Neuroscience robotics for controlled induction and real-time assessment of hallucinations

feature-image

Play all audios:

Loading...

ABSTRACT Although hallucinations are important and frequent symptoms in major psychiatric and neurological diseases, little is known about their brain mechanisms. Hallucinations are


unpredictable and private experiences, making their investigation, quantification and assessment highly challenging. A major shortcoming in hallucination research is the absence of methods


able to induce specific and short-lasting hallucinations, which resemble clinical hallucinations, can be elicited repeatedly and vary across experimental conditions. By integrating clinical


observations and recent advances in cognitive neuroscience with robotics, we have designed a novel device and sensorimotor method able to repeatedly induce a specific, clinically relevant


hallucination: presence hallucination. Presence hallucinations are induced by applying specific conflicting (spatiotemporal) sensorimotor stimulation including an upper extremity and the


torso of the participant. Another, MRI-compatible, robotic device using similar sensorimotor stimulation permitted the identification of the brain mechanisms of these hallucinations.


Enabling the identification of behavioral and a frontotemporal neural biomarkers of hallucinations, under fully controlled experimental conditions and in real-time, this method can be


applied in healthy participants as well as patients with schizophrenia, neurodegenerative disease or other hallucinations. The execution of these protocols requires intermediate-level skills


in cognitive neuroscience and MRI processing, as well as minimal coding experience to control the robotic device. These protocols take ~3 h to be completed. Access through your institution


Buy or subscribe This is a preview of subscription content, access via your institution ACCESS OPTIONS Access through your institution Access Nature and 54 other Nature Portfolio journals


Get Nature+, our best-value online-access subscription $32.99 / 30 days cancel any time Learn more Subscribe to this journal Receive 12 print issues and online access $259.00 per year only


$21.58 per issue Learn more Buy this article * Purchase on SpringerLink * Instant access to full article PDF Buy now Prices may be subject to local taxes which are calculated during checkout


ADDITIONAL ACCESS OPTIONS: * Log in * Learn about institutional subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS REAL-TIME FMRI NEUROFEEDBACK


MODULATES INDUCED HALLUCINATIONS AND UNDERLYING BRAIN MECHANISMS Article Open access 11 September 2024 NUMEROSITY ESTIMATION OF VIRTUAL HUMANS AS A DIGITAL-ROBOTIC MARKER FOR HALLUCINATIONS


IN PARKINSON’S DISEASE Article Open access 12 March 2024 PREDICTING THE BODILY SELF IN SPACE AND TIME Article Open access 27 June 2024 DATA AVAILABILITY MRI data are available on zenodo.org


(https://zenodo.org/record/4423384#.YkKyHDWxVmN). Behavioral data can be found on GitLab (https://gitlab.epfl.ch/fbernasc/np-p210507a.git). CODE AVAILABILITY The codes to control the robots


have been uploaded to GitLab (https://gitlab.epfl.ch/fbernasc/roboticsph.git). REFERENCES * Tracy, D. K. & Shergill, S. S. Mechanisms underlying auditory hallucinations—understanding


perception without stimulus. _Brain Sci._ 3, 642–669 (2013). Article  PubMed  PubMed Central  Google Scholar  * Corlett, P. R. et al. Hallucinations and strong priors. _Trends Cogn. Sci._


23, 114–127 (2019). Article  PubMed  Google Scholar  * Larøi, F. et al. An epidemiological study on the prevalence of hallucinations in a general-population sample: effects of age and


sensory modality. _Psychiatry Res._ 272, 707–714 (2019). Article  PubMed  Google Scholar  * Badcock, J. C., Dehon, H. & Larøi, F. Hallucinations in healthy older adults: an overview of


the literature and perspectives for future research. _Front. Psychol._ 8, 1134 (2017). Article  PubMed  PubMed Central  Google Scholar  * Badcock, J. C. et al. Hallucinations in older


adults: a practical review. _Schizophr. Bull._ 46, 1382–1395 (2020). Article  PubMed  PubMed Central  Google Scholar  * Ohayon, M. M. Prevalence of hallucinations and their pathological


associations in the general population. _Psychiatry Res._ 97, 153–164 (2000). Article  CAS  PubMed  Google Scholar  * Collerton, D., Perry, E. & McKeith, I. Why people see things that


are not there: a novel perception and attention deficit model for recurrent complex visual hallucinations. _Behav. Brain Sci._ 28, 737–794 (2005). Article  PubMed  Google Scholar  * Insel,


T. R. Rethinking schizophrenia. _Nature_ 468, 187–193 (2010). Article  CAS  PubMed  Google Scholar  * Arnaoutoglou, N. A., O’Brien, J. T. & Underwood, B. R. Dementia with Lewy


bodies—from scientific knowledge to clinical insights. _Nat. Rev. Neurol._ 15, 103–112 (2019). Article  CAS  PubMed  Google Scholar  * Ffytche, D. H. et al. The psychosis spectrum in


Parkinson disease. _Nat. Rev. Neurol._ 13, 81–95 (2017). Article  PubMed  PubMed Central  Google Scholar  * Millan, M. J. et al. Altering the course of schizophrenia: progress and


perspectives. _Nat. Rev. Drug Discov._ 15, 485–515 (2016). Article  CAS  PubMed  Google Scholar  * Llorca, P. M. et al. Hallucinations in schizophrenia and Parkinson’s disease: an analysis


of sensory modalities involved and the repercussion on patients. _Sci. Rep._ 6, 38152 (2016). Article  CAS  PubMed  PubMed Central  Google Scholar  * Jaspers, K. Über leibhaftige


Bewußtheiten (Bewußtheitstäuschungen), ein psychopathologisches Elementarsymptom. _Z. Pathopsychol._ 2, 150–161 (1913). Google Scholar  * McKeith, I. G. et al. Diagnosis and management of


dementia with Lewy bodies: fourth consensus report of the DLB Consortium. _Neurology_ 89, 88–100 (2017). Article  PubMed  PubMed Central  Google Scholar  * Buracchio, T., Arvanitakis, Z.


& Gorbien, M. Dementia with Lewy bodies: current concepts. _Dement. Geriatr. Cogn. Disord._ 20, 306–320 (2005). Article  PubMed  Google Scholar  * Walker, Z., Possin, K. L., Boeve, B. F.


& Aarsland, D. Lewy body dementias. _Lancet_ 386, 1683–1697 (2015). Article  PubMed  PubMed Central  Google Scholar  * Nagahama, Y. et al. Classification of psychotic symptoms in


dementia with Lewy bodies. _Am. J. Geriatr. Psychiatry_ 15, 961–967 (2007). Article  PubMed  Google Scholar  * Eversfield, C. L. & Orton, L. D. Auditory and visual hallucination


prevalence in Parkinson’s disease and dementia with Lewy bodies: a systematic review and meta-analysis. _Psychol. Med._ 49, 2342–2353 (2019). Article  PubMed  Google Scholar  * Nicastro, N.,


Eger, A. F., Assal, F. & Garibotto, V. Feeling of presence in dementia with Lewy bodies is related to reduced left frontoparietal metabolism. _Brain Imaging Behav._ 14, 1199–1207


(2020). Article  PubMed  Google Scholar  * Goetz, C. G., Fan, W., Leurgans, S., Bernard, B. & Stebbins, G. T. The malignant course of ‘benign hallucinations’ in Parkinson disease. _Arch.


Neurol._ 63, 713–716 (2006). Article  PubMed  Google Scholar  * Fénelon, G., Soulas, T., de Langavant, L. C., Trinkler, I. & Bachoud-Lévi, A.-C. Feeling of presence in Parkinson’s


disease. _J. Neurol. Neurosurg. Psychiatry_ 82, 1219–1224 (2011). Article  PubMed  Google Scholar  * Lenka, A., Pagonabarraga, J., Pal, P. K., Bejr-Kasem, H. & Kulisvesky, J. Minor


hallucinations in Parkinson disease: a subtle symptom with major clinical implications. _Neurology_ https://doi.org/10.1212/WNL.0000000000007913 (2019). Article  PubMed  PubMed Central 


Google Scholar  * Ravina, B. et al. Diagnostic criteria for psychosis in Parkinson’s disease: report of an NINDS, NIMH work group. _Mov. Disord._ 22, 1061–1068 (2007). Article  PubMed 


Google Scholar  * Pagonabarraga, J. et al. Neural correlates of minor hallucinations in non-demented patients with Parkinson’s disease. _Parkinsonism Relat. Disord._ 20, 290–296 (2014).


Article  PubMed  Google Scholar  * Bejr-Kasem, H. et al. Minor hallucinations reflect early gray matter loss and predict subjective cognitive decline in Parkinson’s disease. _Eur. J.


Neurol._ 28, 438–447 (2021). Article  CAS  PubMed  Google Scholar  * Rosenthal, R. & Fode, K. L. Psychology of the scientist: V. Three experiments in experimenter bias. _Psychol. Rep._


12, 491–511 (1963). Article  Google Scholar  * Adler, N. E. Impact of prior sets given experimenters and subjects on the experimenter expectancy effect. _Sociometry_ 36, 113–126 (1973).


Article  Google Scholar  * Rogers, S., Keogh, R. & Pearson, J. Hallucinations on demand: the utility of experimentally induced phenomena in hallucination research. _Philos. Trans. R.


Soc. B_ 376, 20200233 (2021). Article  Google Scholar  * Blanke, O. et al. Neurological and robot-controlled induction of an apparition. _Curr. Biol._ 24, 2681–2686 (2014). Article  CAS 


PubMed  Google Scholar  * Hara, M. et al. A novel manipulation method of human body ownership using an fMRI-compatible master–slave system. _J. Neurosci. Methods_ 235, 25–34 (2014). Article


  PubMed  Google Scholar  * Bernasconi, F. et al. Robot-induced hallucinations in Parkinson’s disease depend on altered sensorimotor processing in fronto-temporal network. _Sci. Transl.


Med._ 13, eabc8362 (2021). Article  PubMed  Google Scholar  * Salomon, R. et al. Sensorimotor induction of auditory misattribution in early psychosis. _Schizophr. Bull._


https://doi.org/10.1093/schbul/sbz136 (2020). Article  PubMed  PubMed Central  Google Scholar  * Ford, J. M. & Mathalon, D. H. Electrophysiological evidence of corollary discharge


dysfunction in schizophrenia during talking and thinking. _J. Psychiatr. Res._ 38, 37–46 (2004). Article  PubMed  Google Scholar  * Heinks-Maldonado, T. H. et al. Relationship of imprecise


corollary discharge in schizophrenia to auditory hallucinations. _Arch. Gen. Psychiatry_ 64, 286–296 (2007). Article  PubMed  Google Scholar  * Brugger, P., Regard, M. & Landis, T.


Unilaterally felt ‘presences’: the neuropsychiatry of one’s invisible doppelganger. _Cogn. Behav. Neurol_. 9, 114–122, (1996). * Blanke, O., Ortigue, S., Coeytaux, A., Martory, M.-D. &


Landis, T. Hearing of a presence. _Neurocase_ 9, 329–339 (2003). Article  PubMed  Google Scholar  * Arzy, S., Seeck, M., Ortigue, S., Spinelli, L. & Blanke, O. Induction of an illusory


shadow person. _Nature_ 443, 287 (2006). Article  CAS  PubMed  Google Scholar  * Blakemore, S. J., Wolpert, D. & Frith, C. Why can’t you tickle yourself? _Neuroreport_ 11, R11–R16


(2000). Article  CAS  PubMed  Google Scholar  * Ehrsson, H. H., Holmes, N. P. & Passingham, R. E. Touching a rubber hand: feeling of body ownership is associated with activity in


multisensory brain areas. _J. Neurosci. J. Soc. Neurosci._ 25, 10564–10573 (2005). Article  CAS  Google Scholar  * Ionta, S. et al. Multisensory mechanisms in temporo-parietal cortex support


self-location and first-person perspective. _Neuron_ 70, 363–374 (2011). Article  CAS  PubMed  Google Scholar  * Hara, M. et al. A novel approach to the manipulation of body-parts ownership


using a bilateral master-slave system. In _2011 IEEE/RSJ International Conference on Intelligent Robots and Systems_ 4664–4669 (IEEE, RSJ, 2011); https://doi.org/10.1109/IROS.2011.6094879 *


Serino, A. et al. Thought consciousness and source monitoring depend on robotically controlled sensorimotor conflicts and illusory states. _iScience_ 24, 101955 (2021). Article  PubMed 


Google Scholar  * Weiskrantz, L., Elliott, J. & Darlington, C. Preliminary observations on tickling oneself. _Nature_ 230, 598–599 (1971). Article  CAS  PubMed  Google Scholar  * Pozeg,


P., Rognini, G., Salomon, R. & Blanke, O. Crossing the hands increases illusory self-touch. _PLoS ONE_ 9, e94008 (2014). Article  PubMed  PubMed Central  Google Scholar  * Blanke, O.,


Slater, M. & Serino, A. Behavioral, neural, and computational principles of bodily self-consciousness. _Neuron_ 88, 145–166 (2015). Article  CAS  PubMed  Google Scholar  * Park, H.-D.


& Blanke, O. Coupling inner and outer body for self-consciousness. _Trends Cogn. Sci._ 23, 377–388 (2019). Article  PubMed  Google Scholar  * Kahn, R. S. et al. Schizophrenia. _Nat. Rev.


Dis. Prim._ 1, 1–23 (2015). Google Scholar  * Fletcher, P. C. & Frith, C. D. Perceiving is believing: a Bayesian approach to explaining the positive symptoms of schizophrenia. _Nat.


Rev. Neurosci._ 10, 48–58 (2009). Article  CAS  PubMed  Google Scholar  * Orepic, P., Rognini, G., Kannape, O. A., Faivre, N. & Blanke, O. Sensorimotor conflicts induce somatic passivity


and louden quiet voices in healthy listeners. _Schizophr. Res._ 231, 170–177 (2021). Article  PubMed  Google Scholar  * Stripeikyte, G. et al. Fronto-temporal disconnection within the


presence hallucination network in psychotic patients with passivity experiences. _Schizophr. Bull._ 47, 1718–1728 (2021). Article  PubMed  PubMed Central  Google Scholar  * Jones, S. A. V.


& O’Brien, J. T. The prevalence and incidence of dementia with Lewy bodies: a systematic review of population and clinical studies. _Psychol. Med._ 44, 673–683 (2014). Article  Google


Scholar  * Nicolas Nicastro, Stripeikyte, G., Assal, F., Garibotto, V. & Blanke, O. Premotor and fronto-striatal mechanisms associated with presence hallucinations in dementia with Lewy


bodies. _Neuroimage Clin_. (in the press). * Soulas, T., Cleret de Langavant, L., Monod, V. & Fénelon, G. The prevalence and characteristics of hallucinations, delusions and minor


phenomena in a non-demented population sample aged 60 years and over. _Int. J. Geriatr. Psychiatry_ 31, 1322–1328 (2016). Article  PubMed  Google Scholar  * O’Callaghan, C. et al. Impaired


sensory evidence accumulation and network function in Lewy body dementia. _Brain Commun._ https://doi.org/10.1093/braincomms/fcab089 (2021). Article  PubMed  PubMed Central  Google Scholar 


* Schumacher, J. et al. Functional connectivity in mild cognitive impairment with Lewy bodies. _J. Neurol._ https://doi.org/10.1007/s00415-021-10580-z (2021). Article  PubMed  PubMed Central


  Google Scholar  * Allefeld, C., Pütz, P., Kastner, K. & Wackermann, J. Flicker-light induced visual phenomena: frequency dependence and specificity of whole percepts and percept


features. _Conscious. Cogn._ 20, 1344–1362 (2011). Article  PubMed  Google Scholar  * Pearson, J. et al. Sensory dynamics of visual hallucinations in the normal population. _eLife_ 5, e17072


(2016). Article  PubMed  PubMed Central  Google Scholar  * Wackermann, J., Pütz, P. & Allefeld, C. Ganzfeld-induced hallucinatory experience, its phenomenology and cerebral


electrophysiology. _Cortex_ 44, 1364–1378 (2008). Article  PubMed  Google Scholar  * Mason, O. J. & Brady, F. The psychotomimetic effects of short-term sensory deprivation. _J. Nerv.


Ment. Dis._ 197, 783–785 (2009). Article  PubMed  Google Scholar  * Merabet, L. B. et al. Visual hallucinations during prolonged blindfolding in sighted subjects. _J. Neuro-Ophthalmol._ 24,


109–113 (2004). Article  Google Scholar  * Zarkali, A., Lees, A. J. & Weil, R. S. Flickering stimuli do not reliably induce visual hallucinations in Parkinson’s disease. _J. Park. Dis._


9, 631–635 (2019). Google Scholar  * Ellson, D. G. Hallucinations produced by sensory conditioning. _J. Exp. Psychol._ 28, 1–20 (1941). Article  Google Scholar  * Powers, A. R., Mathys, C.


& Corlett, P. R. Pavlovian conditioning–induced hallucinations result from overweighting of perceptual priors. _Science_ 357, 596–600 (2017). Article  CAS  PubMed  PubMed Central  Google


Scholar  * Vollenweider, F. X. & Preller, K. H. Psychedelic drugs: neurobiology and potential for treatment of psychiatric disorders. _Nat. Rev. Neurosci._ 21, 611–624 (2020). Article 


CAS  PubMed  Google Scholar  * Carhart-Harris, R. L. How do psychedelics work? _Curr. Opin. Psychiatry_ 32, 16–21 (2019). Article  PubMed  Google Scholar  * Parvizi, J. et al. Altered sense


of self during seizures in the posteromedial cortex. _Proc. Natl Acad. Sci. USA_ 118, e2100522118 (2021). Article  CAS  PubMed  PubMed Central  Google Scholar  * Penfield, W. & Perot, P.


The brain’s record of auditory and visual experience. A final summary and discussion. _Brain_ 86, 595–696 (1963). Article  CAS  PubMed  Google Scholar  * Heydrich, L., Lopez, C., Seeck, M.


& Blanke, O. Partial and full own-body illusions of epileptic origin in a child with right temporoparietal epilepsy. _Epilepsy Behav._ 20, 583–586 (2011). Article  PubMed  Google Scholar


  * Blanke, O., Perrig, S., Thut, G., Landis, T. & Seeck, M. Simple and complex vestibular responses induced by electrical cortical stimulation of the parietal cortex in humans. _J.


Neurol. Neurosurg. Psychiatry_ 69, 553–556 (2000). Article  CAS  PubMed  PubMed Central  Google Scholar  * Penfield, W. & Boldrey, E. Somatic motor and sensory representation in the


cerebral cortex of man as studied by electrical stimulation. _Brain_ 60, 389–443 (1937). Article  Google Scholar  * Frith, C. D. & Done, D. J. Experiences of alien control in


schizophrenia reflect a disorder in the central monitoring of action. _Psychol. Med._ 19, 359–363 (1989). Article  CAS  PubMed  Google Scholar  * Tsakiris, M., Hesse, M. D., Boy, C.,


Haggard, P. & Fink, G. R. Neural signatures of body ownership: a sensory network for bodily self-consciousness. _Cereb. Cortex_ 17, 2235–2244 (2007). Article  PubMed  Google Scholar  *


Ehrsson, H. H., Spence, C. & Passingham, R. E. That’s my hand! Activity in premotor cortex reflects feeling of ownership of a limb. _Science_ 305, 875–877 (2004). Article  CAS  PubMed 


Google Scholar  * Lenggenhager, B., Tadi, T., Metzinger, T. & Blanke, O. Video ergo sum: manipulating bodily self-consciousness. _Science_ 317, 1096–1099 (2007). Article  CAS  PubMed 


Google Scholar  * Farrer, C., Valentin, G. & Hupé, J. M. The time windows of the sense of agency. _Conscious. Cogn._ 22, 1431–1441 (2013). Article  CAS  PubMed  Google Scholar  *


Blakemore, S.-J., Wolpert, D. M. & Frith, C. D. Central cancellation of self-produced tickle sensation. _Nat. Neurosci._ 1, 635–640 (1998). Article  CAS  PubMed  Google Scholar  *


Oldfield, R. C. The assessment and analysis of handedness: The Edinburgh inventory. _Neuropsychologia_ 9, 97–113 (1971). Article  CAS  PubMed  Google Scholar  * Gorgolewski, K. J. et al. The


brain imaging data structure, a format for organizing and describing outputs of neuroimaging experiments. _Sci. Data_ 3, 160044 (2016). Article  PubMed  PubMed Central  Google Scholar  *


Power, J. D., Barnes, K. A., Snyder, A. Z., Schlaggar, B. L. & Petersen, S. E. Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion.


_Neuroimage_ 59, 2142–2154 (2012). Article  PubMed  Google Scholar  Download references ACKNOWLEDGEMENTS This research was supported by two generous donors advised by CARIGEST SA (Fondazione


Teofilo Rossi di Montelera e di Premuda and a second one wishing to remain anonymous) to O.B., Parkinson Suisse to O.B, Bertarelli Novartis Foundation for Medical-Biological Research


Foundation to O.B., Empiris Foundation to O.B., Swiss National Science Foundation to O.B. Grant-in-Aid for Scientific Research (B) (19H04187) of the Japan Society for the Promotion of


Science to M.H. Grant-in-Aid for Scientific Research (A) (22H00526) of the Japan Society for the Promotion of Science to M.H. E.B. is supported by The National Center of Competence in


Research (NCCR) ‘Synapsy—The Synaptic Bases of Mental Diseases’ (# 51AU40–125759) to O.B. We thank P. Pozeg, A. Serino, S. Giedre, R. Salomon and P. Progin for their contribution to the


development of the different experimental paradigms. The authors thank the MRI Facility, Human Neuroscience Platform, Fondation Campus Biotech Geneva for providing the MRI check-list


questionnaire. AUTHOR INFORMATION Author notes * These authors contributed equally: Fosco Bernasconi, Eva Blondiaux. AUTHORS AND AFFILIATIONS * Laboratory of Cognitive Neuroscience, Center


for Neuroprosthetics & Brain Mind Institute, Faculty of Life Sciences, Swiss Federal Institute of Technology (EPFL), Geneva, Switzerland Fosco Bernasconi, Eva Blondiaux, Giulio Rognini, 


Herberto Dhanis, Laurent Jenni, Jevita Potheegadoo & Olaf Blanke * Graduate School of Science and Engineering, Saitama University, Saitama, Japan Masayuki Hara * Department of Clinical


Neurosciences, Geneva University Hospital, Geneva, Switzerland Olaf Blanke Authors * Fosco Bernasconi View author publications You can also search for this author inPubMed Google Scholar *


Eva Blondiaux View author publications You can also search for this author inPubMed Google Scholar * Giulio Rognini View author publications You can also search for this author inPubMed 


Google Scholar * Herberto Dhanis View author publications You can also search for this author inPubMed Google Scholar * Laurent Jenni View author publications You can also search for this


author inPubMed Google Scholar * Jevita Potheegadoo View author publications You can also search for this author inPubMed Google Scholar * Masayuki Hara View author publications You can also


search for this author inPubMed Google Scholar * Olaf Blanke View author publications You can also search for this author inPubMed Google Scholar CONTRIBUTIONS The study and the protocol


were designed by F.B., E.B., G.R. and O.B. The robotic system and codes for controlling it were designed by M.H and J.L. H.D. developed the code for the GUI allowing to adapt the behavior of


the robots depending on the experimental conditions. J.P. adapted the questionnaire for the assessment of the illusions induced by the robotic device. The manuscript was written by F.B.,


E.B. and O.B. All authors approved the final version of the manuscript. CORRESPONDING AUTHOR Correspondence to Olaf Blanke. ETHICS DECLARATIONS COMPETING INTERESTS O.B., G.R. and M.H. are


inventors on patent US 10,286,555 B2 held by the Swiss Federal Institute (EPFL) that covers the robot-controlled induction of the feeling of a presence (presence hallucination). O.B. and


G.R. are inventors on patent US 10,349,899 B2 held by the Swiss Federal Institute (EPFL) that covers a robotic system for the prediction of hallucinations for diagnostic and therapeutic


purposes. O.B. and G.R. are co-founders and shareholders of Metaphysiks Engineering SA, a company that develops immersive technologies, including applications of the robotic induction of


presence hallucinations that are not related to the diagnosis, prognosis or treatment of Parkinson’s disease. O.B. is a member of the board and shareholder of Mindmaze SA. PEER REVIEW PEER


REVIEW INFORMATION _Nature Protocols_ thanks the anonymous reviewers for their contribution to the peer review of this work. ADDITIONAL INFORMATION PUBLISHER’S NOTE Springer Nature remains


neutral with regard to jurisdictional claims in published maps and institutional affiliations. RELATED LINKS KEY REFERENCES USING THIS PROTOCOL Blanke, O. et al. _Curr. Biol_. 24, 2681–2686


(2014): https://doi.org/10.1016/j.cub.2014.09.049 Serino, A. et al. _iScience_ 24, 101955 (2021): https://doi.org/10.1016/j.isci.2020.101955 Bernasconi, F. et al. _Sci. Transl. Med_. 13,


(2021): https://doi.org/10.1126/scitranslmed.abc8362 Stripeikyte, G. et al. _Schizophr. Bull_. (2021): https://doi.org/10.1093/schbul/sbab031 SUPPLEMENTARY INFORMATION SUPPLEMENTARY


INFORMATION Supplementary Tables 1 and 2 and Figs. 1–3. REPORTING SUMMARY RIGHTS AND PERMISSIONS Springer Nature or its licensor holds exclusive rights to this article under a publishing


agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement


and applicable law. Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Bernasconi, F., Blondiaux, E., Rognini, G. _et al._ Neuroscience robotics for controlled induction and


real-time assessment of hallucinations. _Nat Protoc_ 17, 2966–2989 (2022). https://doi.org/10.1038/s41596-022-00737-z Download citation * Received: 29 September 2021 * Accepted: 16 June 2022


* Published: 12 September 2022 * Issue Date: December 2022 * DOI: https://doi.org/10.1038/s41596-022-00737-z SHARE THIS ARTICLE Anyone you share the following link with will be able to read


this content: Get shareable link Sorry, a shareable link is not currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative