Tnf in the era of immune checkpoint inhibitors: friend or foe?

feature-image

Play all audios:

Loading...

ABSTRACT Immune checkpoint inhibitors (ICIs) are effective in the treatment of patients with advanced cancer and have emerged as a pillar of standard cancer care. However, their use is


complicated by adverse effects known as immune-related adverse events (irAEs), including ICI-induced inflammatory arthritis. ICI-induced inflammatory arthritis is distinguished from other


irAEs by its persistence and requirement for long-term treatment. TNF inhibitors are commonly used to treat inflammatory diseases such as rheumatoid arthritis, spondyloarthropathies and


inflammatory bowel disease, and have also been adopted as second-line agents to treat irAEs refractory to glucocorticoid treatment. Experiencing an irAE is associated with a better


antitumour response after ICI treatment. However, whether TNF inhibition can be safely used to treat irAEs without promoting cancer progression, either by compromising ICI therapy efficacy


or via another route, remains an open question. In this Review, we discuss clinical and preclinical studies that address the relationship between TNF, TNF inhibition and cancer. The bulk of


the evidence suggests that at least short courses of TNF inhibitors are safe for the treatment of irAEs in patients with cancer undergoing ICI therapy. Data from preclinical studies hint


that TNF inhibition might augment the antitumour effect of ICI therapy while simultaneously ameliorating irAEs. KEY POINTS * Different arms of the immune response are important for


autoimmune versus anticancer activities, and TNF inhibitors restrain some of these arms while promoting or having a neutral effect on others. * Preclinical studies provide evidence that


short courses of TNF inhibitors, despite their efficacy in ameliorating immune-related adverse events (irAEs), do not restrain the anticancer effects of immune checkpoint inhibitors (ICIs).


* TNF inhibitor treatment of rheumatic diseases does not seem to increase the risk of cancer, except for non-melanoma skin cancer and possibly lymphoma. * Short courses of TNF inhibitors are


likely to be safe in the treatment of ICI-associated irAEs, but data on the safety of long-term TNF inhibitor use for irAEs are lacking. * Clinical studies that directly assess the effect


of TNF inhibitor treatment on ICI efficacy are required to draw conclusions regarding the safety of TNF inhibitor treatment for irAEs. Access through your institution Buy or subscribe This


is a preview of subscription content, access via your institution ACCESS OPTIONS Access through your institution Access Nature and 54 other Nature Portfolio journals Get Nature+, our


best-value online-access subscription $29.99 / 30 days cancel any time Learn more Subscribe to this journal Receive 12 print issues and online access $209.00 per year only $17.42 per issue


Learn more Buy this article * Purchase on SpringerLink * Instant access to full article PDF Buy now Prices may be subject to local taxes which are calculated during checkout ADDITIONAL


ACCESS OPTIONS: * Log in * Learn about institutional subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS IMMUNOSUPPRESSION FOR IMMUNE-RELATED


ADVERSE EVENTS DURING CHECKPOINT INHIBITION: AN INTRICATE BALANCE Article Open access 12 May 2023 IMMUNE-CHECKPOINT INHIBITOR USE IN PATIENTS WITH CANCER AND PRE-EXISTING AUTOIMMUNE DISEASES


Article 05 October 2022 TARGETING THE TNF AND TNFR SUPERFAMILIES IN AUTOIMMUNE DISEASE AND CANCER Article 24 October 2024 REFERENCES * Arnaud-Coffin, P. et al. A systematic review of


adverse events in randomized trials assessing immune checkpoint inhibitors. _Int. J. Cancer_ 145, 639–648 (2019). CAS  PubMed  Google Scholar  * Postow, M. A., Sidlow, R. & Hellmann, M.


D. Immune-related adverse events associated with immune checkpoint blockade. _N. Engl. J. Med._ 378, 158–168 (2018). CAS  PubMed  Google Scholar  * Chan, K. K. & Bass, A. R. Autoimmune


complications of immunotherapy: pathophysiology and management. _BMJ_ 369, m736 (2020). PubMed  Google Scholar  * Larkin, J., Hodi, F. S. & Wolchok, J. D. Combined nivolumab and


ipilimumab or monotherapy in untreated melanoma. _N. Engl. J. Med._ 373, 1270–1271 (2015). PubMed  Google Scholar  * Kostine, M. et al. Rheumatic disorders associated with immune checkpoint


inhibitors in patients with cancer-clinical aspects and relationship with tumour response: a single-centre prospective cohort study. _Ann. Rheum. Dis._ 77, 393–398 (2018). CAS  PubMed 


Google Scholar  * Cappelli, L. C. et al. Clinical presentation of immune checkpoint inhibitor-induced inflammatory arthritis differs by immunotherapy regimen. _Semin. Arthritis Rheum._ 48,


553–557 (2018). PubMed  PubMed Central  Google Scholar  * Ghosh, N. et al. Checkpoint inhibitor-associated arthritis: a systematic review of case reports and case series. _J. Clin.


Rheumatol._ https://doi.org/10.1097/RHU.0000000000001370 (2020). Article  Google Scholar  * Thompson, J. A. et al. NCCN guidelines insights: management of immunotherapy-related toxicities,


version 1.2020: featured Updates to the NCCN Guidelines. _J. Natl Compr. Cancer Netw._ 18, 230–241 (2020). CAS  Google Scholar  * Smith, M. H. & Bass, A. R. Arthritis after cancer


immunotherapy: symptom duration and treatment response. _Arthritis Care Res._ 71, 362–366 (2019). CAS  Google Scholar  * Braaten, T. J. et al. Immune checkpoint inhibitor-induced


inflammatory arthritis persists after immunotherapy cessation. _Ann. Rheum. Dis._ 79, 332–338 (2019). PubMed  Google Scholar  * Kim, S. T. et al. Successful treatment of arthritis induced by


checkpoint inhibitors with tocilizumab: a case series. _Ann. Rheum. Dis._ 76, 2061–2064 (2017). PubMed  Google Scholar  * Roberts, J. et al. Hydroxychloroquine is a safe and effective


steroid-sparing agent for immune checkpoint inhibitor-induced inflammatory arthritis. _Clin. Rheumatol._ 38, 1513–1519 (2019). PubMed  Google Scholar  * Teulings, H. E. et al. Vitiligo-like


depigmentation in patients with stage III–IV melanoma receiving immunotherapy and its association with survival: a systematic review and meta-analysis. _J. Clin. Oncol._ 33, 773–781 (2015).


CAS  PubMed  Google Scholar  * Zhou, X. et al. Are immune-related adverse events associated with the efficacy of immune checkpoint inhibitors in patients with cancer? A systematic review and


meta-analysis. _BMC Med._ 18, 87 (2020). CAS  PubMed  PubMed Central  Google Scholar  * Haratani, K. et al. Association of immune-related adverse events with nivolumab efficacy in


non-small-cell lung cancer. _JAMA Oncol._ 4, 374–378 (2018). PubMed  Google Scholar  * Horvat, T. Z. et al. Immune-related adverse events, need for systemic immunosuppression, and effects on


survival and time to treatment failure in patients with melanoma treated with ipilimumab at Memorial Sloan Kettering Cancer Center. _J. Clin. Oncol._ 33, 3193–3198 (2015). CAS  PubMed 


PubMed Central  Google Scholar  * Mahmood, S. S. et al. Myocarditis in patients treated with immune checkpoint inhibitors. _J. Am. Coll. Cardiol._ 71, 1755–1764 (2018). CAS  PubMed  PubMed


Central  Google Scholar  * Marthey, L. et al. Cancer immunotherapy with anti-CTLA-4 monoclonal antibodies induces an inflammatory bowel disease. _J. Crohns Colitis_ 10, 395–401 (2016). CAS 


PubMed  PubMed Central  Google Scholar  * Faje, A. T. et al. High-dose glucocorticoids for the treatment of ipilimumab-induced hypophysitis is associated with reduced survival in patients


with melanoma. _Cancer_ 124, 3706–3714 (2018). CAS  PubMed  Google Scholar  * Arbour, K. C. et al. Impact of baseline steroids on efficacy of programmed cell death-1 and programmed


death-ligand 1 blockade in patients with non-small-cell lung cancer. _J. Clin. Oncol._ 36, 2872–2878 (2018). CAS  PubMed  Google Scholar  * Carswell, E. A. et al. An endotoxin-induced serum


factor that causes necrosis of tumors. _Proc. Natl Acad. Sci. USA_ 72, 3666–3670 (1975). CAS  PubMed  PubMed Central  Google Scholar  * Nauts, H. C., Swift, W. E. & Coley, B. L. The


treatment of malignant tumors by bacterial toxins as developed by the late William B. Coley, M.D., reviewed in the light of modern research. _Cancer Res._ 6, 205–216 (1946). CAS  PubMed 


Google Scholar  * Shear, M. J. & Perrault, A. Chemical treatment of tumors. IX. Reactions of mice with primary subcutaneous tumors to injection of a hemorrhage-producing bacterial


polysaccharide. _J. Natl Cancer Inst._ 4, 461–476 (1944). CAS  Google Scholar  * O’Malley, W. E., Achinstein, B. & Shear, M. J. Journal of the National Cancer Institute, Vol. 29, 1962:


Action of bacterial polysaccharide on tumors. II. Damage of sarcoma 37 by serum of mice treated with Serratia marcescens polysaccharide, and induced tolerance. _Nutr. Rev._ 46, 389–391


(1988). PubMed  Google Scholar  * Pennica, D. et al. Human tumour necrosis factor: precursor structure, expression and homology to lymphotoxin. _Nature_ 312, 724–729 (1984). CAS  PubMed 


Google Scholar  * Fransen, L. et al. Molecular cloning of mouse tumour necrosis factor cDNA and its eukaryotic expression. _Nucleic Acids Res._ 13, 4417–4429 (1985). CAS  PubMed  PubMed


Central  Google Scholar  * Beutler, B. et al. Identity of tumour necrosis factor and the macrophage-secreted factor cachectin. _Nature_ 316, 552–554 (1985). CAS  PubMed  Google Scholar  *


Brennan, F. M., Chantry, D., Jackson, A., Maini, R. & Feldmann, M. Inhibitory effect of TNFα antibodies on synovial cell interleukin-1 production in rheumatoid arthritis. _Lancet_ 2,


244–247 (1989). CAS  PubMed  Google Scholar  * Keffer, J. et al. Transgenic mice expressing human tumour necrosis factor: a predictive genetic model of arthritis. _EMBO J._ 10, 4025–4031


(1991). CAS  PubMed  PubMed Central  Google Scholar  * Gamm, H., Lindemann, A., Mertelsmann, R. & Herrmann, F. Phase I trial of recombinant human tumour necrosis factor α in patients


with advanced malignancy. _Eur. J. Cancer_ 27, 856–863 (1991). CAS  PubMed  Google Scholar  * Arican, O., Aral, M., Sasmaz, S. & Ciragil, P. Serum levels of TNF-α, IFN-γ, IL-6, IL-8,


IL-12, IL-17, and IL-18 in patients with active psoriasis and correlation with disease severity. _Mediators Inflamm._ 2005, 273–279 (2005). PubMed  PubMed Central  Google Scholar  * Waters,


J. P., Pober, J. S. & Bradley, J. R. Tumour necrosis factor and cancer. _J. Pathol._ 230, 241–248 (2013). CAS  PubMed  Google Scholar  * Robaye, B., Mosselmans, R., Fiers, W., Dumont, J.


E. & Galand, P. Tumor necrosis factor induces apoptosis (programmed cell death) in normal endothelial cells in vitro. _Am. J. Pathol._ 138, 447–453 (1991). CAS  PubMed  PubMed Central 


Google Scholar  * Balkwill, F. Tumour necrosis factor and cancer. _Nat. Rev. Cancer_ 9, 361–371 (2009). CAS  PubMed  Google Scholar  * Wu, H., Tschopp, J. & Lin, S. C. Smac mimetics and


TNFα: a dangerous liaison? _Cell_ 131, 655–658 (2007). CAS  PubMed  PubMed Central  Google Scholar  * Ratner, A. & Clark, W. R. Role of TNF-α in CD8+ cytotoxic T lymphocyte-mediated


lysis. _J. Immunol._ 150, 4303–4314 (1993). CAS  PubMed  Google Scholar  * Caron, G. et al. Human NK cells constitutively express membrane TNF-α (mTNFα) and present mTNFα-dependent cytotoxic


activity. _Eur. J. Immunol._ 29, 3588–3595 (1999). CAS  PubMed  Google Scholar  * Freedman, M. H. et al. Central role of tumour necrosis factor, GM-CSF, and interleukin 1 in the


pathogenesis of juvenile chronic myelogenous leukaemia. _Br. J. Haematol._ 80, 40–48 (1992). CAS  PubMed  Google Scholar  * Fràter-Schroder, M., Risau, W., Hallmann, R., Gautschi, P. &


Böhlen, P. Tumor necrosis factor type α, a potent inhibitor of endothelial cell growth in vitro, is angiogenic in vivo. _Proc. Natl Acad. Sci. USA_ 84, 5277–5281 (1987). PubMed  PubMed


Central  Google Scholar  * Li, B. et al. Low levels of tumor necrosis factor α increase tumor growth by inducing an endothelial phenotype of monocytes recruited to the tumor site. _Cancer


Res._ 69, 338–348 (2009). CAS  PubMed  PubMed Central  Google Scholar  * Moore, R. J. et al. Mice deficient in tumor necrosis factor-α are resistant to skin carcinogenesis. _Nat. Med._ 5,


828–831 (1999). CAS  PubMed  Google Scholar  * Starcher, B. Role for tumour necrosis factor-α receptors in ultraviolet-induced skin tumours. _Br. J. Dermatol._ 142, 1140–1147 (2000). CAS 


PubMed  Google Scholar  * Karabela, S. P. et al. Neutralization of tumor necrosis factor bioactivity ameliorates urethane-induced pulmonary oncogenesis in mice. _Neoplasia_ 13, 1143–1151


(2011). CAS  PubMed  PubMed Central  Google Scholar  * Popivanova, B. K. et al. Blocking TNF-α in mice reduces colorectal carcinogenesis associated with chronic colitis. _J. Clin. Invest._


118, 560–570 (2008). CAS  PubMed  PubMed Central  Google Scholar  * Senthilkumar, C., Niranjali, S., Jayanthi, V., Ramesh, T. & Devaraj, H. Molecular and histological evaluation of tumor


necrosis factor-α expression in Helicobacter pylori-mediated gastric carcinogenesis. _J. Cancer Res. Clin. Oncol._ 137, 577–583 (2011). CAS  PubMed  Google Scholar  * Suganuma, M.,


Kuzuhara, T., Yamaguchi, K. & Fujiki, H. Carcinogenic role of tumor necrosis factor-α inducing protein of Helicobacter pylori in human stomach. _J. Biochem. Mol. Biol._ 39, 1–8 (2006).


CAS  PubMed  Google Scholar  * Wilson, A. G., Symons, J. A., McDowell, T. L., McDevitt, H. O. & Duff, G. W. Effects of a polymorphism in the human tumor necrosis factor α promoter on


transcriptional activation. _Proc. Natl Acad. Sci. USA_ 94, 3195–3199 (1997). CAS  PubMed  PubMed Central  Google Scholar  * Louis, E. et al. Tumour necrosis factor (TNF) gene polymorphism


influences TNF-α production in lipopolysaccharide (LPS)-stimulated whole blood cell culture in healthy humans. _Clin. Exp. Immunol._ 113, 401–406 (1998). CAS  PubMed  PubMed Central  Google


Scholar  * Guo, X. F. et al. _TNF-α-308_ polymorphism and risk of digestive system cancers: a meta-analysis. _World J. Gastroenterol._ 19, 9461–9471 (2013). CAS  PubMed  PubMed Central 


Google Scholar  * Ma, L. et al. Association between _Tumor necrosis factor-alpha gene_ polymorphisms and prostate cancer risk: a meta-analysis. _Diagn. Pathol._ 9, 74 (2014). PubMed  PubMed


Central  Google Scholar  * Elliott, M. J. et al. Randomised double-blind comparison of chimeric monoclonal antibody to tumour necrosis factor α (cA2) versus placebo in rheumatoid arthritis.


_Lancet_ 344, 1105–1110 (1994). CAS  PubMed  Google Scholar  * Monaco, C., Nanchahal, J., Taylor, P. & Feldmann, M. Anti-TNF therapy: past, present and future. _Int. Immunol._ 27, 55–62


(2015). CAS  PubMed  Google Scholar  * Bradley, J. R. TNF-mediated inflammatory disease. _J. Pathol._ 214, 149–160 (2008). CAS  PubMed  Google Scholar  * Kalliolias, G. D. & Ivashkiv, L.


B. TNF biology, pathogenic mechanisms and emerging therapeutic strategies. _Nat. Rev. Rheumatol._ 12, 49–62 (2016). CAS  PubMed  Google Scholar  * Apostolaki, M., Armaka, M., Victoratos, P.


& Kollias, G. Cellular mechanisms of TNF function in models of inflammation and autoimmunity. _Curr. Dir. Autoimmun._ 11, 1–26 (2010). CAS  PubMed  Google Scholar  * Gordon, C., Ranges,


G. E., Greenspan, J. S. & Wofsy, D. Chronic therapy with recombinant tumor necrosis factor-α in autoimmune NZB/NZW F1 mice. _Clin. Immunol. Immunopathol._ 52, 421–434 (1989). CAS 


PubMed  Google Scholar  * Jacob, C. O., Aiso, S., Michie, S. A., McDevitt, H. O. & Acha-Orbea, H. Prevention of diabetes in nonobese diabetic mice by tumor necrosis factor (TNF):


similarities between TNF-α and interleukin 1. _Proc. Natl Acad. Sci. USA_ 87, 968–972 (1990). CAS  PubMed  PubMed Central  Google Scholar  * Cope, A. P. et al. Chronic tumor necrosis factor


alters T cell responses by attenuating T cell receptor signaling. _J. Exp. Med._ 185, 1573–1584 (1997). CAS  PubMed  PubMed Central  Google Scholar  * Chu, C. Q., Field, M., Feldmann, M.


& Maini, R. N. Localization of tumor necrosis factor α in synovial tissues and at the cartilage-pannus junction in patients with rheumatoid arthritis. _Arthritis Rheum._ 34, 1125–1132


(1991). CAS  PubMed  Google Scholar  * Alsalameh, S. et al. Distribution of TNF-α, TNF-R55 and TNF-R75 in the rheumatoid synovial membrane: TNF receptors are localized preferentially in the


lining layer; TNF-α is distributed mainly in the vicinity of TNF receptors in the deeper layers. _Scand. J. Immunol._ 49, 278–285 (1999). CAS  PubMed  Google Scholar  * Kunisch, E. et al.


Predominant activation of MAP kinases and pro-destructive/pro-inflammatory features by TNF α in early-passage synovial fibroblasts via TNF receptor-1: failure of p38 inhibition to suppress


matrix metalloproteinase-1 in rheumatoid arthritis. _Ann. Rheum. Dis._ 66, 1043–1051 (2007). CAS  PubMed  PubMed Central  Google Scholar  * Notley, C. A. et al. Blockade of tumor necrosis


factor in collagen-induced arthritis reveals a novel immunoregulatory pathway for Th1 and Th17 cells. _J. Exp. Med._ 205, 2491–2497 (2008). CAS  PubMed  PubMed Central  Google Scholar  *


Hull, D. N. et al. Increase in circulating Th17 cells during anti-TNF therapy is associated with ultrasonographic improvement of synovitis in rheumatoid arthritis. _Arthritis Res. Ther._ 18,


303 (2016). PubMed  PubMed Central  Google Scholar  * Taylor, P. C. et al. Reduction of chemokine levels and leukocyte traffic to joints by tumor necrosis factor α blockade in patients with


rheumatoid arthritis. _Arthritis Rheum._ 43, 38–47 (2000). CAS  PubMed  Google Scholar  * Koelink, P. J. et al. Anti-TNF therapy in IBD exerts its therapeutic effect through macrophage


IL-10 signalling. _Gut_ 69, 1053–1063 (2020). CAS  PubMed  Google Scholar  * Housley, W. J. et al. Natural but not inducible regulatory T cells require TNF-α signaling for in vivo function.


_J. Immunol._ 186, 6779–6787 (2011). CAS  PubMed  Google Scholar  * Punit, S. et al. Tumor necrosis factor receptor 2 restricts the pathogenicity of CD8+ T cells in mice with colitis.


_Gastroenterology_ 149, 993–1005.e2 (2015). CAS  PubMed  Google Scholar  * Chen, X. et al. TNFR2 expression by CD4 effector T cells is required to induce full-fledged experimental colitis.


_Sci. Rep._ 6, 32834 (2016). CAS  PubMed  PubMed Central  Google Scholar  * Murray-Brown, W. et al. Nivolumab-induced synovitis is characterized by florid T cell infiltration and rapid


resolution with synovial biopsy-guided therapy. _J. Immunother. Cancer_ 8, e000281 (2020). PubMed  PubMed Central  Google Scholar  * Luoma, A. M. et al. Molecular pathways of colon


inflammation induced by cancer immunotherapy. _Cell_ 182, 655–671.e22 (2020). CAS  PubMed  PubMed Central  Google Scholar  * Lesage, C. et al. Incidence and clinical impact of anti-TNFα


treatment of severe immune checkpoint inhibitor-induced colitis in advanced melanoma: the mecolit survey. _J. Immunother._ 42, 175–179 (2019). CAS  PubMed  Google Scholar  * Wang, Y. et al.


Immune-checkpoint inhibitor-induced diarrhea and colitis in patients with advanced malignancies: retrospective review at MD Anderson. _J. Immunother. Cancer_ 6, 37 (2018). PubMed  PubMed


Central  Google Scholar  * Verheijden, R. J. et al. Association of anti-TNF with decreased survival in steroid refractory ipilimumab and anti-PD1 treated patients in the Dutch Melanoma


Treatment Registry. _Clin. Cancer Res._ 26, 2268–2274 (2020). CAS  PubMed  Google Scholar  * Weber, J. S. et al. Safety profile of nivolumab monotherapy: a pooled analysis of patients with


advanced melanoma. _J. Clin. Oncol._ 35, 785–792 (2017). CAS  PubMed  Google Scholar  * Sznol, M. et al. Pooled analysis safety profile of nivolumab and ipilimumab combination therapy in


patients with advanced melanoma. _J. Clin. Oncol._ 35, 3815–3822 (2017). CAS  PubMed  Google Scholar  * Wang, D. Y. et al. Fatal toxic effects associated with immune checkpoint inhibitors: a


systematic review and meta-analysis. _JAMA Oncol._ 4, 1721–1728 (2018). PubMed  PubMed Central  Google Scholar  * Eggermont, A. M. M. et al. Association between immune-related adverse


events and recurrence-free survival among patients with stage III melanoma randomized to receive pembrolizumab or placebo: a secondary analysis of a randomized clinical trial. _JAMA Oncol._


6, 519–527 (2020). PubMed  PubMed Central  Google Scholar  * Havel, J. J., Chowell, D. & Chan, T. A. The evolving landscape of biomarkers for checkpoint inhibitor immunotherapy. _Nat.


Rev. Cancer_ 19, 133–150 (2019). CAS  PubMed  PubMed Central  Google Scholar  * Bridge, J. A., Lee, J. C., Daud, A., Wells, J. W. & Bluestone, J. A. Cytokines, chemokines, and other


biomarkers of response for checkpoint inhibitor therapy in skin cancer. _Front. Med._ 5, 351 (2018). Google Scholar  * Gibney, G. T., Weiner, L. M. & Atkins, M. B. Predictive biomarkers


for checkpoint inhibitor-based immunotherapy. _Lancet Oncol._ 17, e542–e551 (2016). CAS  PubMed  PubMed Central  Google Scholar  * Baecklund, E., Smedby, K. E., Sutton, L. A., Askling, J.


& Rosenquist, R. Lymphoma development in patients with autoimmune and inflammatory disorders–what are the driving forces? _Semin. Cancer Biol._ 24, 61–70 (2014). CAS  PubMed  Google


Scholar  * Smitten, A. L., Simon, T. A., Hochberg, M. C. & Suissa, S. A meta-analysis of the incidence of malignancy in adult patients with rheumatoid arthritis. _Arthritis Res. Ther._


10, R45 (2008). PubMed  PubMed Central  Google Scholar  * Pouplard, C. et al. Risk of cancer in psoriasis: a systematic review and meta-analysis of epidemiological studies. _J. Eur. Acad.


Dermatol. Venereol._ 27 (Suppl. 3), 36–46 (2013). PubMed  Google Scholar  * Deepak, P. et al. T-cell non-Hodgkin’s lymphomas reported to the FDA AERS with tumor necrosis factor-α (TNF-α)


inhibitors: results of the REFURBISH study. _Am. J. Gastroenterol._ 108, 99–105 (2013). CAS  PubMed  Google Scholar  * Solomon, D. H. et al. Adverse effects of low-dose methotrexate: a


randomized trial. _Ann. Intern. Med._ 172, 369–380 (2020). PubMed  PubMed Central  Google Scholar  * Solomon, D. H., Mercer, E. & Kavanaugh, A. Observational studies on the risk of


cancer associated with tumor necrosis factor inhibitors in rheumatoid arthritis: a review of their methodologies and results. _Arthritis Rheum._ 64, 21–32 (2012). CAS  PubMed  PubMed Central


  Google Scholar  * Askling, J. et al. Anti-tumour necrosis factor therapy in rheumatoid arthritis and risk of malignant lymphomas: relative risks and time trends in the Swedish biologics


register. _Ann. Rheum. Dis._ 68, 648–653 (2009). CAS  PubMed  Google Scholar  * Nyboe Andersen, N. et al. Association between tumor necrosis factor-α antagonists and risk of cancer in


patients with inflammatory bowel disease. _JAMA_ 311, 2406–2413 (2014). PubMed  Google Scholar  * Haynes, K. et al. Tumor necrosis factor α inhibitor therapy and cancer risk in chronic


immune-mediated diseases. _Arthritis Rheum._ 65, 48–58 (2013). CAS  PubMed  Google Scholar  * de La Forest Divonne, M., Gottenberg, J. E. & Salliot, C. Safety of biologic DMARDs in RA


patients in real life: a systematic literature review and meta-analyses of biologic registers. _Joint Bone Spine_ 84, 133–140 (2017). Google Scholar  * Hellgren, K. et al. Risk of solid


cancers overall and by subtypes in patients with psoriatic arthritis treated with TNF inhibitors — a Nordic cohort study. _Rheumatology_ https://doi.org/10.1093/rheumatology/keaa828 (2021).


Article  PubMed  Google Scholar  * Bongartz, T. et al. Anti-TNF antibody therapy in rheumatoid arthritis and the risk of serious infections and malignancies: systematic review and


meta-analysis of rare harmful effects in randomized controlled trials. _JAMA_ 295, 2275–2285 (2006). CAS  PubMed  Google Scholar  * Dixon, W. & Silman, A. Is there an association between


anti-TNF monoclonal antibody therapy in rheumatoid arthritis and risk of malignancy and serious infection? Commentary on the meta-analysis by Bongartz et al. _Arthritis Res. Ther._ 8, 111


(2006). PubMed  PubMed Central  Google Scholar  * Dommasch, E. D. et al. The risk of infection and malignancy with tumor necrosis factor antagonists in adults with psoriatic disease: a


systematic review and meta-analysis of randomized controlled trials. _J. Am. Acad. Dermatol._ 64, 1035–1050 (2011). CAS  PubMed  PubMed Central  Google Scholar  * Lichtenstein, G. R. et al.


A pooled analysis of infections, malignancy, and mortality in infliximab- and immunomodulator-treated adult patients with inflammatory bowel disease. _Am. J. Gastroenterol._ 107, 1051–1063


(2012). CAS  PubMed  PubMed Central  Google Scholar  * Maneiro, J. R., Souto, A. & Gomez-Reino, J. J. Risks of malignancies related to tofacitinib and biological drugs in rheumatoid


arthritis: systematic review, meta-analysis, and network meta-analysis. _Semin. Arthritis Rheum._ 47, 149–156 (2017). CAS  PubMed  Google Scholar  * Hou, L. Q. et al. The comparative safety


of TNF inhibitors in ankylosing spondylitis — a meta-analysis update of 14 randomized controlled trials. _Clin. Rev. Allergy Immunol._ 54, 234–243 (2018). CAS  PubMed  Google Scholar  *


Beukelman, T. et al. Risk of malignancy associated with paediatric use of tumour necrosis factor inhibitors. _Ann. Rheum. Dis._ 77, 1012–1016 (2018). CAS  PubMed  Google Scholar  * Jung, S.


M., Kwok, S. K., Ju, J. H., Park, Y. B. & Park, S. H. Risk of malignancy in patients with rheumatoid arthritis after anti-tumor necrosis factor therapy: results from Korean National


Health Insurance claims data. _Korean J. Intern. Med._ 34, 669–677 (2019). CAS  PubMed  Google Scholar  * Silva, F. et al. Solid malignancies among etanercept-treated patients with


granulomatosis with polyangiitis (Wegener’s): long-term followup of a multicenter longitudinal cohort. _Arthritis Rheum._ 63, 2495–2503 (2011). PubMed  PubMed Central  Google Scholar  *


Diak, P. et al. Tumor necrosis factor α blockers and malignancy in children: forty-eight cases reported to the Food and Drug Administration. _Arthritis Rheum._ 62, 2517–2524 (2010). PubMed 


Google Scholar  * FDA. FDA Drug Safety Communication: Safety Review update on reports of hepatosplenic T-cell lymphoma in adolescents and young adults receiving tumor necrosis factor (TNF)


blockers, azathioprine and/or mercaptopurine http://wayback.archive-it.org/7993/20170112031812/http:/www.fda.gov/Drugs/DrugSafety/ucm250913.htm (2011). * Lemaitre, M. et al. Association


between use of thiopurines or tumor necrosis factor antagonists alone or in combination and risk of lymphoma in patients with inflammatory bowel disease. _JAMA_ 318, 1679–1686 (2017). CAS 


PubMed  PubMed Central  Google Scholar  * Wolfe, F. & Michaud, K. The effect of methotrexate and anti-tumor necrosis factor therapy on the risk of lymphoma in rheumatoid arthritis in


19,562 patients during 89,710 person-years of observation. _Arthritis Rheum._ 56, 1433–1439 (2007). CAS  PubMed  Google Scholar  * Hellgren, K. et al. Rheumatoid arthritis and risk of


malignant lymphoma: is the risk still increased? _Arthritis Rheumatol._ 69, 700–708 (2017). CAS  PubMed  Google Scholar  * Mercer, L. K. et al. Risk of lymphoma in patients exposed to


antitumour necrosis factor therapy: results from the British Society for Rheumatology Biologics Register for Rheumatoid Arthritis. _Ann. Rheum. Dis._ 76, 497–503 (2017). PubMed  Google


Scholar  * Hyams, J. S. et al. Infliximab is not associated with increased risk of malignancy or hemophagocytic lymphohistiocytosis in pediatric patients with inflammatory bowel disease.


_Gastroenterology_ 152, 1901–1914.e1903 (2017). PubMed  Google Scholar  * Raaschou, P., Simard, J. F., Holmqvist, M., Askling, J. & Group, A. S. Rheumatoid arthritis, anti-tumour


necrosis factor therapy, and risk of malignant melanoma: nationwide population based prospective cohort study from Sweden. _BMJ_ 346, f1939 (2013). PubMed  Google Scholar  * Mercer, L. K. et


al. Risk of invasive melanoma in patients with rheumatoid arthritis treated with biologics: results from a collaborative project of 11 European biologic registers. _Ann. Rheum. Dis._ 76,


386–391 (2017). PubMed  Google Scholar  * Hellgren, K. et al. Cancer risk in patients with spondyloarthritis treated with TNF inhibitors: a collaborative study from the ARTIS and DANBIO


registers. _Ann. Rheum. Dis._ 76, 105–111 (2017). CAS  PubMed  Google Scholar  * Lopez-Olivo, M. A. et al. Risk of malignancies in patients with rheumatoid arthritis treated with biologic


therapy: a meta-analysis. _JAMA_ 308, 898–908 (2012). CAS  PubMed  Google Scholar  * Peleva, E. et al. Risk of cancer in patients with psoriasis on biological therapies: a systematic review.


_Br. J. Dermatol._ 178, 103–113 (2018). CAS  PubMed  Google Scholar  * Wang, J. L. et al. Risk of non-melanoma skin cancer for rheumatoid arthritis patients receiving TNF antagonist: a


systematic review and meta-analysis. _Clin. Rheumatol._ 39, 769–778 (2019). PubMed  Google Scholar  * Scott, F. I. et al. Risk of nonmelanoma skin cancer associated with the use of


immunosuppressant and biologic agents in patients with a history of autoimmune disease and nonmelanoma skin cancer. _JAMA Dermatol._ 152, 164–172 (2016). PubMed  PubMed Central  Google


Scholar  * Raaschou, P., Söderling, J., Turesson, C. & Askling, J. Tumor necrosis factor inhibitors and cancer recurrence in swedish patients with rheumatoid arthritis: a nationwide


population-based cohort study. _Ann. Intern. Med._ 169, 291–299 (2018). PubMed  Google Scholar  * Silva-Fernández, L. et al. The incidence of cancer in patients with rheumatoid arthritis and


a prior malignancy who receive TNF inhibitors or rituximab: results from the British Society for Rheumatology Biologics Register-Rheumatoid Arthritis. _Rheumatology_ 55, 2033–2039 (2016).


PubMed  PubMed Central  Google Scholar  * Chen, L. & Flies, D. B. Molecular mechanisms of T cell co-stimulation and co-inhibition. _Nat. Rev. Immunol._ 13, 227–242 (2013). PubMed  PubMed


Central  Google Scholar  * Ribas, A. & Wolchok, J. D. Cancer immunotherapy using checkpoint blockade. _Science_ 359, 1350–1355 (2018). CAS  PubMed  PubMed Central  Google Scholar  *


Wei, S. C. et al. Distinct cellular mechanisms underlie anti-CTLA-4 and anti-PD-1 checkpoint blockade. _Cell_ 170, 1120–1133 e1117 (2017). CAS  PubMed  PubMed Central  Google Scholar  *


Huang, A. C. et al. T-cell invigoration to tumour burden ratio associated with anti-PD-1 response. _Nature_ 545, 60–65 (2017). CAS  PubMed  PubMed Central  Google Scholar  * Zappasodi, R. et


al. Non-conventional inhibitory CD4+Foxp3−PD-1hi T cells as a biomarker of immune checkpoint blockade activity. _Cancer Cell_ 33, 1017–1032.e1017 (2018). CAS  PubMed  PubMed Central  Google


Scholar  * Strauss, L. et al. Targeted deletion of PD-1 in myeloid cells induces antitumor immunity. _Sci. Immunol._ 5, eaay1863 (2020). CAS  PubMed  PubMed Central  Google Scholar  * Ham,


B., Fernandez, M. C., D’Costa, Z. & Brodt, P. The diverse roles of the TNF axis in cancer progression and metastasis. _Trends Cancer Res._ 11, 1–27 (2016). PubMed  PubMed Central  Google


Scholar  * Nagaraj, S. et al. Altered recognition of antigen is a mechanism of CD8+ T cell tolerance in cancer. _Nat. Med._ 13, 828–835 (2007). CAS  PubMed  PubMed Central  Google Scholar 


* Zheng, L. et al. Induction of apoptosis in mature T cells by tumour necrosis factor. _Nature_ 377, 348–351 (1995). CAS  PubMed  Google Scholar  * Kim, E. Y., Teh, S. J., Yang, J., Chow, M.


T. & Teh, H. S. TNFR2-deficient memory CD8 T cells provide superior protection against tumor cell growth. _J. Immunol._ 183, 6051–6057 (2009). CAS  PubMed  Google Scholar  * Bertrand,


F. et al. Blocking tumor necrosis factor α enhances CD8 T-cell-dependent immunity in experimental melanoma. _Cancer Res._ 75, 2619–2628 (2015). CAS  PubMed  Google Scholar  * Zheng, Y. et


al. TNF-α-induced Tim-3 expression marks the dysfunction of infiltrating natural killer cells in human esophageal cancer. _J. Transl Med._ 17, 165 (2019). PubMed  PubMed Central  Google


Scholar  * Ivagnes, A. et al. TNFR2/BIRC3-TRAF1 signaling pathway as a novel NK cell immune checkpoint in cancer. _Oncoimmunology_ 7, e1386826 (2018). PubMed  Google Scholar  *


Grinberg-Bleyer, Y. et al. Pathogenic T cells have a paradoxical protective effect in murine autoimmune diabetes by boosting Tregs. _J. Clin. Invest._ 120, 4558–4568 (2010). CAS  PubMed 


PubMed Central  Google Scholar  * Zanin-Zhorov, A. et al. Protein kinase C-theta mediates negative feedback on regulatory T cell function. _Science_ 328, 372–376 (2010). CAS  PubMed  PubMed


Central  Google Scholar  * Zaragoza, B. et al. Suppressive activity of human regulatory T cells is maintained in the presence of TNF. _Nat. Med._ 22, 16–17 (2016). CAS  PubMed  PubMed


Central  Google Scholar  * Bilate, A. M. & Lafaille, J. J. Can TNF-α boost regulatory T cells? _J. Clin. Invest._ 120, 4190–4192 (2010). CAS  PubMed  PubMed Central  Google Scholar  *


Chen, X. et al. Cutting edge: expression of TNFR2 defines a maximally suppressive subset of mouse CD4+CD25+FoxP3+ T regulatory cells: applicability to tumor-infiltrating T regulatory cells.


_J. Immunol._ 180, 6467–6471 (2008). CAS  PubMed  Google Scholar  * Govindaraj, C. et al. Impaired Th1 immunity in ovarian cancer patients is mediated by TNFR2+ Tregs within the tumor


microenvironment. _Clin. Immunol._ 149, 97–110 (2013). CAS  PubMed  Google Scholar  * Chopra, M. et al. Tumor necrosis factor receptor 2-dependent homeostasis of regulatory T cells as a


player in TNF-induced experimental metastasis. _Carcinogenesis_ 34, 1296–1303 (2013). CAS  PubMed  Google Scholar  * Torrey, H. et al. Targeting TNFR2 with antagonistic antibodies inhibits


proliferation of ovarian cancer cells and tumor-associated Tregs. _Sci. Signal._ 10, eaaf8608 (2017). PubMed  Google Scholar  * Torrey, H. et al. Targeted killing of TNFR2-expressing tumor


cells and Tregs by TNFR2 antagonistic antibodies in advanced Sézary syndrome. _Leukemia_ 33, 1206–1218 (2019). CAS  PubMed  Google Scholar  * Chen, X. et al. Expression of costimulatory


TNFR2 induces resistance of CD4+FoxP3− conventional T cells to suppression by CD4+FoxP3+ regulatory T cells. _J. Immunol._ 185, 174–182 (2010). CAS  PubMed  Google Scholar  * Charles, K. A.


et al. The tumor-promoting actions of TNF-α involve TNFR1 and IL-17 in ovarian cancer in mice and humans. _J. Clin. Invest._ 119, 3011–3023 (2009). CAS  PubMed  PubMed Central  Google


Scholar  * Nunez, S. et al. T helper type 17 cells contribute to anti-tumour immunity and promote the recruitment of T helper type 1 cells to the tumour. _Immunology_ 139, 61–71 (2013). CAS


  PubMed  PubMed Central  Google Scholar  * Martin-Orozco, N. et al. T helper 17 cells promote cytotoxic T cell activation in tumor immunity. _Immunity_ 31, 787–798 (2009). CAS  PubMed 


PubMed Central  Google Scholar  * Zhao, X. et al. TNF signaling drives myeloid-derived suppressor cell accumulation. _J. Clin. Invest._ 122, 4094–4104 (2012). CAS  PubMed  PubMed Central 


Google Scholar  * Sade-Feldman, M. et al. Tumor necrosis factor-α blocks differentiation and enhances suppressive activity of immature myeloid cells during chronic inflammation. _Immunity_


38, 541–554 (2013). CAS  PubMed  Google Scholar  * Ren, G. et al. CCR2-dependent recruitment of macrophages by tumor-educated mesenchymal stromal cells promotes tumor development and is


mimicked by TNFα. _Cell Stem Cell_ 11, 812–824 (2012). CAS  PubMed  PubMed Central  Google Scholar  * Lim, S. O. et al. Deubiquitination and stabilization of PD-L1 by CSN5. _Cancer Cell_ 30,


925–939 (2016). CAS  PubMed  PubMed Central  Google Scholar  * Bertrand, F. et al. TNFα blockade overcomes resistance to anti-PD-1 in experimental melanoma. _Nat. Commun._ 8, 2256 (2017).


PubMed  PubMed Central  Google Scholar  * Landsberg, J. et al. Melanomas resist T-cell therapy through inflammation-induced reversible dedifferentiation. _Nature_ 490, 412–416 (2012). CAS 


PubMed  Google Scholar  * Kim, E. Y. & Teh, H. S. Critical role of TNF receptor type-2 (p75) as a costimulator for IL-2 induction and T cell survival: a functional link to CD28. _J.


Immunol._ 173, 4500–4509 (2004). CAS  PubMed  Google Scholar  * Calzascia, T. et al. TNF-α is critical for antitumor but not antiviral T cell immunity in mice. _J. Clin. Invest._ 117,


3833–3845 (2007). CAS  PubMed  PubMed Central  Google Scholar  * Berard, F. et al. Cross-priming of naive CD8 T cells against melanoma antigens using dendritic cells loaded with killed


allogeneic melanoma cells. _J. Exp. Med._ 192, 1535–1544 (2000). CAS  PubMed  PubMed Central  Google Scholar  * Maney, N. J., Reynolds, G., Krippner-Heidenreich, A. & Hilkens, C. M. U.


Dendritic cell maturation and survival are differentially regulated by TNFR1 and TNFR2. _J. Immunol._ 193, 4914–4923 (2014). CAS  PubMed  Google Scholar  * Perez-Ruiz, E. et al. Prophylactic


TNF blockade uncouples efficacy and toxicity in dual CTLA-4 and PD-1 immunotherapy. _Nature_ 569, 428–432 (2019). CAS  PubMed  Google Scholar  * Castro, F., Cardoso, A. P., Goncalves, R.


M., Serre, K. & Oliveira, M. J. Interferon-γ at the crossroads of tumor immune surveillance or evasion. _Front. Immunol._ 9, 847 (2018). PubMed  PubMed Central  Google Scholar  * Koch,


J., Steinle, A., Watzl, C. & Mandelboim, O. Activating natural cytotoxicity receptors of natural killer cells in cancer and infection. _Trends Immunol._ 34, 182–191 (2013). CAS  PubMed 


Google Scholar  * Marzo, A. L. et al. Tumor-specific CD4+ T cells have a major “post-licensing” role in CTL mediated anti-tumor immunity. _J. Immunol._ 165, 6047–6055 (2000). CAS  PubMed 


Google Scholar  * Dunn, G. P., Old, L. J. & Schreiber, R. D. The three Es of cancer immunoediting. _Annu. Rev. Immunol._ 22, 329–360 (2004). CAS  PubMed  Google Scholar  * Dobrzanski, M.


J. Expanding roles for CD4 T cells and their subpopulations in tumor immunity and therapy. _Front. Oncol._ 3, 63 (2013). PubMed  PubMed Central  Google Scholar  * Briscoe, D. M., Cotran, R.


S. & Pober, J. S. Effects of tumor necrosis factor, lipopolysaccharide, and IL-4 on the expression of vascular cell adhesion molecule-1 in vivo. Correlation with CD3+ T cell


infiltration. _J. Immunol._ 149, 2954–2960 (1992). CAS  PubMed  Google Scholar  * Li, M. O. & Flavell, R. A. TGF-β: a master of all T cell trades. _Cell_ 134, 392–404 (2008). CAS  PubMed


  PubMed Central  Google Scholar  * Mempel, T. R. et al. Regulatory T cells reversibly suppress cytotoxic T cell function independent of effector differentiation. _Immunity_ 25, 129–141


(2006). CAS  PubMed  Google Scholar  * Chanmee, T., Ontong, P., Konno, K. & Itano, N. Tumor-associated macrophages as major players in the tumor microenvironment. _Cancers_ 6, 1670–1690


(2014). PubMed  PubMed Central  Google Scholar  Download references ACKNOWLEDGEMENTS The work of J.D.W. is funded in part through the NIH/NCI Cancer Center Support Grant P30 CA008748. J.D.W.


is also affiliated with: Ludwig Collaborative and Swim Across America Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Parker Institute for Cancer Immunotherapy,


Memorial Sloan Kettering Cancer Center, New York, NY, USA. The authors would like to thank L.B. Ivashkiv at the Hospital for Special Surgery for his comments on the manuscript. AUTHOR


INFORMATION AUTHORS AND AFFILIATIONS * Division of Rheumatology, Hospital for Special Surgery, New York, NY, USA Allen Y. Chen & Anne R. Bass * New York Presbyterian Hospital, Weill


Cornell Medicine, New York, NY, USA Allen Y. Chen * Department of Medicine, Weill Cornell Medicine, New York, NY, USA Allen Y. Chen, Jedd D. Wolchok & Anne R. Bass * Human Oncology and


Pathogenesis Program, Immuno-Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA Jedd D. Wolchok Authors * Allen Y. Chen View author publications You can also search


for this author inPubMed Google Scholar * Jedd D. Wolchok View author publications You can also search for this author inPubMed Google Scholar * Anne R. Bass View author publications You can


also search for this author inPubMed Google Scholar CONTRIBUTIONS A.Y.C. and A.R.B. researched data for the article and wrote the article. All authors made substantial contributions to


discussions of the content and reviewed/edited the manuscript before submission. CORRESPONDING AUTHOR Correspondence to Anne R. Bass. ETHICS DECLARATIONS COMPETING INTERESTS J.D.W. is a


consultant for Adaptive Biotech, Amgen, Apricity, Arsenal, Ascentage Pharma, Astellas, AstraZeneca, Bayer, Boehringer Ingelheim, Bristol Myers Squibb, Eli Lilly, F Star, Imvaq, Kyowa Hakko


Kirin, Merck, Neon Therapeutics, Psioxus, Recepta, Sellas, Serametrix, Surface Oncology, Syndax and Syntalogic, Takara Bio, Trieza and Truvax; receives research support from AstraZeneca,


Bristol Myers Squibb and Sephora; and has equity in Adaptive Biotechnologies, Apricity, Arsenal, BeiGene, Imvaq, Linnaeus, Tizona Pharmaceuticals. The other authors declare no competing


interests. ADDITIONAL INFORMATION PEER REVIEW INFORMATION _Nature Reviews Rheumatology_ thanks L. Cappelli, M. Suarez-Almazor and the other, anonymous, reviewer(s) for their contribution to


the peer review of this work. PUBLISHER’S NOTE Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. RIGHTS AND PERMISSIONS


Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Chen, A.Y., Wolchok, J.D. & Bass, A.R. TNF in the era of immune checkpoint inhibitors: friend or foe?. _Nat Rev Rheumatol_


17, 213–223 (2021). https://doi.org/10.1038/s41584-021-00584-4 Download citation * Accepted: 03 February 2021 * Published: 08 March 2021 * Issue Date: April 2021 * DOI:


https://doi.org/10.1038/s41584-021-00584-4 SHARE THIS ARTICLE Anyone you share the following link with will be able to read this content: Get shareable link Sorry, a shareable link is not


currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative