Engineered allostery in light-regulated lov-turbo enables precise spatiotemporal control of proximity labeling in living cells

feature-image

Play all audios:

Loading...

ABSTRACT The incorporation of light-responsive domains into engineered proteins has enabled control of protein localization, interactions and function with light. We integrated optogenetic


control into proximity labeling, a cornerstone technique for high-resolution proteomic mapping of organelles and interactomes in living cells. Through structure-guided screening and directed


evolution, we installed the light-sensitive LOV domain into the proximity labeling enzyme TurboID to rapidly and reversibly control its labeling activity with low-power blue light.


‘LOV-Turbo’ works in multiple contexts and dramatically reduces background in biotin-rich environments such as neurons. We used LOV-Turbo for pulse-chase labeling to discover proteins that


traffic between endoplasmic reticulum, nuclear and mitochondrial compartments under cellular stress. We also showed that instead of external light, LOV-Turbo can be activated by


bioluminescence resonance energy transfer from luciferase, enabling interaction-dependent proximity labeling. Overall, LOV-Turbo increases the spatial and temporal precision of proximity


labeling, expanding the scope of experimental questions that can be addressed with proximity labeling. Access through your institution Buy or subscribe This is a preview of subscription


content, access via your institution ACCESS OPTIONS Access through your institution Access Nature and 54 other Nature Portfolio journals Get Nature+, our best-value online-access


subscription $29.99 / 30 days cancel any time Learn more Subscribe to this journal Receive 12 print issues and online access $259.00 per year only $21.58 per issue Learn more Buy this


article * Purchase on SpringerLink * Instant access to full article PDF Buy now Prices may be subject to local taxes which are calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in


* Learn about institutional subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS LIGHT-SWITCHABLE TRANSCRIPTION FACTORS OBTAINED BY DIRECT


SCREENING IN MAMMALIAN CELLS Article Open access 02 June 2023 POT, AN OPTOGENETICS-BASED ENDOGENOUS PROTEIN DEGRADATION SYSTEM Article Open access 18 March 2025 PROXIMITY LABELING IN


MAMMALIAN CELLS WITH TURBOID AND SPLIT-TURBOID Article 02 November 2020 DATA AVAILABILITY The data associated with this study are available in the article and the Supplementary Information.


The original mass spectra, spectral library and the protein sequence database used for searches have been deposited in the public proteomics repository MassIVE (http://massive.ucsd.edu) and


are accessible at ftp://massive.ucsd.edu/MSV000090683/. Additional data beyond that provided in the figures and Supplementary Information are available from the corresponding author on


request. REFERENCES * Bruder, M., Polo, G. & Trivella, D. B. B. Natural allosteric modulators and their biological targets: molecular signatures and mechanisms. _Nat. Prod. Rep._ 37,


488–514 (2020). CAS  PubMed  Google Scholar  * Wu, Y. I. et al. A genetically encoded photoactivatable Rac controls the motility of living cells. _Nature_ 461, 104–108 (2009). CAS  PubMed 


PubMed Central  Google Scholar  * Sanchez, M. I., Nguyen, Q.-A., Wang, W., Soltesz, I. & Ting, A. Y. Transcriptional readout of neuronal activity via an engineered Ca2+-activated


protease. _Proc. Natl Acad. Sci. USA_ 117, 33186–33196 (2020). CAS  PubMed  PubMed Central  Google Scholar  * Kimberly, R. & Ranganathan, R. Hot spots for allosteric regulation on


protein surfaces. _Cell_ 147, 1564–1575 (2011). Google Scholar  * Branon, T. C. et al. Efficient proximity labeling in living cells and organisms with TurboID. _Nat. Biotechnol._ 36, 880–887


(2018). CAS  PubMed  PubMed Central  Google Scholar  * Qin, W., Cho, K. F., Cavanagh, P. E. & Ting, A. Y. Deciphering molecular interactions by proximity labeling. _Nat. Methods_ 18,


133–143 (2021). CAS  PubMed  Google Scholar  * Cho, K. F. et al. Proximity labeling in mammalian cells with TurboID and split-TurboID. _Nat. Protoc._ 15, 3971–3999 (2020). CAS  PubMed 


Google Scholar  * Wood, Z. A., Weaver, L. H., Brown, P. H., Beckett, D. & Matthews, B. W. Co-repressor induced order and biotin repressor dimerization: a case for divergent followed by


convergent evolution. _J. Mol. Biol._ 357, 509–523 (2006). CAS  PubMed  Google Scholar  * Kim, M. W. et al. Time-gated detection of protein-protein interactions with transcriptional readout.


_eLife_ 6, e30233 (2017). PubMed  PubMed Central  Google Scholar  * Kim, C. K. et al. A molecular calcium integrator reveals a striatal cell type driving aversion. _Cell_ 183,


2003–2019.e2016 (2020). CAS  PubMed  PubMed Central  Google Scholar  * Lam, S. S. et al. Directed evolution of APEX2 for electron microscopy and proximity labeling. _Nat. Methods_ 12, 51–54


(2015). CAS  PubMed  Google Scholar  * Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. _Nature_ 596, 583–589 (2021). CAS  PubMed  PubMed Central  Google


Scholar  * Guntas, G. et al. Engineering an improved light-induced dimer (iLID) for controlling the localization and activity of signaling proteins. _Proc. Natl Acad. Sci. USA_ 112, 112–117


(2015). CAS  PubMed  Google Scholar  * Lee, D. et al. Temporally precise labeling and control of neuromodulatory circuits in the mammalian brain. _Nat. Methods_ 14, 495–503 (2017). CAS 


PubMed  Google Scholar  * Kawano, F., Aono, Y., Suzuki, H. & Sato, M. Fluorescence imaging-based high-throughput screening of fast- and slow-cycling LOV proteins. _PLoS ONE_ 8, e82693


(2013). PubMed  PubMed Central  Google Scholar  * Wang, W. et al. A light- and calcium-gated transcription factor for imaging and manipulating activated neurons. _Nat. Biotechnol._ 35,


864–871 (2017). CAS  PubMed  PubMed Central  Google Scholar  * Eitoku, T., Nakasone, Y., Matsuoka, D., Tokutomi, S. & Terazima, M. Conformational dynamics of phototropin 2 LOV2 domain


with the linker upon photoexcitation. _J. Am. Chem. Soc._ 127, 13238–13244 (2005). CAS  PubMed  Google Scholar  * Welch, W. J. & Feramisco, J. R. Nuclear and nucleolar localization of


the 72,000-dalton heat shock protein in heat-shocked mammalian cells. _J. Biol. Chem._ 259, 4501–4513 (1984). CAS  PubMed  Google Scholar  * Miyamoto, Y. et al. Cellular stresses induce the


nuclear accumulation of importin α and cause a conventional nuclear import block. _J. Cell Biol._ 165, 617–623 (2004). CAS  PubMed  PubMed Central  Google Scholar  * Kim, C. K., Cho, K. F.,


Kim, M. W. & Ting, A. Y. Luciferase-LOV BRET enables versatile and specific transcriptional readout of cellular protein-protein interactions. _eLife_ 8, e43826 (2019). PubMed  PubMed


Central  Google Scholar  * Hall, M. P. et al. Engineered Luciferase reporter from a deep sea shrimp utilizing a novel imidazopyrazinone substrate. _Am. Chem. Soc. Chem. Biol._ 7, 1848–1857


(2012). CAS  Google Scholar  * Hedrick, M. N., Lonsdorf, A. S., Hwang, S. T. & Farber, J. M. CCR6 as a possible therapeutic target in psoriasis. _Expert Opin. Ther. Targets_ 14, 911–922


(2010). CAS  PubMed  PubMed Central  Google Scholar  * Olden, K., Pratt, R. M., Jaworski, C. & Yamada, K. M. Evidence for role of glycoprotein carbohydrates in membrane transport:


specific inhibition by tunicamycin. _Proc. Natl Acad. Sci. USA_ 76, 791–795 (1979). CAS  PubMed  PubMed Central  Google Scholar  * Lytton, J., Westlin, M. & Hanley, M. R. Thapsigargin


inhibits the sarcoplasmic or endoplasmic reticulum Ca-ATPase family of calcium pumps. _J. Biol. Chem._ 266, 17067–17071 (1991). CAS  PubMed  Google Scholar  * Haze, K., Yoshida, H., Yanagi,


H., Yura, T. & Mori, K. Mammalian transcription factor ATF6 is synthesized as a transmembrane protein and activated by proteolysis in response to endoplasmic reticulum stress. _Mol.


Biol. Cell_ 10, 3787–3799 (1999). CAS  PubMed  PubMed Central  Google Scholar  * Ye, J. et al. ER stress induces cleavage of membrane-bound ATF6 by the same proteases that process SREBPs.


_Mol. Cell_ 6, 1355–1364 (2000). CAS  PubMed  Google Scholar  * Berthel, E., Foray, N. & Ferlazzo, M. L. The nucleoshuttling of the ATM protein: a unified model to describe the


individual response to high- and low-dose of radiation? _Cancers_ 11, 905 (2019). CAS  PubMed  PubMed Central  Google Scholar  * Zhao, S., Aviles, E. R. Jr & Fujikawa, D. G. Nuclear


translocation of mitochondrial cytochrome c, lysosomal cathepsins B and D, and three other death-promoting proteins within the first 60 minutes of generalized seizures. _J. Neurosci. Res._


88, 1727–1737 (2010). CAS  PubMed  Google Scholar  * Billing, A. M. et al. Proteomic profiling of rapid non-genomic and concomitant genomic effects of acute restraint stress on rat


thymocytes. _J. Proteom._ 75, 2064–2079 (2012). CAS  Google Scholar  * Hotokezaka, Y., Katayama, I. & Nakamura, T. ATM-associated signalling triggers the unfolded protein response and


cell death in response to stress. _Commun. Biol._ 3, 378 (2020). CAS  PubMed  PubMed Central  Google Scholar  * Lee, J.-H. & Paull, T. T. Mitochondria at the crossroads of ATM-mediated


stress signaling and regulation of reactive oxygen species. _Redox Biol._ 32, 101511 (2020). CAS  PubMed  PubMed Central  Google Scholar  * Burman, J. L. et al. Scyl1, mutated in a recessive


form of spinocerebellar neurodegeneration, regulates COPI-mediated retrograde traffic. _J. Biol. Chem._ 283, 22774–22786 (2008). CAS  PubMed  Google Scholar  * Tang, Z. et al. Molecular


cloning and characterization of a human gene involved in transcriptional regulation of hTERT. _Biochem. Biophys. Res. Commun._ 324, 1324–1332 (2004). CAS  PubMed  Google Scholar  *


Ashburner, M. et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. _Nat. Genet._ 25, 25–29 (2000). CAS  PubMed  PubMed Central  Google Scholar  * Gene


Ontology Consortium. The Gene Ontology resource: enriching a GOld mine. _Nucleic Acids Res._ 49, D325–d334 (2021). Google Scholar  * Hung, V. et al. Proteomic mapping of cytosol-facing outer


mitochondrial and ER membranes in living human cells by proximity biotinylation. _eLife_ 6, e24463 (2017). PubMed  PubMed Central  Google Scholar  * Amodio, G. et al. Proteomic signatures


in thapsigargin-treated hepatoma cells. _Chem. Res. Toxicol._ 24, 1215–1222 (2011). CAS  PubMed  Google Scholar  * Cho, K. F. et al. Split-TurboID enables contact-dependent proximity


labeling in cells. _Proc. Natl Acad. Sci. USA_ 117, 12143–12154 (2020). CAS  PubMed  PubMed Central  Google Scholar  * Hamasaki, M. et al. Autophagosomes form at ER–mitochondria contact


sites. _Nature_ 495, 389–393 (2013). CAS  PubMed  Google Scholar  * Zabolotny, J. M. et al. PTP1B regulates leptin signal transduction in vivo. _Dev. Cell_ 2, 489–495 (2002). CAS  PubMed 


Google Scholar  * Galic, S. et al. Coordinated regulation of insulin signaling by the protein tyrosine phosphatases PTP1B and TCPTP. _Mol. Cell. Biol._ 25, 819–829 (2005). CAS  PubMed 


PubMed Central  Google Scholar  * Kornicka-Garbowska, K., Bourebaba, L., Röcken, M. & Marycz, K. Inhibition of protein tyrosine phosphatase improves mitochondrial bioenergetics and


dynamics, reduces oxidative stress, and enhances adipogenic differentiation potential in metabolically impaired progenitor stem cells. _Cell Commun. Signal._ 19, 106 (2021). CAS  PubMed 


PubMed Central  Google Scholar  * Kennedy, M. J. et al. Rapid blue-light–mediated induction of protein interactions in living cells. _Nat. Methods_ 7, 973–975 (2010). CAS  PubMed  PubMed


Central  Google Scholar  * Kim, W.-Y. et al. ZEITLUPE is a circadian photoreceptor stabilized by GIGANTEA in blue light. _Nature_ 449, 356–360 (2007). CAS  PubMed  Google Scholar  *


Konermann, S. et al. Optical control of mammalian endogenous transcription and epigenetic states. _Nature_ 500, 472–476 (2013). CAS  PubMed  PubMed Central  Google Scholar  * Liu, Q. et al.


A photoactivatable botulinum neurotoxin for inducible control of neurotransmission. _Neuron_ 101, 863–875.e866 (2019). CAS  PubMed  PubMed Central  Google Scholar  * Yazawa, M., Sadaghiani,


A. M., Hsueh, B. & Dolmetsch, R. E. Induction of protein-protein interactions in live cells using light. _Nat. Biotechnol._ 27, 941–945 (2009). CAS  PubMed  Google Scholar  * Polstein,


L. R. & Gersbach, C. A. A light-inducible CRISPR-Cas9 system for control of endogenous gene activation. _Nat. Chem. Biol._ 11, 198–200 (2015). CAS  PubMed  PubMed Central  Google Scholar


  * Liu, Y. et al. Spatiotemporally resolved subcellular phosphoproteomics. _Proc. Natl Acad. Sci. USA_ 118, e2025299118 (2021). CAS  PubMed  PubMed Central  Google Scholar  * Hananya, N.,


Ye, X., Koren, S. & Muir, T. W. A genetically encoded photoproximity labeling approach for mapping protein territories. _Proc. Natl Acad. Sci. USA_ 120, e2219339120 (2023). CAS  PubMed 


Google Scholar  * Zhai, Y. et al. Spatiotemporal-resolved protein networks profiling with photoactivation dependent proximity labeling. _Nat. Commun._ 13, 4906 (2022). CAS  PubMed  PubMed


Central  Google Scholar  * Chao, G. et al. Isolating and engineering human antibodies using yeast surface display. _Nat. Protoc._ 1, 755–768 (2006). CAS  PubMed  Google Scholar  * Colby, D.


W. et al. Engineering antibody affinity by yeast surface display. _Methods Enzymol._ 388, 348–358 (2004). * Gagnon, K. T., Li, L., Janowski, B. A. & Corey, D. R. Analysis of nuclear RNA


interference in human cells by subcellular fractionation and Argonaute loading. _Nat. Protoc._ 9, 2045–2060 (2014). CAS  PubMed  PubMed Central  Google Scholar  * Senichkin, V. V.,


Prokhorova, E. A., Zhivotovsky, B. & Kopeina, G. S. Simple and efficient protocol for subcellular fractionation of normal and apoptotic cells. _Cells_ 10, 852 (2021). CAS  PubMed  PubMed


Central  Google Scholar  Download references ACKNOWLEDGEMENTS Rat cortical neurons were a kind gift from M. Lin (Stanford University). We thank J. Reinstein (Max Planck Institute) for


helpful feedback. This work was supported by the NIH (grant nos. R01-DK121409 and RC2DK129964 to A.Y.T., R01-OD026223 to A.Y.T. and S.A.C. and T32GM007276 to J.S.C.), the Stanford Wu Tsai


Neurosciences Institute (A.Y.T.), the National Science Foundation (NeuroNex grant no. 2014862 to A.Y.T. and GRFP DGE-1656518 to J.S.C.), the National Research Foundation of Korea grant no.


NRF-2019R1A6A3A03033677 (S.-Y.L.), the Stanford Gerald J. Lieberman Fellowship (J.S.C.) and the Burroughs Wellcome Fund grant no. CASI 1019469 (C.K.K.). A.Y.T. is a Chan Zuckerberg Biohub –


San Francisco Investigator. AUTHOR INFORMATION Author notes * Christina K. Kim Present address: Center for Neuroscience and Department of Neurology, University of California, Davis, CA, USA


* Kelvin F. Cho Present address: Amgen Research, South San Francisco, CA, USA * These authors contributed equally: Song-Yi Lee, Joleen S. Cheah. AUTHORS AND AFFILIATIONS * Department of


Genetics, Stanford University, Stanford, CA, USA Song-Yi Lee, Boxuan Zhao, Christina K. Kim, Kelvin F. Cho & Alice Y. Ting * Department of Biology, Stanford University, Stanford, CA, USA


Joleen S. Cheah & Alice Y. Ting * Broad Institute of MIT and Harvard, Cambridge, MA, USA Charles Xu, Namrata D. Udeshi & Steven A. Carr * Department of Chemistry, Stanford


University, Stanford, CA, USA Heegwang Roh & Alice Y. Ting * Chan Zuckerberg Biohub–San Francisco, San Francisco, CA, USA Alice Y. Ting Authors * Song-Yi Lee View author publications You


can also search for this author inPubMed Google Scholar * Joleen S. Cheah View author publications You can also search for this author inPubMed Google Scholar * Boxuan Zhao View author


publications You can also search for this author inPubMed Google Scholar * Charles Xu View author publications You can also search for this author inPubMed Google Scholar * Heegwang Roh View


author publications You can also search for this author inPubMed Google Scholar * Christina K. Kim View author publications You can also search for this author inPubMed Google Scholar *


Kelvin F. Cho View author publications You can also search for this author inPubMed Google Scholar * Namrata D. Udeshi View author publications You can also search for this author inPubMed 


Google Scholar * Steven A. Carr View author publications You can also search for this author inPubMed Google Scholar * Alice Y. Ting View author publications You can also search for this


author inPubMed Google Scholar CONTRIBUTIONS S.-Y.L. and A.Y.T. conceived this project. S.-Y.L., J.S.C. and A.Y.T. designed experiments and analyzed all the data except those noted. S.-Y.L.


and J.S.C. performed all experiments, unless otherwise noted. N.D.U., C.X. and S.A.C. performed post-streptavidin-enrichment sample processing, mass spectrometry, and initial data analysis.


B.Z. and S.-Y.L. performed the mouse brain experiments. C.K.K., K.F.C. and S.-Y.L. performed cultured rat cortical neuron experiments. H.R. and S.-Y.L. performed BRET experiments. S.-Y.L.,


J.S.C. and A.Y.T. wrote the paper with input from all authors. CORRESPONDING AUTHOR Correspondence to Alice Y. Ting. ETHICS DECLARATIONS COMPETING INTERESTS S.-Y.L., J.S.C. and A.Y.T. have


filed a patent application covering some aspects of this work (US Provisional Patent Application No. 63/488,940; CZ SF ref. CZB-273S-P1; Stanford ref. S22-487; KT ref.


110221-1361830-009500PR). The remaining authors declare no competing interests. PEER REVIEW PEER REVIEW INFORMATION _Nature Methods_ thanks Angelos Constantinou, Tatsuya Sawasaki and the


other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Rita Strack, in collaboration with the _Nature Methods_ team. ADDITIONAL


INFORMATION PUBLISHER’S NOTE Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. SUPPLEMENTARY INFORMATION SUPPLEMENTARY


INFORMATION Supplementary Figs. 1–8, Table 1, Legends of Tables 2–4, Note 1, Methods, Antibodies list, Genetic constructs list and References. REPORTING SUMMARY SUPPLEMENTARY TABLE 2–4 Table


2: Proteomic data for ERM to nucleus pulse-chase experiment. Table 3: Proteomic data for ERM to mitochondria pulse-chase experiment. Table 4: Proteomic data at peptide level for ERM to


nucleus pulse-chase experiment. RIGHTS AND PERMISSIONS Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement


with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and


applicable law. Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Lee, SY., Cheah, J.S., Zhao, B. _et al._ Engineered allostery in light-regulated LOV-Turbo enables precise


spatiotemporal control of proximity labeling in living cells. _Nat Methods_ 20, 908–917 (2023). https://doi.org/10.1038/s41592-023-01880-5 Download citation * Received: 14 November 2022 *


Accepted: 14 April 2023 * Published: 15 May 2023 * Issue Date: June 2023 * DOI: https://doi.org/10.1038/s41592-023-01880-5 SHARE THIS ARTICLE Anyone you share the following link with will be


able to read this content: Get shareable link Sorry, a shareable link is not currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing


initiative