Molecular basis for fibroblast growth factor 23 o-glycosylation by galnac-t3

feature-image

Play all audios:

Loading...

ABSTRACT Polypeptide GalNAc-transferase T3 (GalNAc-T3) regulates fibroblast growth factor 23 (FGF23) by _O_-glycosylating Thr178 in a furin proprotein processing motif RHT178R↓S. FGF23


regulates phosphate homeostasis and deficiency in _GALNT3_ or _FGF23_ results in hyperphosphatemia and familial tumoral calcinosis. We explored the molecular mechanism for GalNAc-T3


glycosylation of FGF23 using engineered cell models and biophysical studies including kinetics, molecular dynamics and X-ray crystallography of GalNAc-T3 complexed to glycopeptide


substrates. GalNAc-T3 uses a lectin domain mediated mechanism to glycosylate Thr178 requiring previous glycosylation at Thr171. Notably, Thr178 is a poor substrate site with limiting


glycosylation due to substrate clashes leading to destabilization of the catalytic domain flexible loop. We suggest GalNAc-T3 specificity for FGF23 and its ability to control circulating


levels of intact FGF23 is achieved by FGF23 being a poor substrate. GalNAc-T3’s structure further reveals the molecular bases for reported disease-causing mutations. Our findings provide an


insight into how GalNAc-T isoenzymes achieve isoenzyme-specific nonredundant functions. Access through your institution Buy or subscribe This is a preview of subscription content, access via


your institution ACCESS OPTIONS Access through your institution Access Nature and 54 other Nature Portfolio journals Get Nature+, our best-value online-access subscription $29.99 / 30 days


cancel any time Learn more Subscribe to this journal Receive 12 print issues and online access $259.00 per year only $21.58 per issue Learn more Buy this article * Purchase on SpringerLink *


Instant access to full article PDF Buy now Prices may be subject to local taxes which are calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in * Learn about institutional


subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS CRYSTAL STRUCTURE OF LRG1 AND THE FUNCTIONAL SIGNIFICANCE OF LRG1 GLYCAN FOR LPHN2 ACTIVATION


Article Open access 01 May 2023 MOLECULAR STRUCTURE AND ENZYMATIC MECHANISM OF THE HUMAN COLLAGEN HYDROXYLYSINE GALACTOSYLTRANSFERASE GLT25D1/COLGALT1 Article Open access 16 April 2025


GLYCOSYLTRANSFERASE 8 DOMAIN-CONTAINING PROTEIN 1 (GLT8D1) IS A UDP-DEPENDENT GALACTOSYLTRANSFERASE Article Open access 07 December 2023 DATA AVAILABILITY The crystal structures of


_Tg_GalNAc-T3-UDP-P3 and _Tg_GalNAc-T3-UDP–FGF23c complexes were deposited at the RCSB PDB with accession codes 6S24 and 6S22, respectively. REFERENCES * Hurtado-Guerrero, R. Recent


structural and mechanistic insights into protein _O_-GalNAc glycosylation. _Biochem Soc. Trans._ 44, 61–67 (2016). CAS  PubMed  Google Scholar  * Bennett, E. P. et al. Control of mucin-type


_O_-glycosylation: a classification of the polypeptide GalNAc-transferase gene family. _Glycobiology_ 22, 736–756 (2012). CAS  PubMed  Google Scholar  * de Las Rivas, M., Lira-Navarrete, E.,


Gerken, T. A. & Hurtado-Guerrero, R. Polypeptide GalNAc-Ts: from redundancy to specificity. _Curr. Opin. Struct. Biol._ 56, 87–96 (2019). PubMed  Google Scholar  * Lira-Navarrete, E. et


al. Substrate-guided front-face reaction revealed by combined structural snapshots and metadynamics for the polypeptide _N_-acetylgalactosaminyltransferase 2. _Angew. Chem. Int. Ed. Engl._


53, 8206–8210 (2014). CAS  PubMed  Google Scholar  * Gerken, T. A. et al. Emerging paradigms for the initiation of mucin-type protein _O_-glycosylation by the polypeptide GalNAc transferase


family of glycosyltransferases. _J. Biol. Chem._ 286, 14493–14507 (2011). CAS  PubMed  PubMed Central  Google Scholar  * Gerken, T. A. et al. The lectin domain of the polypeptide GalNAc


transferase family of glycosyltransferases (ppGalNAc Ts) acts as a switch directing glycopeptide substrate glycosylation in an N- or C-terminal direction, further controlling mucin type


_O_-glycosylation. _J. Biol. Chem._ 288, 19900–19914 (2013). CAS  PubMed  PubMed Central  Google Scholar  * Revoredo, L. et al. Mucin-type _O_-glycosylation is controlled by short- and


long-range glycopeptide substrate recognition that varies among members of the polypeptide GalNAc transferase family. _Glycobiology_ 26, 360–376 (2016). CAS  PubMed  Google Scholar  *


Lira-Navarrete, E. et al. Dynamic interplay between catalytic and lectin domains of GalNAc-transferases modulates protein _O_-glycosylation. _Nat. Commun._ 6, 6937 (2015). CAS  PubMed 


Google Scholar  * Rivas, M. L. et al. The interdomain flexible linker of the polypeptide GalNAc transferases dictates their long-range glycosylation preferences. _Nat. Commun._ 8, 1959


(2017). PubMed Central  Google Scholar  * de Las Rivas, M. et al. Structural analysis of a GalNAc-T2 mutant reveals an induced-fit catalytic mechanism for GalNAc-Ts. _Chemistry_ 24,


8382–8392 (2018). PubMed  Google Scholar  * Topaz, O. et al. Mutations in GALNT3, encoding a protein involved in _O_-linked glycosylation, cause familial tumoral calcinosis. _Nat. Genet._


36, 579–581 (2004). CAS  PubMed  Google Scholar  * Kato, K. et al. Polypeptide GalNAc-transferase T3 and familial tumoral calcinosis. Secretion of fibroblast growth factor 23 requires


_O_-glycosylation. _J. Biol. Chem._ 281, 18370–18377 (2006). CAS  PubMed  Google Scholar  * White, K. E. et al. Autosomal dominant hypophosphataemic rickets is associated with mutations in


FGF23. _Nat. Genet_ 26, 345–348 (2000). CAS  Google Scholar  * Benet-Pages, A., Orlik, P., Strom, T. M. & Lorenz-Depiereux, B. An FGF23 missense mutation causes familial tumoral


calcinosis with hyperphosphatemia. _Hum. Mol. Genet._ 14, 385–390 (2005). CAS  PubMed  Google Scholar  * Simpson, M. A. et al. Mutations in FAM20C also identified in non-lethal


osteosclerotic bone dysplasia. _Clin. Genet._ 75, 271–276 (2009). CAS  PubMed  Google Scholar  * Tagliabracci, V. S. et al. Dynamic regulation of FGF23 by Fam20C phosphorylation, GalNAc-T3


glycosylation, and furin proteolysis. _Proc. Natl Acad. Sci. USA_ 111, 5520–5525 (2014). CAS  PubMed  PubMed Central  Google Scholar  * Urakawa, I. et al. Klotho converts canonical FGF


receptor into a specific receptor for FGF23. _Nature_ 444, 770–774 (2006). CAS  PubMed  Google Scholar  * Bennett, E. P., Hassan, H. & Clausen, H. cDNA cloning and expression of a novel


human UDP-N-acetyl-alpha-d-galactosamine. Polypeptide _N_-acetylgalactosaminyltransferase, GalNAc-t3. _J. Biol. Chem._ 271, 17006–17012 (1996). CAS  PubMed  Google Scholar  * Kong, Y. et al.


Probing polypeptide GalNAc-transferase isoform substrate specificities by in vitro analysis. _Glycobiology_ 25, 55–65 (2015). CAS  PubMed  Google Scholar  * Schjoldager, K. T. et al.


Deconstruction of _O_-glycosylation–GalNAc-T isoforms direct distinct subsets of the _O_-glycoproteome. _EMBO Rep._ 16, 1713–1722 (2015). CAS  PubMed  PubMed Central  Google Scholar  *


Khetarpal, S. A. et al. Loss of function of GALNT2 lowers high-density lipoproteins in humans, nonhuman primates, and rodents. _Cell Metab._ 24, 234–245 (2016). CAS  PubMed  PubMed Central 


Google Scholar  * Wang, S. et al. Site-specific _O_-glycosylation of members of the low-density lipoprotein receptor superfamily enhances ligand interactions. _J. Biol. Chem._ 293, 7408–7422


(2018). CAS  PubMed  PubMed Central  Google Scholar  * Yoshimura, Y. et al. Elucidation of the sugar recognition ability of the lectin domain of UDP-GalNAc:polypeptide


_N_-acetylgalactosaminyltransferase 3 by using unnatural glycopeptide substrates. _Glycobiology_ 22, 429–438 (2012). CAS  PubMed  Google Scholar  * Frishberg, Y. et al.


Hyperostosis-hyperphosphatemia syndrome: a congenital disorder of _O_-glycosylation associated with augmented processing of fibroblast growth factor 23. _J. Bone Min. Res_ 22, 235–242


(2007). CAS  Google Scholar  * Chen, G. et al. alpha-Klotho is a non-enzymatic molecular scaffold for FGF23 hormone signalling. _Nature_ 553, 461–466 (2018). CAS  PubMed  PubMed Central 


Google Scholar  * Hagen, F. K., Hazes, B., Raffo, R., deSa, D. & Tabak, L. A. Structure-function analysis of the UDP-_N_-acetyl-d-galactosamine:polypeptide


_N_-acetylgalactosaminyltransferase. Essential residues lie in a predicted active site cleft resembling a lactose repressor fold. _J. Biol. Chem._ 274, 6797–6803 (1999). CAS  PubMed  Google


Scholar  * Kozarsky, K., Kingsley, D. & Krieger, M. Use of a mutant cell line to study the kinetics and function of _O_-linked glycosylation of low density lipoprotein receptors. _Proc.


Natl Acad. Sci. USA_ 85, 4335–4339 (1988). CAS  PubMed  PubMed Central  Google Scholar  * Bar-Even, A. et al. The moderately efficient enzyme: evolutionary and physicochemical trends shaping


enzyme parameters. _Biochemistry_ 50, 4402–4410 (2011). CAS  PubMed  Google Scholar  * de Las Rivas, M. et al. Structural and mechanistic insights into the catalytic-domain-mediated


short-range glycosylation preferences of GalNAc-T4. _ACS Cent. Sci._ 4, 1274–1290 (2018). PubMed  Google Scholar  * Lira-Navarrete, E. et al. Structural insights into the mechanism of


protein _O_-fucosylation. _PLoS ONE_ 6, e25365 (2011). CAS  PubMed  PubMed Central  Google Scholar  * Ghirardello, M. et al. Glycomimetics targeting glycosyltransferases: synthetic,


computational and structural studies of less-polar conjugates. _Chemistry_ 22, 7215–7224 (2016). CAS  PubMed  Google Scholar  * Yamamoto, H. et al. Posttranslational processing of FGF23 in


osteocytes during the osteoblast to osteocyte transition. _Bone_ 84, 120–130 (2016). CAS  PubMed  Google Scholar  * Bennett, E. P. et al. Cloning and characterization of a close homologue of


human UDP-_N_-acetyl-alpha-d-galactosamine: polypeptide _N_-acetylgalactosaminyltransferase-T3, designated GalNAc-T6. Evidence for genetic but not functional redundancy. _J. Biol. Chem._


274, 25362–25370 (1999). CAS  PubMed  Google Scholar  * Joshi, H. J. et al. Glycosyltransferase genes that cause monogenic congenital disorders of glycosylation are distinct from


glycosyltransferase genes associated with complex diseases. _Glycobiology_ 28, 284–294 (2018). CAS  PubMed  PubMed Central  Google Scholar  * Minisola, S. et al. Tumour-induced osteomalacia.


_Nat. Rev. Dis. Prim._ 3, 17044 (2017). PubMed  Google Scholar  * Rafaelsen, S., Johansson, S., Raeder, H. & Bjerknes, R. Long-term clinical outcome and phenotypic variability in


hyperphosphatemic familial tumoral calcinosis and hyperphosphatemic hyperostosis syndrome caused by a novel GALNT3 mutation; case report and review of the literature. _BMC Genet._ 15, 98


(2014). PubMed  PubMed Central  Google Scholar  * Ramnitz, M. S., Gafni, R. I. & Collins, M. T. Hyperphosphatemic familial tumoral calcinosis. in _GeneReviews (R)_ (eds Adams, M. P. et


al.) https://www.ncbi.nlm.nih.gov/books/NBK476672/ (Univ. Wash., Seattle, 2018). * Takashi, Y. et al. Activation of unliganded FGF receptor by extracellular phosphate potentiates proteolytic


protection of FGF23 by its _O_-glycosylation. _Proc. Natl Acad. Sci. USA_ 116, 11418–11427 (2019). CAS  PubMed  PubMed Central  Google Scholar  * Hintze, J. et al. Probing the contribution


of individual polypeptide GalNAc-transferase isoforms to the _O_-glycoproteome by inducible expression in isogenic cell lines. _J. Biol. Chem._ 293, 19064–19077 (2018). CAS  PubMed  PubMed


Central  Google Scholar  * Wandall, H. H. et al. The lectin domains of polypeptide GalNAc-transferases exhibit carbohydrate-binding specificity for GalNAc: lectin binding to


GalNAc-glycopeptide substrates is required for high density GalNAc-_O_-glycosylation. _Glycobiology_ 17, 374–387 (2007). CAS  PubMed  Google Scholar  * Steentoft, C. et al. A validated


collection of mouse monoclonal antibodies to human glycosyltransferases functioning in mucin-type _O_-glycosylation. _Glycobiology_ 29, 645–656 (2019). PubMed  PubMed Central  Google Scholar


  * Yang, Z. et al. Engineered CHO cells for production of diverse, homogeneous glycoproteins. _Nat. Biotechnol._ 33, 842–844 (2015). CAS  PubMed  Google Scholar  * Lonowski, L. A. et al.


Genome editing using FACS enrichment of nuclease-expressing cells and indel detection by amplicon analysis. _Nat. Protoc._ 12, 581–603 (2017). CAS  PubMed  PubMed Central  Google Scholar  *


Wandall, H. H. et al. Substrate specificities of three members of the human UDP-N-acetyl-alpha-d-galactosamine: polypeptide _N_-acetylgalactosaminyltransferase family, GalNAc-T1, -T2, and


-T3. _J. Biol. Chem._ 272, 23503–23514 (1997). CAS  PubMed  Google Scholar  * Kabsch, W. Xds. _Acta Crystallogr. D._ 66, 125–132 (2010). CAS  PubMed  PubMed Central  Google Scholar  * Winn,


M. D. et al. Overview of the CCP4 suite and current developments. _Acta Crystallogr. D._ 67, 235–242 (2011). CAS  PubMed  PubMed Central  Google Scholar  * Collaborative Computational


Project, Number 4. The CCP4 suite: programs for protein crystallography. _Acta Crystallogr. D._ 50, 760–763 (1994). * Emsley, P. & Cowtan, K. Coot: model-building tools for molecular


graphics. _Acta Crystallogr. D._ 60, 2126–2132 (2004). PubMed  Google Scholar  * Murshudov, G. N. et al. REFMAC5 for the refinement of macromolecular crystal structures. _Acta Crystallogr.


D._ 67, 355–367 (2011). CAS  PubMed  PubMed Central  Google Scholar  * Langer, G., Cohen, S. X., Lamzin, V. S. & Perrakis, A. Automated macromolecular model building for X-ray


crystallography using ARP/wARP version 7. _Nat. Protoc._ 3, 1171–1179 (2008). CAS  PubMed  PubMed Central  Google Scholar  * Waterhouse, A. et al. SWISS-MODEL: homology modelling of protein


structures and complexes. _Nucleic Acids Res._ 46, W296–W303 (2018). CAS  PubMed  PubMed Central  Google Scholar  * Maier, J. A. et al. ff14SB: Improving the accuracy of protein side chain


and backbone parameters from ff99SB. _J. Chem. Theory Comput._ 11, 3696–3713 (2015). CAS  PubMed  PubMed Central  Google Scholar  * Plattner, C., Hofener, M. & Sewald, N. One-pot


azidochlorination of glycals. _Org. Lett._ 13, 545–547 (2011). CAS  PubMed  Google Scholar  * Horcas, I. et al. WSXM: a software for scanning probe microscopy and a tool for nanotechnology.


_Rev. Sci. Instrum._ 78, 013705 (2007). CAS  PubMed  Google Scholar  * Lostao, A., Peleato, M. L., Gomez-Moreno, C. & Fillat, M. F. Oligomerization properties of FurA from the


cyanobacterium _Anabaena_ sp. PCC 7120: direct visualization by in situ atomic force microscopy under different redox conditions. _Biochim. Biophys. Acta_ 1804, 1723–1729 (2010). CAS  PubMed


  Google Scholar  * Sun, T., Lin, F. H., Campbell, R. L., Allingham, J. S. & Davies, P. L. An antifreeze protein folds with an interior network of more than 400 semi-clathrate waters.


_Science_ 343, 795–798 (2014). CAS  PubMed  Google Scholar  * Franke, D. et al. ATSAS 2.8: a comprehensive data analysis suite for small-angle scattering from macromolecular solutions. _J.


Appl. Crystallogr._ 50, 1212–1225 (2017). CAS  PubMed  PubMed Central  Google Scholar  * Tria, G., Mertens, H. D., Kachala, M. & Svergun, D. I. Advanced ensemble modelling of flexible


macromolecules using X-ray solution scattering. _IUCr. J._ 2, 207–217 (2015). CAS  Google Scholar  * Sali, A. & Blundell, T. L. Comparative protein modelling by satisfaction of spatial


restraints. _J. Mol. Biol._ 234, 779–815 (1993). CAS  PubMed  Google Scholar  * Bernado, P., Mylonas, E., Petoukhov, M. V., Blackledge, M. & Svergun, D. I. Structural characterization of


flexible proteins using small-angle X-ray scattering. _J. Am. Chem. Soc._ 129, 5656–5664 (2007). CAS  PubMed  Google Scholar  Download references ACKNOWLEDGEMENTS We thank the Diamond Light


Source (Oxford) synchrotron beamline I24 (experiment nos. MX14739-6 and MX14739-11) and the SOLEIL synchrotron (Gif-sur-Yvette) SWING beamline (experiment nos. 99170088). We thank ARAID,


MEC (grant no. CTQ2013-44367-C2-2-P, BFU2016-75633-P and RTI2018-099592-B-C21), the National Institutes of Health (grant no. GM113534 and instrument grant no. GM113534-01S), the Danish


National Research Foundation (grant no. DNRF107), the FCT-Portugal (grant no. UID/Multi/04378/2013) and Gobierno de Aragón (grant nos. E34_R17, E35_17R and LMP58_18) with FEDER (grant no.


2014-2020) funds for ‘Building Europe from Aragón’ for financial support. I.C. thanks the Universidad de La Rioja for the FPI grant. F.M. and H.C. thank FCT-Portugal for IF Investigator


(IF/00780/2015), PTDC/BIA-MIB/31028/2017 and UID/Multi/04378/2019 projects, and PTNMR (grant no. ROTEIRO/0031/2013 and PINFRA/22161/2016). P.B. acknowledges support from the Labex EpiGenMed,


an ‘Investissements d’avenir’ program (grant no. ANR-10-LABX-12-01). The CBS (Montpellier) is a member of France-BioImaging (FBI, ANR-10-INBS-04-01) and the French Infrastructure for


Integrated Structural Biology (FRISBI, ANR-10-INBS-05). The research leading to these results has also received funding from the FP7 (2007–2013) under BioStruct-X (grant agreement nos.


283570 and BIOSTRUCTX_5186). We also thank I. Echániz for technical support and K. Moremen from the University of Georgia, Complex Carbohydrate Research Center, for supplying the


pGEn2-_HsGalNAc-T6_ and pGEn2-_HsGalNAc-T12_ plasmids. AUTHOR INFORMATION Author notes * These authors contributed equally: Matilde de las Rivas, Earnest James Paul Daniel, Yoshiki


Narimatsu, Ismael Compañón. AUTHORS AND AFFILIATIONS * BIFI, University of Zaragoza, Mariano Esquillor s/n, Campus Rio Ebro, Edificio I+D, Zaragoza, Spain Matilde de las Rivas, Laura


Ceballos-Laita & Ramon Hurtado-Guerrero * Department of Biochemistry, Case Western Reserve University, Cleveland, OH, USA Earnest James Paul Daniel & Thomas A. Gerken * Copenhagen


Center for Glycomics, Department of Cellular and Molecular Medicine, School of Dentistry, University of Copenhagen, Copenhagen, Denmark Yoshiki Narimatsu, Kentaro Kato, Lars Hansen, Henrik


Clausen & Ramon Hurtado-Guerrero * Departamento de Química, Universidad de La Rioja, Centro de Investigación en Síntesis Química, Logroño, Spain Ismael Compañón & Francisco Corzana *


Department of Eco-epidemiology, Institute of Tropical Medicine Nagasaki University, Nagasaki, Japan Kentaro Kato * Laboratorio de Microscopías Avanzadas, Instituto de Nanociencia de Aragón,


Universidad de Zaragoza, Zaragoza, Spain Pablo Hermosilla & Anabel Lostao * Swing Beamline, Synchrotron SOLEIL, Gif sur Yvette, France Aurélien Thureau * UCIBIO, REQUIMTE, Departamento


de Química, Faculdade de Ciências e Tecnologia, Universidade de Nova de Lisboa, Caparica, Portugal Helena Coelho & Filipa Marcelo * CIC bioGUNE, Bizkaia Technology Park, Derio, Spain


Helena Coelho * Centre de Biochimie Structurale. INSERM, CNRS, Université de Montpellier, Montpellier, France Pau Bernadó * Department of Hematology, Graduate School of Medicine, Kyoto


University, Kyoto, Japan Ryota Maeda * Fundación ARAID, Zaragoza, Spain Anabel Lostao & Ramon Hurtado-Guerrero * Instituto de Ciencia de Materiales de Aragón, Universidad de


Zaragoza-CSIC, Zaragoza, Spain Anabel Lostao Authors * Matilde de las Rivas View author publications You can also search for this author inPubMed Google Scholar * Earnest James Paul Daniel


View author publications You can also search for this author inPubMed Google Scholar * Yoshiki Narimatsu View author publications You can also search for this author inPubMed Google Scholar


* Ismael Compañón View author publications You can also search for this author inPubMed Google Scholar * Kentaro Kato View author publications You can also search for this author inPubMed 


Google Scholar * Pablo Hermosilla View author publications You can also search for this author inPubMed Google Scholar * Aurélien Thureau View author publications You can also search for


this author inPubMed Google Scholar * Laura Ceballos-Laita View author publications You can also search for this author inPubMed Google Scholar * Helena Coelho View author publications You


can also search for this author inPubMed Google Scholar * Pau Bernadó View author publications You can also search for this author inPubMed Google Scholar * Filipa Marcelo View author


publications You can also search for this author inPubMed Google Scholar * Lars Hansen View author publications You can also search for this author inPubMed Google Scholar * Ryota Maeda View


author publications You can also search for this author inPubMed Google Scholar * Anabel Lostao View author publications You can also search for this author inPubMed Google Scholar *


Francisco Corzana View author publications You can also search for this author inPubMed Google Scholar * Henrik Clausen View author publications You can also search for this author inPubMed 


Google Scholar * Thomas A. Gerken View author publications You can also search for this author inPubMed Google Scholar * Ramon Hurtado-Guerrero View author publications You can also search


for this author inPubMed Google Scholar CONTRIBUTIONS R.H.-G. designed the crystallization construct and solved the crystal structures. M.R. and R.H.-G. purified the enzymes, crystallized


the complexes and refined the crystal structures. I.C. and F.C. synthesized the glycopeptides. F.C. performed the MD simulations. H.Coelho and F.M. performed and analyzed the NMR


experiments. T.A.G. and E.J.P.D. performed the kinetic studies together with the Edman amino acid sequencing. Y.N., K.K. and R.M. performed the experiments in cells and did the MALDI–TOF MS


mass spectrometry experiments. P.H. and A.L. performed the AFM studies. A.T. and P.B. performed the SAXS experiments. L.C.-L. conducted the expression and purification of GalNAc-T6 and T12


in HEK293 cells. L.H. identified the GalNAc-T3 mutations associated to disease. R.H.-G., T.A.G. and H.Clausen wrote the article with the other authors’ contributions. All authors read and


approved the final manuscript. CORRESPONDING AUTHOR Correspondence to Ramon Hurtado-Guerrero. ETHICS DECLARATIONS COMPETING INTERESTS The authors declare no competing interests. ADDITIONAL


INFORMATION PUBLISHER’S NOTE Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. SUPPLEMENTARY INFORMATION SUPPLEMENTARY


INFORMATION Supplementary Figs 1–17 and Tables 1–6. REPORTING SUMMARY SUPPLEMENTARY VIDEO 1 A 500 ns MD simulation of TgGalNAc-T3 complexed to UDP-Mn+2 and FGF23c in explicit water


SUPPLEMENTARY VIDEO 2 A 500 ns MD simulation of HsGalNAc-T4 complexed to UDP-Mn+2 and FGF23c in explicit water SUPPLEMENTARY VIDEO 3 A 500 ns MD simulation of HsGalNAc-T6 complexed to


UDP-Mn+2 and FGF23c in explicit water SUPPLEMENTARY VIDEO 4 A 500 ns MD simulation of HsGalNAc-T12 complexed to UDP-Mn+2 and FGF23c in explicit water RIGHTS AND PERMISSIONS Reprints and


permissions ABOUT THIS ARTICLE CITE THIS ARTICLE de las Rivas, M., Paul Daniel, E.J., Narimatsu, Y. _et al._ Molecular basis for fibroblast growth factor 23 _O_-glycosylation by GalNAc-T3.


_Nat Chem Biol_ 16, 351–360 (2020). https://doi.org/10.1038/s41589-019-0444-x Download citation * Received: 25 June 2019 * Revised: 14 November 2019 * Accepted: 25 November 2019 * Published:


13 January 2020 * Issue Date: March 2020 * DOI: https://doi.org/10.1038/s41589-019-0444-x SHARE THIS ARTICLE Anyone you share the following link with will be able to read this content: Get


shareable link Sorry, a shareable link is not currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative