer, 2016). * Hasin, Y., Seldin, M.


& Lusis, A. Multi-omics approaches to disease. _Genome Biol._ 18, 83. https://doi.org/10.1186/s13059-017-1215-1 (2017). Article  CAS  PubMed  PubMed Central  Google Scholar  * Ding,


C.-K.C. _et al._ MESH1 is a cytosolic NADPH phosphatase that regulates ferroptosis. _Nat. Metab._ 2, 270–277. https://doi.org/10.1038/s42255-020-0181-1 (2020). Article  CAS  PubMed  PubMed


Central  Google Scholar  * Beaupre, B. A., Hoag, M. R., Roman, J., Försterling, F. H. & Moran, G. R. Metabolic function for human renalase: Oxidation of isomeric forms of β-NAD(P)H that


are inhibitory to primary metabolism. _Biochemistry_ 54, 795–806. https://doi.org/10.1021/bi5013436 (2015). Article  CAS  PubMed  Google Scholar  * Katsyuba, E., Romani, M., Hofer, D. &


Auwerx, J. NAD+ homeostasis in health and disease. _Nat. Metab._ 2, 9–31. https://doi.org/10.1038/s42255-019-0161-5 (2020). Article  CAS  PubMed  Google Scholar  * Lopaschuk, G. D., Karwi,


Q. G., Tian, R., Wende, A. R. & Abel, E. D. Cardiac energy metabolism in heart failure. _Circ. Res._ 128, 1487–1513. https://doi.org/10.1161/CIRCRESAHA.121.318241 (2021). Article  CAS 


PubMed  Google Scholar  * Diguet, N. _et al._ Nicotinamide riboside preserves cardiac function in a mouse model of dilated cardiomyopathy. _Circulation_ 137, 2256–2273.


https://doi.org/10.1161/CIRCULATIONAHA.116.026099 (2018). Article  CAS  PubMed  Google Scholar  * Walker, M. A. & Tian, R. Raising NAD in heart failure: Time to translate?. _Circulation_


137, 2274–2277. https://doi.org/10.1161/CIRCULATIONAHA.117.032626 (2018). Article  PubMed  PubMed Central  Google Scholar  * Abdellatif, M. _et al._ Nicotinamide for the treatment of heart


failure with preserved ejection fraction. _Sci. Transl. Med._ 13, eabd7064. https://doi.org/10.1126/scitranslmed.abd7064 (2021). Article  CAS  PubMed  PubMed Central  Google Scholar  *


Dabrowski, M., Trapp, S. & Ashcroft, F. M. Pyridine nucleotide regulation of the KATP channel Kir6.2/SUR1 expressed in Xenopus oocytes. _J. Physiol._ 550(Pt 2), 357–363.


https://doi.org/10.1113/jphysiol.2003.041715 (2003). Article  CAS  PubMed  PubMed Central  Google Scholar  * Sukhodub, A., Du, Q., Jovanović, S. & Jovanović, A. Nicotinamide-rich diet


protects the heart against ischaemia-reperfusion in mice: A crucial role for cardiac SUR2A. _Pharmacol. Res._ 61, 564–570. https://doi.org/10.1016/j.phrs.2010.01.008 (2010). Article  CAS 


PubMed  PubMed Central  Google Scholar  * Abdellatif, M., Sedej, S. & Kroemer, G. NAD+ metabolism in cardiac health, aging, and disease. _Circulation_ 144, 1795–1817.


https://doi.org/10.1161/CIRCULATIONAHA.121.056589 (2021). Article  CAS  PubMed  Google Scholar  * Miki, T. _et al._ Defective insulin secretion and enhanced insulin action in KATP


channel-deficient mice. _Proc. Natl. Acad. Sci. USA_ 95, 10402–10406. https://doi.org/10.1073/pnas.95.18.10402 (1998). Article  ADS  CAS  PubMed  PubMed Central  Google Scholar  * Arrell, D.


K., Zlatkovic Lindor, J., Yamada, S. & Terzic, A. KATP channel-dependent metaboproteome decoded: Systems approaches to heart failure prediction, diagnosis, and therapy. _Cardiovasc.


Res._ 90, 258–266. https://doi.org/10.1093/cvr/cvr046 (2011). Article  CAS  PubMed  PubMed Central  Google Scholar  * Suzuki, M. _et al._ Role of sarcolemmal KATP channels in


cardioprotection against ischemia/reperfusion injury in mice. _J. Clin. Investig._ 109, 509–516. https://doi.org/10.1172/JCI14270 (2002). Article  CAS  PubMed  PubMed Central  Google Scholar


  * Kane, G. C. _et al._ ATP-sensitive K+ channel knockout compromises the metabolic benefit of exercise training, resulting in cardiac deficits. _Diabetes_ 53(Suppl 3), S169-175.


https://doi.org/10.2337/diabetes.53.suppl_3.s169 (2004). Article  CAS  PubMed  Google Scholar  * Gumina, R. J. _et al._ KATP channel knockout worsens myocardial calcium stress load in vivo


and impairs recovery in stunned heart. _Am. J. Physiol. Heart Circ. Physiol._ 292, H1706–H1713. https://doi.org/10.1152/ajpheart.01305.2006 (2007). Article  CAS  PubMed  Google Scholar  *


Hu, X. _et al._ Disruption of sarcolemmal ATP-sensitive potassium channel activity impairs the cardiac response to systolic overload. _Circ. Res._ 103, 1009–1017.


https://doi.org/10.1161/CIRCRESAHA.107.170795 (2008). Article  CAS  PubMed  PubMed Central  Google Scholar  * Tinker, A., Aziz, Q. & Thomas, A. The role of ATP-sensitive potassium


channels in cellular function and protection in the cardiovascular system. _Br. J. Pharmacol._ 171, 12–23. https://doi.org/10.1111/bph.12407 (2014). Article  CAS  PubMed  Google Scholar  *


Fatehi, M., Carter, C. C., Youssef, N. & Light, P. E. The mechano-sensitivity of cardiac ATP-sensitive potassium channels is mediated by intrinsic MgATPase activity. _J. Mol. Cell


Cardiol._ 108, 34–41. https://doi.org/10.1016/j.yjmcc.2017.05.004 (2017). Article  CAS  PubMed  Google Scholar  * Zhang, B. _et al._ _Kcnj11_ ablation is associated with increased


nitro-oxidative stress during ischemia-reperfusion injury: Implications for human ischemic cardiomyopathy. _Circ. Heart Fail_ 10, e003523. https://doi.org/10.1161/CIRCHEARTFAILURE.116.003523


(2017). Article  CAS  PubMed  PubMed Central  Google Scholar  * Mayr, M. _et al._ Metabolic homeostasis is maintained in myocardial hibernation by adaptive changes in the transcriptome and


proteome. _J. Mol. Cell Cardiol._ 50, 982–990. https://doi.org/10.1016/j.yjmcc.2011.02.010 (2011). Article  CAS  PubMed  PubMed Central  Google Scholar  * Chaanine, A. H. Metabolic


remodeling and implicated calcium and signal transduction pathways in the pathogenesis of heart failure. _Int. J. Mol. Sci._ 22, 10579. https://doi.org/10.3390/ijms221910579 (2021). Article


  CAS  PubMed  PubMed Central  Google Scholar  * Chow, S. L. _et al._ Role of biomarkers for the prevention, assessment, and management of heart failure: A scientific statement from the


American Heart Association. _Circulation_ 135, e1054–e1091. https://doi.org/10.1161/CIR.0000000000000490 (2017). Article  CAS  PubMed  Google Scholar  * Meijers, B. K. _et al._ Free


_p_-cresol is associated with cardiovascular disease in hemodialysis patients. _Kidney Int._ 73, 1174–1180. https://doi.org/10.1038/ki.2008.31 (2008). Article  CAS  PubMed  Google Scholar  *


Zheng, Y. _et al._ Associations between metabolomic compounds and incident heart failure among African Americans: The ARIC study. _Am. J. Epidemiol._ 178, 534–542.


https://doi.org/10.1093/aje/kwt004 (2013). Article  PubMed  PubMed Central  Google Scholar  * Chinnappa, S. _et al._ Association between protein-bound uremic toxins and asymptomatic cardiac


dysfunction in patients with chronic kidney disease. _Toxins_ 10, 520. https://doi.org/10.3390/toxins10120520 (2018). Article  CAS  PubMed Central  Google Scholar  * Aa, N. _et al._ Plasma


metabolites alert patients with chest pain to occurrence of myocardial infarction. _Front. Cardiovasc. Med._ 8, 652746. https://doi.org/10.3389/fcvm.2021.652746 (2021). Article  PubMed 


PubMed Central  Google Scholar  * Arrell, D. K. & Terzic, A. Network systems biology for drug discovery. _Clin. Pharmacol. Ther._ 88, 120–125. https://doi.org/10.1038/clpt.2010.91


(2010). Article  CAS  PubMed  Google Scholar  * Arrell, D. K. & Terzic, A. Systems proteomics for translational network medicine. _Circ. Cardiovasc. Genet._ 5, o8–o16.


https://doi.org/10.1161/CIRCGENETICS.110.958991 (2012). Article  Google Scholar  * Adhikari, S. _et al._ A high-stringency blueprint of the human proteome. _Nat. Commun._ 11, 5301.


https://doi.org/10.1038/s41467-020-19045-9 (2020). Article  ADS  CAS  PubMed  PubMed Central  Google Scholar  * Wieder, C. _et al._ Pathway analysis in metabolomics: Recommendations for the


use of over-representation analysis. _PLoS Comput. Biol._ 17, e1009105. https://doi.org/10.1371/journal.pcbi.1009105 (2021). Article  ADS  CAS  PubMed  PubMed Central  Google Scholar  *


Percie du Sert, N. _et al._ The ARRIVE guidelines 2.0: Updated guidelines for reporting animal research. _PLoS Biol._ 18, e3000410. https://doi.org/10.1371/journal.pbio.3000410 (2020).


Article  CAS  PubMed  PubMed Central  Google Scholar  * Zacchigna, S. _et al._ Towards standardization of echocardiography for the evaluation of left ventricular function in adult rodents: A


position paper of the ESC Working Group on Myocardial Function. _Cardiovasc. Res._ 117, 43–59. https://doi.org/10.1093/cvr/cvaa110 (2021). Article  CAS  PubMed  Google Scholar  * Zhang, S.


_et al._ Adenylate kinase AK2 isoform integral in embryo and adult heart homeostasis. _Biochem. Biophys. Res. Commun._ 546, 59–64. https://doi.org/10.1016/j.bbrc.2021.01.097 (2021). Article


  CAS  PubMed  PubMed Central  Google Scholar  * Lang, R. M. _et al._ Recommendations for cardiac chamber quantification by echocardiography in adults: An update from the American Society of


Echocardiography and the European Association of Cardiovascular Imaging. _J. Am. Soc. Echocardiogr._ 28, 1-39.e14. https://doi.org/10.1016/j.echo.2014.10.003 (2015). Article  PubMed  Google


Scholar  * Yamada, S. _et al._ Ventricular remodeling in ischemic heart failure stratifies responders to stem cell therapy. _Stem Cells Transl. Med._ 9, 74–79.


https://doi.org/10.1002/sctm.19-0149 (2020). Article  PubMed  Google Scholar  * Yamada, S. _et al._ Regenerative therapy prevents heart failure progression in dyssynchronous nonischemic


narrow QRS cardiomyopathy. _J. Am. Heart Assoc._ 4, e001614. https://doi.org/10.1161/JAHA.114.001614 (2015). Article  CAS  PubMed  PubMed Central  Google Scholar  * Ackers-Johnson, M. _et


al._ A simplified, Langendorff-free method for concomitant isolation of viable cardiac myocytes and nonmyocytes from the adult mouse heart. _Circ. Res._ 119, 909–920.


https://doi.org/10.1161/CIRCRESAHA.116.309202 (2016). Article  CAS  PubMed  PubMed Central  Google Scholar  * Alekseev, A. E., Gomez, L. A., Aleksandrova, L. A., Brady, P. A. & Terzic,


A. Opening of cardiac sarcolemmal KATP channels by dinitrophenol separate from metabolic inhibition. _J. Membr. Biol._ 157, 203–214. https://doi.org/10.1007/s002329900229 (1997). Article 


CAS  PubMed  Google Scholar  * Arrell, D. K., Rosenow, C. S., Yamada, S., Behfar, A. & Terzic, A. Cardiopoietic stem cell therapy restores infarction-altered cardiac proteome. _NPJ


Regen. Med._ 5, 5. https://doi.org/10.1038/s41536-020-0091-6 (2020). Article  CAS  PubMed  PubMed Central  Google Scholar  * Tyanova, S., Temu, T. & Cox, J. The MaxQuant computational


platform for mass spectrometry-based shotgun proteomics. _Nat. Protoc._ 11, 2301–2319. https://doi.org/10.1038/nprot.2016.136 (2016). Article  CAS  PubMed  Google Scholar  * Gierlinski, M.,


Gastaldello, F., Cole, C. & Barton, G. Proteus: An R package for downstream analysis of MaxQuant output. _BioRxiv_ https://doi.org/10.1101/416511v2 (2018). Article  Google Scholar  *


Ritchie, M. E. _et al._ limma powers differential expression analyses for RNA-sequencing and microarray studies. _Nucleic Acids Res._ 43, e47. https://doi.org/10.1093/nar/gkv007 (2015).


Article  CAS  PubMed  PubMed Central  Google Scholar  * Metsalu, T. & Vilo, J. Clustvis: A web tool for visualizing clustering of multivariate data using principal component analysis and


heatmap. _Nucleic Acids Res._ 43, W566-570. https://doi.org/10.1093/nar/gkv468 (2015). Article  CAS  PubMed  PubMed Central  Google Scholar  * Chong, J. _et al._ MetaboAnalyst 4.0: Towards


more transparent and integrative metabolomics analysis. _Nucleic Acids Res._ 46, W486–W494. https://doi.org/10.1093/nar/gky310 (2018). Article  CAS  PubMed  PubMed Central  Google Scholar  *


Shannon, P. _et al._ Cytoscape: A software environment for integrated models of biomolecular interaction networks. _Genome Res._ 13, 2498–2504. https://doi.org/10.1101/gr.1239303 (2003).


Article  CAS  PubMed  PubMed Central  Google Scholar  * Doncheva, N. T., Assenov, Y., Domingues, F. S. & Albrecht, M. Topological analysis and interactive visualization of biological


networks and protein structures. _Nat. Protoc._ 7, 670–685. https://doi.org/10.1038/nprot.2012.004 (2012). Article  CAS  PubMed  Google Scholar  * Maere, S., Heymans, K. & Kuiper, M.


BiNGO: A Cytoscape plugin to assess overrepresentation of Gene Ontology categories in biological networks. _Bioinformatics_ 21, 3448–3449. https://doi.org/10.1093/bioinformatics/bti551


(2005). Article  CAS  PubMed  Google Scholar  * Wilson, D. J. The harmonic mean p-value for combining dependent tests. _Proc. Natl. Acad. Sci. USA_ 116, 1195–1200.


https://doi.org/10.1073/pnas.1814092116 (2019). Article  MathSciNet  CAS  PubMed  PubMed Central  MATH  Google Scholar  Download references ACKNOWLEDGEMENTS The authors recognize the expert


contributions of Lois A. Rowe for sample collections, Jonathan J. Nesbitt for cardiac catheterization, Diane M. Jech and Katrina M. Tollefsrud for echocardiography analysis, and Carrie Jo


Holtz Heppelman (Mayo Proteomics Core) for peptide mass spectrometry. The authors are grateful to Drs. Takashi Miki and Susumu Seino for initial derivation of the Kir6.2 knockout. FUNDING


Authors are funded by National Institutes of Health (R01 HL134664), National Institute of General Medical Sciences (T32 GM 65841), Marriott Family Foundation, Mayo Clinic Center for


Regenerative Medicine, Gerstner Family Foundation, Mayo Clinic Center for Individualized Medicine, and Medical Scientist Training Program. A.T. recognizes tenure as Michael S. and Mary Sue


Shannon Family Director, Center for Regenerative Medicine, Marriott Family Director, Comprehensive Cardiac Regenerative Medicine, and Marriott Family Professorship at Mayo Clinic. AUTHOR


INFORMATION AUTHORS AND AFFILIATIONS * Marriott Heart Disease Research Program, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA D. Kent Arrell, Sungjo Park, Satsuki


Yamada, Alexey E. Alekseev, Armin Garmany, Ryounghoon Jeon, Jelena Zlatkovic Lindor & Andre Terzic * Marriott Family Comprehensive Cardiac Regenerative Medicine, Center for Regenerative


Medicine, Mayo Clinic, Rochester, MN, USA D. Kent Arrell, Sungjo Park, Satsuki Yamada, Alexey E. Alekseev, Armin Garmany, Ryounghoon Jeon & Andre Terzic * Department of Molecular


Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA D. Kent Arrell, Sungjo Park, Satsuki Yamada, Alexey E. Alekseev, Armin Garmany, Ryounghoon Jeon, Jelena


Zlatkovic Lindor & Andre Terzic * Department of Biochemistry & Molecular Biology, Mayo Clinic, Rochester, MN, USA Sungjo Park & Ivan Vuckovic * Division of Geriatric Medicine


& Gerontology, Department of Medicine, Mayo Clinic, Rochester, MN, USA Satsuki Yamada * Institute of Theoretical and Experimental Biophysics, Russian Academy of Science, Pushchino,


Moscow Region, Russia Alexey E. Alekseev * Mayo Clinic Alix School of Medicine, Regenerative Sciences Track, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN,


USA Armin Garmany * Metabolomics Core, Mayo Clinic, Rochester, MN, USA Ivan Vuckovic * Department of Clinical Genomics, Mayo Clinic, Rochester, MN, USA Andre Terzic Authors * D. Kent Arrell


View author publications You can also search for this author inPubMed Google Scholar * Sungjo Park View author publications You can also search for this author inPubMed Google Scholar *


Satsuki Yamada View author publications You can also search for this author inPubMed Google Scholar * Alexey E. Alekseev View author publications You can also search for this author inPubMed


 Google Scholar * Armin Garmany View author publications You can also search for this author inPubMed Google Scholar * Ryounghoon Jeon View author publications You can also search for this


author inPubMed Google Scholar * Ivan Vuckovic View author publications You can also search for this author inPubMed Google Scholar * Jelena Zlatkovic Lindor View author publications You can


also search for this author inPubMed Google Scholar * Andre Terzic View author publications You can also search for this author inPubMed Google Scholar CONTRIBUTIONS D.K.A., A.T. conception


and design; D.K.A., S.P., S.Y., A.E.A., A.G., R.J., J.Z.L. data collection and assembly; D.K.A., S.P., S.Y., A.E.A., A.G., I.V., A.T. data analysis and interpretation; D.K.A., S.P., S.Y.,


A.E.A., A.G., A.T. manuscript writing; D.K.A., S.P., S.Y., A.E.A., A.G., R.J., I.V., J.Z.L., A.T. final manuscript approval; D.K.A., S.Y., A.T. financial support; A.T. administrative care.


CORRESPONDING AUTHOR Correspondence to Andre Terzic. ETHICS DECLARATIONS COMPETING INTERESTS The authors declare no competing interests. ADDITIONAL INFORMATION PUBLISHER'S NOTE Springer


Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. SUPPLEMENTARY INFORMATION SUPPLEMENTARY FIGURE 1. SUPPLEMENTARY TABLE 1.


SUPPLEMENTARY TABLE 2. SUPPLEMENTARY TABLE 3. SUPPLEMENTARY TABLE 4. SUPPLEMENTARY TABLE 5. RIGHTS AND PERMISSIONS OPEN ACCESS This article is licensed under a Creative Commons Attribution


4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and


the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's


Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not


permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit


http://creativecommons.org/licenses/by/4.0/. Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Arrell, D.K., Park, S., Yamada, S. _et al._ KATP channel dependent heart multiome


atlas. _Sci Rep_ 12, 7314 (2022). https://doi.org/10.1038/s41598-022-11323-4 Download citation * Received: 15 December 2021 * Accepted: 21 April 2022 * Published: 05 May 2022 * DOI:


https://doi.org/10.1038/s41598-022-11323-4 SHARE THIS ARTICLE Anyone you share the following link with will be able to read this content: Get shareable link Sorry, a shareable link is not


currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative