Identification of a s. Aureus virulence factor by activity-based protein profiling (abpp)

feature-image

Play all audios:

    

ABSTRACT Serine hydrolases play diverse roles in regulating host–pathogen interactions in a number of organisms, yet few have been characterized in the human pathogen _Staphylococcus


aureus_. Here we describe a chemical proteomic screen that identified ten previously uncharacterized _S. aureus_ serine hydrolases that mostly lack human homologs. We termed these enzymes


fluorophosphonate-binding hydrolases (FphA–J). One hydrolase, FphB, can process short fatty acid esters, exhibits increased activity in response to host cell factors, is located


predominantly on the bacterial cell surface in a subset of cells, and is concentrated in the division septum. Genetic disruption of _fphB_ confirmed that the enzyme is dispensable for


bacterial growth in culture but crucial for establishing infection in distinct sites in vivo. A selective small molecule inhibitor of FphB effectively reduced infectivity in vivo, suggesting


that it may be a viable therapeutic target for the treatment or management of _Staphylococcus_ infections. Access through your institution Buy or subscribe This is a preview of subscription


content, access via your institution ACCESS OPTIONS Access through your institution Access Nature and 54 other Nature Portfolio journals Get Nature+, our best-value online-access


subscription $32.99 / 30 days cancel any time Learn more Subscribe to this journal Receive 12 print issues and online access $259.00 per year only $21.58 per issue Learn more Buy this


article * Purchase on SpringerLink * Instant access to full article PDF Buy now Prices may be subject to local taxes which are calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in


* Learn about institutional subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS IDENTIFICATION OF COVALENT INHIBITORS OF _STAPHYLOCOCCUS AUREUS_


SERINE HYDROLASES IMPORTANT FOR VIRULENCE AND BIOFILM FORMATION Article Open access 30 May 2025 MURG AS A POTENTIAL TARGET OF QUERCETIN IN _STAPHYLOCOCCUS AUREUS_ SUPPORTED BY EVIDENCE FROM


SUBTRACTIVE PROTEOMICS AND MOLECULAR DYNAMICS Article Open access 01 March 2025 STREPTOLYSIN O ACCELERATES THE CONVERSION OF PLASMINOGEN TO PLASMIN Article Open access 25 November 2024


REFERENCES * Reddy, P. N., Srirama, K. & Dirisala, V. R. An update on clinical burden, diagnostic tools, and therapeutic options of _Staphylococcus aureus_. _Infect. Dis. (Auckl.)_ 10,


1179916117703999 (2017). Google Scholar  * Tong, S. Y., Davis, J. S., Eichenberger, E., Holland, T. L. & Fowler, V. G. Jr. Staphylococcus aureus infections: epidemiology,


pathophysiology, clinical manifestations, and management. _Clin. Microbiol. Rev._ 28, 603–661 (2015). Article  CAS  PubMed  PubMed Central  Google Scholar  * Laupland, K. B. et al. The


changing epidemiology of _Staphylococcus aureus_ bloodstream infection: a multinational population-based surveillance study. _Clin. Microbiol. Infect._ 19, 465–471 (2013). Article  CAS 


PubMed  Google Scholar  * Duthie, E. S. & Lorenz, L. L. Staphylococcal coagulase; mode of action and antigenicity. _J. Gen. Microbiol_. 6, 95–107 (1952). CAS  PubMed  Google Scholar  *


Frees, D., Gerth, U. & Ingmer, H. Clp chaperones and proteases are central in stress survival, virulence and antibiotic resistance of _Staphylococcus aureus_. _Int. J. Med. Microbiol._


304, 142–149 (2014). Article  CAS  PubMed  Google Scholar  * Staub, I. & Sieber, S. A. Beta-lactam probes as selective chemical-proteomic tools for the identification and functional


characterization of resistance associated enzymes in MRSA. _J. Am. Chem. Soc._ 131, 6271–6276 (2009). Article  CAS  PubMed  Google Scholar  * Frankel, M. B., Hendrickx, A. P., Missiakas, D.


M. & Schneewind, O. LytN, a murein hydrolase in the cross-wall compartment of _Staphylococcus aureus_, is involved in proper bacterial growth and envelope assembly. _J. Biol. Chem._ 286,


32593–32605 (2011). Article  CAS  PubMed  PubMed Central  Google Scholar  * Bukowski, M., Wladyka, B. & Dubin, G. Exfoliative toxins of _Staphylococcus aureus_. _Toxins (Basel)_ 2,


1148–1165 (2010). Article  CAS  Google Scholar  * Pietrocola, G., Nobile, G., Rindi, S. & Speziale, P. _Staphylococcus aureus_ manipulates innate immunity through own and host-expressed


proteases. _Front. Cell. Infect. Microbiol._ 7, 166 (2017). Article  PubMed  PubMed Central  Google Scholar  * Böttcher, T. & Sieber, S. A. Beta-lactones as specific inhibitors of ClpP


attenuate the production of extracellular virulence factors of _Staphylococcus aureus_. _J. Am. Chem. Soc._ 130, 14400–14401 (2008). Article  CAS  PubMed  Google Scholar  * Liu, Y.,


Patricelli, M. P. & Cravatt, B. F. Activity-based protein profiling: the serine hydrolases. _Proc. Natl Acad. Sci. USA_ 96, 14694–14699 (1999). Article  CAS  PubMed  PubMed Central 


Google Scholar  * Patricelli, M. P., Giang, D. K., Stamp, L. M. & Burbaum, J. J. Direct visualization of serine hydrolase activities in complex proteomes using fluorescent active


site-directed probes. _Proteomics_ 1, 1067–1071 (2001). Article  CAS  PubMed  Google Scholar  * Simon, G. M. & Cravatt, B. F. Activity-based proteomics of enzyme superfamilies: serine


hydrolases as a case study. _J. Biol. Chem._ 285, 11051–11055 (2010). Article  CAS  PubMed  PubMed Central  Google Scholar  * Henness, S. & Perry, C. M. Orlistat: a review of its use in


the management of obesity. _Drugs_ 66, 1625–1656 (2006). Article  CAS  PubMed  Google Scholar  * Thornberry, N. A. & Weber, A. E. Discovery of JANUVIA (Sitagliptin), a selective


dipeptidyl peptidase IV inhibitor for the treatment of type 2 diabetes. _Curr. Top. Med. Chem._ 7, 557–568 (2007). Article  CAS  PubMed  Google Scholar  * Kluge, A. F. & Petter, R. C.


Acylating drugs: redesigning natural covalent inhibitors. _Curr. Opin. Chem. Biol._ 14, 421–427 (2010). Article  CAS  PubMed  Google Scholar  * Adam, G. C., Sorensen, E. J. & Cravatt, B.


F. Chemical strategies for functional proteomics. _Mol. Cell. Proteomics_ 1, 781–790 (2002). Article  CAS  PubMed  Google Scholar  * Leung, D., Hardouin, C., Boger, D. L. & Cravatt, B.


F. Discovering potent and selective reversible inhibitors of enzymes in complex proteomes. _Nat. Biotechnol._ 21, 687–691 (2003). Article  CAS  PubMed  Google Scholar  * Jessani, N., Liu,


Y., Humphrey, M. & Cravatt, B. F. Enzyme activity profiles of the secreted and membrane proteome that depict cancer cell invasiveness. _Proc. Natl Acad. Sci. USA_ 99, 10335–10340 (2002).


Article  CAS  PubMed  PubMed Central  Google Scholar  * Ortega, C. et al. Systematic survey of serine hydrolase activity in _Mycobacterium tuberculosis_ defines changes associated with


persistence. _Cell Chem. Biol._ 23, 290–298 (2016). Article  CAS  PubMed  PubMed Central  Google Scholar  * Tallman, K. R., Levine, S. R. & Beatty, K. E. Small-molecule probes reveal


esterases with persistent activity in dormant and reactivating _Mycobacterium tuberculosis_. _ACS Infect. Dis._ 2, 936–944 (2016). Article  CAS  PubMed  PubMed Central  Google Scholar  *


Hatzios, S. K. et al. Chemoproteomic profiling of host and pathogen enzymes active in cholera. _Nat. Chem. Biol._ 12, 268–274 (2016). Article  CAS  PubMed  PubMed Central  Google Scholar  *


Zweerink, S. et al. Activity-based protein profiling as a robust method for enzyme identification and screening in extremophilic Archaea. _Nat. Commun._ 8, 15352 (2017). Article  CAS  PubMed


  PubMed Central  Google Scholar  * Hall, C. I. et al. Chemical genetic screen identifies _Toxoplasma_ DJ-1 as a regulator of parasite secretion, attachment, and invasion. _Proc. Natl Acad.


Sci. USA_ 108, 10568–10573 (2011). Article  PubMed  PubMed Central  Google Scholar  * Lentz, C. S. et al. Design of selective substrates and activity-based probes for Hydrolase Important for


Pathogenesis 1 (HIP1) from _Mycobacterium tuberculosis_. _ACS Infect. Dis._ 2, 807–815 (2016). Article  CAS  PubMed  PubMed Central  Google Scholar  * Cadieux, B., Vijayakumaran, V.,


Bernards, M. A., McGavin, M. J. & Heinrichs, D. E. Role of lipase from community-associated methicillin-resistant _Staphylococcus aureus_ strain USA300 in hydrolyzing triglycerides into


growth-inhibitory free fatty acids. _J. Bacteriol._ 196, 4044–4056 (2014). Article  CAS  PubMed  PubMed Central  Google Scholar  * Rosenstein, R. & Gotz, F. Staphylococcal lipases:


biochemical and molecular characterization. _Biochimie_ 82, 1005–1014 (2000). Article  CAS  PubMed  Google Scholar  * Nguyen, M. T. et al. Staphylococcal (phospho)lipases promote biofilm


formation and host cell invasion. _Int. J. Med. Microbiol._ https://doi.org/10.1016/j.ijmm.2017.11.013 (2017). * Staub, I. & Sieber, S. A. Beta-lactams as selective chemical probes for


the in vivo labeling of bacterial enzymes involved in cell wall biosynthesis, antibiotic resistance, and virulence. _J. Am. Chem. Soc._ 130, 13400–13409 (2008). Article  CAS  PubMed  Google


Scholar  * Fey, P. D. et al. A genetic resource for rapid and comprehensive phenotype screening of nonessential _Staphylococcus aureus_ genes. _MBio_ 4, e00537–e12 (2013). Article  CAS 


PubMed  PubMed Central  Google Scholar  * Utaida, S. et al. Genome-wide transcriptional profiling of the response of _Staphylococcus aureus_ to cell-wall-active antibiotics reveals a


cell-wall-stress stimulon. _Microbiology_ 149, 2719–2732 (2003). Article  CAS  PubMed  Google Scholar  * Pietiäinen, M. et al. Transcriptome analysis of the responses of _Staphylococcus


aureus_ to antimicrobial peptides and characterization of the roles of vraDE and vraSR in antimicrobial resistance. _BMC Genomics_ 10, 429 (2009). Article  CAS  PubMed  PubMed Central 


Google Scholar  * Sass, P. et al. The lantibiotic mersacidin is a strong inducer of the cell wall stress response of _Staphylococcus aureus_. _BMC Microbiol._ 8, 186 (2008). Article  CAS 


PubMed  PubMed Central  Google Scholar  * Muthaiyan, A. et al. Antimicrobial effect and mode of action of terpeneless cold-pressed Valencia orange essential oil on methicillin-resistant


_Staphylococcus aureus_. _J. Appl. Microbiol._ 112, 1020–1033 (2012). Article  CAS  PubMed  PubMed Central  Google Scholar  * Palazzolo-Ballance, A. M. et al. Neutrophil microbicides induce


a pathogen survival response in community-associated methicillin-resistant _Staphylococcus aureus_. _J. Immunol._ 180, 500–509 (2008). Article  CAS  PubMed  Google Scholar  * Bore, E.,


Langsrud, S., Langsrud, O., Rode, T. M. & Holck, A. Acid-shock responses in _Staphylococcus aureus_ investigated by global gene expression analysis. _Microbiology_ 153, 2289–2303 (2007).


Article  CAS  PubMed  Google Scholar  * Neumann, Y. et al. The effect of skin fatty acids on _Staphylococcus aureus_. _Arch. Microbiol._ 197, 245–267 (2015). Article  CAS  PubMed  Google


Scholar  * Garland, M. et al. Development of an activity-based probe for acyl-protein thioesterases. _PLoS One_ 13, e0190255 (2018). Article  CAS  PubMed  PubMed Central  Google Scholar  *


Jinno, A. & Park, P. W. Role of glycosaminoglycans in infectious disease. _Methods Mol. Biol._ 1229, 567–585 (2015). Article  CAS  PubMed  PubMed Central  Google Scholar  * van Gemst, J.


J. et al. RNA contaminates glycosaminoglycans extracted from cells and tissues. _PLoS One_ 11, e0167336 (2016). Article  CAS  PubMed  PubMed Central  Google Scholar  * Raz, A. &


Fischetti, V. A. Sortase A localizes to distinct foci on the _Streptococcus pyogenes_ membrane. _Proc. Natl Acad. Sci. USA_ 105, 18549–18554 (2008). Article  PubMed  PubMed Central  Google


Scholar  * Mazmanian, S. K., Liu, G., Jensen, E. R., Lenoy, E. & Schneewind, O. _Staphylococcus aureus_ sortase mutants defective in the display of surface proteins and in the


pathogenesis of animal infections. _Proc. Natl Acad. Sci. USA_ 97, 5510–5515 (2000). Article  CAS  PubMed  PubMed Central  Google Scholar  * Clarke, A. J. & Dupont, C. O-Acetylated


peptidoglycan: its occurrence, pathobiological significance, and biosynthesis. _Can. J. Microbiol._ 38, 85–91 (1992). Article  CAS  PubMed  Google Scholar  * Bera, A., Biswas, R., Herbert,


S. & Gotz, F. The presence of peptidoglycan O-acetyltransferase in various staphylococcal species correlates with lysozyme resistance and pathogenicity. _Infect. Immun._ 74, 4598–4604


(2006). Article  CAS  PubMed  PubMed Central  Google Scholar  * Brown, S. et al. Methicillin resistance in _Staphylococcus aureus_ requires glycosylated wall teichoic acids. _Proc. Natl


Acad. Sci. USA_ 109, 18909–18914 (2012). Article  PubMed  PubMed Central  Google Scholar  * Winstel, V. et al. Wall teichoic acid glycosylation governs _Staphylococcus aureus_ nasal


colonization. _MBio_ 6, e00632–15 (2015). Article  CAS  PubMed  PubMed Central  Google Scholar  * Weadge, J. T. & Clarke, A. J. Identification and characterization of


O-acetylpeptidoglycan esterase: a novel enzyme discovered in _Neisseria gonorrhoeae_. _Biochemistry_ 45, 839–851 (2006). Article  CAS  PubMed  Google Scholar  * Weadge, J. T., Pfeffer, J. M.


& Clarke, A. J. Identification of a new family of enzymes with potential O-acetylpeptidoglycan esterase activity in both Gram-positive and Gram-negative bacteria. _BMC Microbiol._ 5, 49


(2005). Article  CAS  PubMed  PubMed Central  Google Scholar  * Rahman, M. M. et al. The _Staphylococcus aureus_ methicillin resistance factor FmtA is a d-amino esterase that acts on


teichoic acids. _MBio_ 7, e02070–e15 (2016). Article  CAS  PubMed  PubMed Central  Google Scholar  * Garcia-Fernandez, E. et al. Membrane microdomain disassembly inhibits MRSA antibiotic


resistance. _Cell_ 171, 1354–1367.e20 (2017). Article  CAS  PubMed  PubMed Central  Google Scholar  * Pang, Y. Y. et al. agr-dependent interactions of _Staphylococcus aureus_ USA300 with


human polymorphonuclear neutrophils. _J. Innate Immun._ 2, 546–559 (2010). Article  CAS  PubMed  PubMed Central  Google Scholar  * Weerapana, E., Speers, A. E. & Cravatt, B. J. Tandem


orthogonal proteolysis-activity-based protein profiling (TOP-ABPP)-a general method for mapping sites of probe modification in proteomes. _Nat. Protoc._ 2, 1414–1425 (2007). Article  CAS 


PubMed  Google Scholar  Download references ACKNOWLEDGEMENTS We thank A. Horswill (University of Iowa) for sharing the GFP plasmid pCM29. We thank N. Amara and J. Yim for help with NMR


analyses and S. Chen for LC-MS analysis of JCP678, and L. Popov, O. Zurek, J. Romaniuk and L. Cegelski for discussions. We also thank E. Yeh for access to the BD Accuri flow cytometer.


C.S.L. was supported through a postdoctoral research fellowship by the German Research Foundation (DFG). This work was further supported through NIH grants 1R01GM111703 and R01EB026332 to


M.B., 1R01GM117004 and 1R01GM118431-01A1 to E.W., 1R01AI101171 and 1R01AI069233 to E.P.S., and R21AI117255 to M.R.A. AUTHOR INFORMATION Author notes * These authors contributed equally:


Christian S. Lentz, Jessica R. Sheldon. AUTHORS AND AFFILIATIONS * Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA Christian S. Lentz, Megan Garland & 


Matthew Bogyo * Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA Jessica R. Sheldon & Eric P. Skaar * Department of


Chemistry, Boston College, Chestnut Hill, MA, USA Lisa A. Crawford & Eranthie Weerapana * Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA Rachel


Cooper & Manuel R. Amieva * Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA Manuel R. Amieva & Matthew Bogyo Authors * Christian


S. Lentz View author publications You can also search for this author inPubMed Google Scholar * Jessica R. Sheldon View author publications You can also search for this author inPubMed 


Google Scholar * Lisa A. Crawford View author publications You can also search for this author inPubMed Google Scholar * Rachel Cooper View author publications You can also search for this


author inPubMed Google Scholar * Megan Garland View author publications You can also search for this author inPubMed Google Scholar * Manuel R. Amieva View author publications You can also


search for this author inPubMed Google Scholar * Eranthie Weerapana View author publications You can also search for this author inPubMed Google Scholar * Eric P. Skaar View author


publications You can also search for this author inPubMed Google Scholar * Matthew Bogyo View author publications You can also search for this author inPubMed Google Scholar CONTRIBUTIONS


C.S.L. and M.B. conceived the project. C.S.L designed and performed the in vitro experiments, synthesized compounds and analyzed data. J.R.S. designed and performed the in vivo infection


experiments and the genetic manipulation of _S. aureus_, and analyzed data. L.A.C. and E.W. performed LC-MS/MS analysis. R.C. contributed to the comparative bacterial labeling experiments.


M.G. synthesized compounds. M.R.A. contributed to the experimental design and analyzed data. E.P.S. designed and analyzed in vivo infection experiments. M.B. supervised the project, designed


experiments and analyzed data. C.S.L. and M.B. wrote the manuscript, and all authors reviewed, discussed and edited the manuscript. CORRESPONDING AUTHOR Correspondence to Matthew Bogyo.


ETHICS DECLARATIONS COMPETING INTERESTS The authors declare no competing interests. ADDITIONAL INFORMATION PUBLISHER’S NOTE: Springer Nature remains neutral with regard to jurisdictional


claims in published maps and institutional affiliations. SUPPLEMENTARY INFORMATION SUPPLEMENTARY TEXT AND FIGURESSUPPLEMENTARY TABLES 1–5, SUPPLEMENTARY FIGURES 1–9 AND SUPPLEMENTARY NOTE


REPORTING SUMMARY SUPPLEMENTARY DATASET 1 RIGHTS AND PERMISSIONS Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Lentz, C.S., Sheldon, J.R., Crawford, L.A. _et al._


Identification of a _S. aureus_ virulence factor by activity-based protein profiling (ABPP). _Nat Chem Biol_ 14, 609–617 (2018). https://doi.org/10.1038/s41589-018-0060-1 Download citation *


Received: 18 October 2017 * Accepted: 27 March 2018 * Published: 16 May 2018 * Issue Date: June 2018 * DOI: https://doi.org/10.1038/s41589-018-0060-1 SHARE THIS ARTICLE Anyone you share the


following link with will be able to read this content: Get shareable link Sorry, a shareable link is not currently available for this article. Copy to clipboard Provided by the Springer


Nature SharedIt content-sharing initiative