Facile 18f labeling of non-activated arenes via a spirocyclic iodonium(iii) ylide method and its application in the synthesis of the mglur5 pet radiopharmaceutical [18f]fpeb

feature-image

Play all audios:

Loading...

ABSTRACT Non-activated (electron-rich and/or sterically hindered) arenes are prevalent chemical scaffolds in pharmaceuticals and positron emission tomography (PET) diagnostics. Despite


substantial efforts to develop a general method to introduce 18F into these moieties for molecular imaging by PET, there is an urgent and unmet need for novel radiofluorination strategies


that result in sufficiently labeled tracers to enable human imaging. Herein, we describe an efficient method that relies on spirocyclic iodonium ylide (SCIDY) precursors for one-step and


regioselective radiofluorination, as well as proof-of-concept translation to the radiosynthesis of a clinically useful PET tracer, 3-[18F]fluoro-5-[(pyridin-3-yl)ethynyl] benzonitrile


([18F]FPEB). The protocol begins with the preparation of a SCIDY precursor for FPEB, followed by radiosynthesis of [18F]FPEB, by either manual operation or an automated synthesis module.


[18F]FPEB can be obtained in quantities >7.4 GBq (200 mCi), ready for injection (20 ± 5%, non–decay corrected), and has excellent chemical and radiochemical purity (>98%) as well as


high molar activity (666 ± 51.8 GBq/μmol; 18 ± 1.4 Ci/μmol). The total time for the synthesis and purification of the corresponding labeling SCIDY precursor is 10 h. The subsequent


radionuclide production, experimental setup, 18F labeling, and formulation of a product that is ready for injection require 2 h. Access through your institution Buy or subscribe This is a


preview of subscription content, access via your institution ACCESS OPTIONS Access through your institution Access Nature and 54 other Nature Portfolio journals Get Nature+, our best-value


online-access subscription $29.99 / 30 days cancel any time Learn more Subscribe to this journal Receive 12 print issues and online access $259.00 per year only $21.58 per issue Learn more


Buy this article * Purchase on SpringerLink * Instant access to full article PDF Buy now Prices may be subject to local taxes which are calculated during checkout ADDITIONAL ACCESS OPTIONS:


* Log in * Learn about institutional subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS ARENE RADIOFLUORINATION ENABLED BY PHOTOREDOX-MEDIATED


HALIDE INTERCONVERSION Article 13 December 2021 METALLAPHOTOREDOX ARYL AND ALKYL RADIOMETHYLATION FOR PET LIGAND DISCOVERY Article 25 November 2020 [18F]TOSYL FLUORIDE AS A VERSATILE


[18F]FLUORIDE SOURCE FOR THE PREPARATION OF 18F-LABELED RADIOPHARMACEUTICALS Article Open access 23 February 2023 REFERENCES * Ametamey, S. M., Honer, M. & Schubiger, P. A. Molecular


imaging with PET. _Chem. Rev._ 108, 1501–1516 (2008). Article  CAS  PubMed  Google Scholar  * Miller, P. W., Long, N. J., Vilar, R. & Gee, A. D. Synthesis of 11C, 18F, 15O, and 13N


radiolabels for positron emission tomography. _Angew. Chem. Int. Ed. Engl._ 47, 8998–9033 (2008). Article  CAS  PubMed  Google Scholar  * Phelps, M. E. Positron emission tomography provides


molecular imaging of biological processes. _Proc. Natl. Acad. Sci. USA_ 97, 9226–9233 (2000). Article  CAS  PubMed  Google Scholar  * Brooks, A. F., Topczewski, J. J., Ichiishi, N., Sanford,


M. S. & Scott, P. J. Late-stage [18F]fluorination: new solutions to old problems. _Chem. Sci._ 5, 4545–4553 (2014). Article  CAS  PubMed  PubMed Central  Google Scholar  * Cole, E. L.,


Stewart, M. N., Littich, R., Hoareau, R. & Scott, P. J. Radiosyntheses using fluorine-18: the art and science of late stage fluorination. _Curr. Top. Med. Chem._ 14, 875–900 (2014).


Article  CAS  PubMed  PubMed Central  Google Scholar  * Campbell, M. G. & Ritter, T. Modern carbon-fluorine bond forming reactions for aryl fluoride synthesis. _Chem. Rev._ 115, 612–633


(2015). Article  CAS  PubMed  Google Scholar  * Liang, S. H. & Vasdev, N. Total radiosynthesis: thinking outside “the box”. _Aust. J. Chem._ 68, 1319–1328 (2015). Article  CAS  PubMed 


PubMed Central  Google Scholar  * Preshlock, S., Tredwell, M. & Gouverneur, V. 18F-labeling of arenes and heteroarenes for applications in positron emission tomography. _Chem. Rev._ 116,


719–766 (2016). Article  CAS  PubMed  Google Scholar  * Di Raddo, P., Diksic, M. & Jolly, D. The 18F radiofluorination of arylsilanes. _J. Chem. Soc. Chem. Commun._ 1984, 159–160


(1984). Article  Google Scholar  * Chirakal, R., Coates, G., Firnau, G., Schrobilgen, G. J. & Nahmias, C. Direct radiofluorination of dopamine: 18F-labeled 6-fluorodopamine for imaging


cardiac sympathetic innervation in humans using positron emission tomography. _Nucl. Med. Biol._ 23, 41–45 (1996). Article  CAS  PubMed  Google Scholar  * Firnau, G., Chirakal, R. &


Garnett, E. S. Aromatic radiofluorination with [18F]fluorine gas: 6-[18F]fluoro-l-dopa. _J. Nucl. Med._ 25, 1228–1233 (1984). CAS  PubMed  Google Scholar  * Balz, G. & Schiemann, G. Über


aromatische Fluorverbindungen, I.: Ein neues Verfahren zu ihrer Darstellung. _Eur. J. Inorg. Chem._ 60, 1186–1190 (1927). Google Scholar  * Wallach, O. Ueber das verhalten einiger diazo und


diazoamidoverbindungen. _Eur. J. Org. Chem._ 235, 233–255 (1886). Google Scholar  * Linjing, M. et al. 18F‐radiolabeling of aromatic compounds using triarylsulfonium salts. _Eur. J. Org.


Chem._ 2012, 889–892 (2012). Article  Google Scholar  * Sander, K. et al. Sulfonium salts as leaving groups for aromatic labelling of drug-like small molecules with fluorine-18. _Sci. Rep._


5, 9941 (2015). Article  CAS  PubMed  PubMed Central  Google Scholar  * Chun, J. H., Morse, C. L., Chin, F. T. & Pike, V. W. No-carrier-added [18F]fluoroarenes from the radiofluorination


of diaryl sulfoxides. _Chem. Commun._ 49, 2151–2153 (2013). Article  CAS  Google Scholar  * Wagner, F. M., Ermert, J. & Coenen, H. H. Three-step, “one-pot” radiosynthesis of


6-fluoro-3,4-dihydroxy-l-phenylalanine by isotopic exchange. _J. Nucl. Med._ 50, 1724–1729 (2009). Article  CAS  PubMed  Google Scholar  * Gao, Z. et al. Metal-free oxidative fluorination of


phenols with [18F]fluoride. _Angew. Chem. Int. Ed. Engl._ 51, 6733–6737 (2012). Article  CAS  PubMed  Google Scholar  * Neumann, C. N., Hooker, J. M. & Ritter, T. Corrigendum: Concerted


nucleophilic aromatic substitution with 19F−and 18F−. _Nature_ 538, 274 (2016). Article  CAS  PubMed  Google Scholar  * Lee, E. et al. A fluoride-derived electrophilic late-stage


fluorination reagent for PET imaging. _Science_ 334, 639–642 (2011). Article  CAS  PubMed  PubMed Central  Google Scholar  * Lee, E., Hooker, J. M. & Ritter, T. Nickel-mediated oxidative


fluorination for PET with aqueous [18F] fluoride. _J Am Chem Soc_ 134, 17456–17458 (2012). Article  CAS  PubMed  PubMed Central  Google Scholar  * Hoover, A. J. et al. A transmetalation


reaction enables the synthesis of [18F]5-fluorouracil from [18F]fluoride for human PET imaging. _Organometallics_ 35, 1008–1014 (2016). Article  CAS  PubMed  PubMed Central  Google Scholar 


* Beyzavi, M. H. et al. 18F-deoxyfluorination of phenols via ru pi-complexes. _ACS Cent. Sci._ 3, 944–948 (2017). Article  CAS  PubMed  PubMed Central  Google Scholar  * Tredwell, M. et al.


A general copper-mediated nucleophilic 18F fluorination of arenes. _Angew. Chem. Int. Ed. Engl._ 53, 7751–7755 (2014). Article  CAS  PubMed  Google Scholar  * Ichiishi, N. et al.


Copper-catalyzed [18F]fluorination of (mesityl)(aryl)iodonium salts. _Org. Lett._ 16, 3224–3227 (2014). Article  CAS  PubMed  PubMed Central  Google Scholar  * Pike, V. W. & Aigbirhio,


F. I. Reactions of cyclotron-produced [18F]fluoride with diaryliodonium salts-a novel single-step route to no-carrier-added [18]fluoroarenes. _J. Chem. Soc. Chem. Commun._ 1995, 2215–2216


(1995). Article  Google Scholar  * Ross, T. L., Ermert, J., Hocke, C. & Coenen, H. H. Nucleophilic 18F-fluorination of heteroaromatic iodonium salts with no-carrier-added [18F]fluoride.


_J. Am. Chem. Soc._ 129, 8018–8025 (2007). Article  CAS  PubMed  Google Scholar  * Hu, B. et al. A practical, automated synthesis of meta-[18F]fluorobenzylguanidine for clinical use. _ACS


Chem. Neurosci._ 6, 1870–1879 (2015). Article  CAS  PubMed  PubMed Central  Google Scholar  * Qin, L. et al. A mild and general one-pot synthesis of densely functionalized diaryliodonium


salts. _Eur. J. Org. Chem._ 2015, 5919–5924 (2015). Article  CAS  Google Scholar  * Haskali, M. B. et al. An investigation of (diacetoxyiodo)arenes as precursors for preparing


no-carrier-added [18F]fluoroarenes from cyclotron-produced [18F]fluoride ion. _J. Org. Chem._ 81, 297–302 (2016). Article  CAS  PubMed  Google Scholar  * Neumann, K. D. et al. Efficient


automated syntheses of high specific activity 6-[18F]fluorodopamine using a diaryliodonium salt precursor. _J. Labelled Comp. Radiopharm._ 59, 30–34 (2016). Article  CAS  PubMed  Google


Scholar  * Chun, J. H., Lu, S., Lee, Y. S. & Pike, V. W. Fast and high-yield microreactor syntheses of ortho-substituted [18F]fluoroarenes from reactions of [18F]fluoride ion with


diaryliodonium salts. _J. Org. Chem._ 75, 3332–3338 (2010). Article  CAS  PubMed  PubMed Central  Google Scholar  * Moon, B. S. et al. Facile aromatic radiofluorination of [18F]flumazenil


from diaryliodonium salts with evaluation of their stability and selectivity. _Org. Biomol. Chem._ 9, 8346–8355 (2011). Article  CAS  PubMed  Google Scholar  * Kuik, W. J. et al. In vivo


biodistribution of no-carrier-added 6-18F-fluoro-3,4-dihydroxy-l-phenylalanine (18F-DOPA), produced by a new nucleophilic substitution approach, compared with carrier-added 18F-DOPA,


prepared by conventional electrophilic substitution. _J. Nucl. Med._ 56, 106–112 (2015). Article  CAS  PubMed  Google Scholar  * Wang, B., Cerny, R. L., Uppaluri, S., Kempinger, J. J. &


Dimagno, S. G. Fluoride-promoted ligand exchange in diaryliodonium salts. _J. Fluor. Chem._ 131, 1113–1121 (2010). Article  CAS  PubMed  PubMed Central  Google Scholar  * Rotstein, B. H.,


Stephenson, N. A., Vasdev, N. & Liang, S. H. Spirocyclic hypervalent iodine(III)-mediated radiofluorination of non-activated and hindered aromatics. _Nat. Commun._ 5, 4365 (2014).


Article  CAS  PubMed  Google Scholar  * Rotstein, B. H. et al. Mechanistic studies and radiofluorination of structurally diverse pharmaceuticals with spirocyclic iodonium(III) ylides. _Chem.


Sci._ 7, 4407–4417 (2016). Article  CAS  PubMed  PubMed Central  Google Scholar  * Cardinale, J., Ermert, J., Humpert, S. & Coenen, H. H. Iodonium ylides for one-step, no-carrier-added


radiofluorination of electron rich arenes, exemplified with 4-(([18F]fluorophenoxy)-phenylmethyl)piperidine NET and SERT ligands. _RSC Adv._ 4, 17293–17299 (2014). Article  CAS  Google


Scholar  * Kugler, F., Ermert, J., Kaufholz, P. & Coenen, H. H. 4-[18F]Fluorophenylpiperazines by improved Hartwig–Buchwald N-arylation of 4-[18F]fluoroiodobenzene, formed via


hypervalent lambda3-iodane precursors: application to build-up of the dopamine D4 ligand [18F]FAUC 316. _Molecules_ 20, 470–486 (2014). Article  PubMed  PubMed Central  Google Scholar  *


Nymann, P. I., Langgaard, K. J. & Manfred, H. M. Nucleophilic 18F‐labeling of spirocyclic iodonium ylide or boronic pinacol ester precursors: advantages and disadvantages. _Eur. J. Org.


Chem._ 2017, 453–458 (2017). Article  Google Scholar  * Jacobson, O. et al. 18F-labeled single-stranded DNA aptamer for PET imaging of protein tyrosine kinase-7 expression. _J. Nucl. Med._


56, 1780–1785 (2015). Article  CAS  PubMed  PubMed Central  Google Scholar  * Wang, L. et al. Ortho-stabilized 18F-azido click agents and their application in PET imaging with


single-stranded DNA aptamers. _Angew. Chem. Int. Ed. Engl._ 54, 12777–12781 (2015). Article  CAS  PubMed  PubMed Central  Google Scholar  * Cai, Z. et al. Fluorine-18-labeled antagonist for


PET imaging of kappa opioid receptors. _ACS Chem. Neurosci._ 8, 12–16 (2017). Article  CAS  PubMed  Google Scholar  * Wang, L. et al. A facile radiolabeling of [18F]FDPA via spirocyclic


iodonium ylides: preliminary PET imaging studies in preclinical models of neuroinflammation. _J. Med. Chem._ 60, 5222–5227 (2017). Article  CAS  PubMed  PubMed Central  Google Scholar  *


Collier, T. L. et al. Synthesis and preliminary PET imaging of 11C and 18F isotopologues of the ROS1/ALK inhibitor lorlatinib. _Nat. Commun._ 8, 15761 (2017). Article  CAS  PubMed  PubMed


Central  Google Scholar  * Stephenson, N. A. et al. Iodonium ylide-mediated radiofluorination of 18F-FPEB and validation for human use. _J. Nucl. Med._ 56, 489–492 (2015). Article  CAS 


PubMed  PubMed Central  Google Scholar  * Murray, R. W. & Singh, M. Synthesis of epoxides using dimethyldioxirane: trans-stilbene oxide. _Org. Syn._ 74, 91–97 (1997). Article  CAS 


Google Scholar  * Ye, C., Twamley, B. & Shreeve, J. M. Straightforward syntheses of hypervalent iodine(III) reagents mediated by Selectfluor. _Org. Lett._ 7, 3961–3964 (2005). Article 


CAS  PubMed  Google Scholar  * Linlin, Q. et al. A mild and general one‐pot synthesis of densely functionalized diaryliodonium salts. _Eur. J. Org. Chem._ 2015, 5919–5924 (2015). Article 


Google Scholar  * Niswender, C. M. & Conn, P. J. Metabotropic glutamate receptors: physiology, pharmacology, and disease. _Annu. Rev. Pharmacol. Toxicol._ 50, 295–322 (2010). Article 


CAS  PubMed  PubMed Central  Google Scholar  * Hamill, T. G. et al. Synthesis, characterization, and first successful monkey imaging studies of metabotropic glutamate receptor subtype 5


(mGluR5) PET radiotracers. _Synapse_ 56, 205–216 (2005). Article  CAS  PubMed  Google Scholar  * Wang, J. Q., Tueckmantel, W., Zhu, A., Pellegrino, D. & Brownell, A. L. Synthesis and


preliminary biological evaluation of 3-[18F]fluoro-5-(2-pyridinylethynyl)benzonitrile as a PET radiotracer for imaging metabotropic glutamate receptor subtype 5. _Synapse_ 61, 951–961


(2007). Article  CAS  PubMed  Google Scholar  * Lim, K., Labaree, D., Li, S. & Huang, Y. Preparation of the metabotropic glutamate receptor 5 (mGluR5) PET tracer [18F]FPEB for human use:


an automated radiosynthesis and a novel one-pot synthesis of its radiolabeling precursor. _Appl. Radiat. Isot._ 94, 349–354 (2014). Article  CAS  PubMed  PubMed Central  Google Scholar  *


Liang, S. H. et al. Microfluidic continuous-flow radiosynthesis of [18F]FPEB suitable for human PET imaging. _Medchemcomm_ 5, 432–435 (2014). Article  CAS  PubMed  Google Scholar  * Mossine,


A. V. et al. Synthesis of [18F]arenes via the copper-mediated [18F]fluorination of boronic acids. _Org. Lett._ 17, 5780–5783 (2015). Article  CAS  PubMed  PubMed Central  Google Scholar  *


Preshlock, S. et al. Enhanced copper-mediated 18F-fluorination of aryl boronic esters provides eight radiotracers for PET applications. _Chem. Commun._ 52, 8361–8364 (2016). Article  CAS 


Google Scholar  * Makaravage, K. J., Brooks, A. F., Mossine, A. V., Sanford, M. S. & Scott, P. J. Copper-mediated radiofluorination of arylstannanes with [18F]KF. _Org. Lett._ 18,


5440–5443 (2016). Article  CAS  PubMed  PubMed Central  Google Scholar  * Alagille, D. et al. Potent mGluR5 antagonists: pyridyl and thiazolyl-ethynyl-3,5-disubstituted-phenyl series.


_Bioorg. Med. Chem. Lett._ 21, 3243–3247 (2011). Article  CAS  PubMed  Google Scholar  * Schlyer, D. J., Firouzbakht, M. L. & Wolf, A. P. Impurities in the [18O]water target and their


effect on the yield of an aromatic displacement reaction with [18F]fluoride. _Appl. Radiat. Isot._ 44, 1459–1465 (1993). Article  CAS  PubMed  Google Scholar  Download references


ACKNOWLEDGEMENTS We thank X. Zhang and Z. Chen for technical support and members of the staff in the radiochemistry and radiopharmaceutical development program at MGH for helpful


discussions. AUTHOR INFORMATION AUTHORS AND AFFILIATIONS * Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical


School, Boston, MA, USA Steven H. Liang, Lu Wang, Nickeisha A. Stephenson, Benjamin H. Rotstein & Neil Vasdev Authors * Steven H. Liang View author publications You can also search for


this author inPubMed Google Scholar * Lu Wang View author publications You can also search for this author inPubMed Google Scholar * Nickeisha A. Stephenson View author publications You can


also search for this author inPubMed Google Scholar * Benjamin H. Rotstein View author publications You can also search for this author inPubMed Google Scholar * Neil Vasdev View author


publications You can also search for this author inPubMed Google Scholar CONTRIBUTIONS S.H.L., L.W., N.A.S., and B.H.R. performed the experimental work. S.H.L. and N.V. oversaw the


radiopharmaceutical production. All authors wrote the manuscript. CORRESPONDING AUTHOR Correspondence to Steven H. Liang. ETHICS DECLARATIONS COMPETING INTERESTS The authors declare no


competing interests. ADDITIONAL INFORMATION PUBLISHER’S NOTE: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. RELATED


LINKS KEY REFERENCES USING THIS PROTOCOL Rotstein, B.H., Stephenson, N.A., Vasdev, N. & Liang, S.H_. Nat. Commun_. 5, 4365 (2014): https://www.nature.com/articles/ncomms5365 Rotstein,


B.H. et al_. Chem. Sci_. 7, 4407–4417 (2016): https://pubs.rsc.org/en/content/articlelanding/2016/sc/c6sc00197a#!divAbstract Stephenson, N.A. et al. _J. Nucl. Med_. 56, 489–492 (2015):


http://jnm.snmjournals.org/content/56/3/489.long Wang, L. et al. _J. Med. Chem_. 60, 5222–5227 (2017): https://pubs.acs.org/doi/10.1021/acs.jmedchem.7b00432 KEY DATA USED IN THIS PROTOCOL


Rotstein, B.H., Stephenson, N.A., Vasdev, N. & Liang, S.H. _Nat. Commun_. 5, 4365 (2014): https://www.nature.com/articles/ncomms5365 Stephenson, N.A. et al. _J. Nucl. Med_. 56, 489–492


(2015): http://jnm.snmjournals.org/content/56/3/489.long SUPPLEMENTARY INFORMATION REPORTING SUMMARY RIGHTS AND PERMISSIONS Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE


Liang, S.H., Wang, L., Stephenson, N.A. _et al._ Facile 18F labeling of non-activated arenes via a spirocyclic iodonium(III) ylide method and its application in the synthesis of the mGluR5


PET radiopharmaceutical [18F]FPEB. _Nat Protoc_ 14, 1530–1545 (2019). https://doi.org/10.1038/s41596-019-0149-3 Download citation * Received: 13 June 2017 * Accepted: 12 February 2019 *


Published: 12 April 2019 * Issue Date: May 2019 * DOI: https://doi.org/10.1038/s41596-019-0149-3 SHARE THIS ARTICLE Anyone you share the following link with will be able to read this


content: Get shareable link Sorry, a shareable link is not currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative