
- Select a language for the TTS:
- UK English Female
- UK English Male
- US English Female
- US English Male
- Australian Female
- Australian Male
- Language selected: (auto detect) - EN
Play all audios:
ABSTRACT The midbrain dopamine (mDA) system is composed of molecularly and functionally distinct neuron subtypes that mediate specific behaviours and are linked to various brain diseases.
Considerable progress has been made in identifying mDA neuron subtypes, and recent work has begun to unveil how these neuronal subtypes develop and organize into functional brain structures.
This progress is important for further understanding the disparate physiological functions of mDA neurons and their selective vulnerability in disease, and will ultimately accelerate
therapy development. This Review discusses recent advances in our understanding of molecularly defined mDA neuron subtypes and their circuits, ranging from early developmental events, such
as neuron migration and axon guidance, to their wiring and function, and future implications for therapeutic strategies. Access through your institution Buy or subscribe This is a preview of
subscription content, access via your institution ACCESS OPTIONS Access through your institution Access Nature and 54 other Nature Portfolio journals Get Nature+, our best-value
online-access subscription $29.99 / 30 days cancel any time Learn more Subscribe to this journal Receive 12 print issues and online access $189.00 per year only $15.75 per issue Learn more
Buy this article * Purchase on SpringerLink * Instant access to full article PDF Buy now Prices may be subject to local taxes which are calculated during checkout ADDITIONAL ACCESS OPTIONS:
* Log in * Learn about institutional subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS HOW CHANGES IN DOPAMINE D2 RECEPTOR LEVELS ALTER STRIATAL
CIRCUIT FUNCTION AND MOTIVATION Article 12 August 2021 A SINGLE-CELL TRAJECTORY ATLAS OF STRIATAL DEVELOPMENT Article Open access 03 June 2023 UNIQUE FUNCTIONAL RESPONSES DIFFERENTIALLY MAP
ONTO GENETIC SUBTYPES OF DOPAMINE NEURONS Article Open access 03 August 2023 REFERENCES * Björklund, A. & Dunnett, S. B. Dopamine neuron systems in the brain: an update. _Trends
Neurosci._ 30, 194–202 (2007). Article PubMed Google Scholar * Hegarty, S. V., Sullivan, A. M. & O’Keeffe, G. W. Midbrain dopaminergic neurons: a review of the molecular circuitry
that regulates their development. _Dev. Biol._ 379, 123–138 (2013). Article CAS PubMed Google Scholar * Maiti, P., Manna, J., Dunbar, G. L., Maiti, P. & Dunbar, G. L. Current
understanding of the molecular mechanisms in Parkinson’s disease: targets for potential treatments. _Transl. Neurodegener._ 6, 1–35 (2017). Article Google Scholar * Kalia, L. V. &
Lang, A. E. Parkinson’s disease. _Lancet_ 386, 896–912 (2015). Article CAS PubMed Google Scholar * Morales, M. & Margolis, E. B. Ventral tegmental area: cellular heterogeneity,
connectivity and behaviour. _Nat. Rev. Neurosci._ 18, 73–85 (2017). Article CAS PubMed Google Scholar * Meyer-Lindenberg, A. et al. Reduced prefrontal activity predicts exaggerated
striatal dopaminergic function in schizophrenia. _Nat. Neurosci._ 5, 267–271 (2002). Article CAS PubMed Google Scholar * Milton, A. L. & Everitt, B. J. The persistence of maladaptive
memory: addiction, drug memories and anti-relapse treatments. _Neurosci. Biobehav. Rev._ 36, 1119–1139 (2012). Article PubMed Google Scholar * Fu, Y. H. et al. A cytoarchitectonic and
chemoarchitectonic analysis of the dopamine cell groups in the substantia nigra, ventral tegmental area, and retrorubral field in the mouse. _Brain Struct. Funct._ 217, 591–612 (2012).
Article PubMed Google Scholar * Damier, P., Hirsch, E. C., Agid, Y. & Graybiel, A. M. The substantia nigra of the human brain: I. Nigrosomes and the nigral matrix, a compartmental
organization based on calbindin D28K immunohistochemistry. _Brain_ 122, 1421–1436 (1999). Article PubMed Google Scholar * Grimm, J., Mueller, A., Hefti, F. & Rosenthal, A. Molecular
basis for catecholaminergic neuron diversity. _Proc. Natl Acad. Sci. USA_ 101, 13891–13896 (2004). Article CAS PubMed PubMed Central Google Scholar * Greene, J. G., Dingledine, R. &
Greenamyre, J. T. Gene expression profiling of rat midbrain dopamine neurons: implications for selective vulnerability in parkinsonism. _Neurobiol. Dis._ 18, 19–31 (2005). Article CAS
PubMed Google Scholar * Chung, C. Y. et al. Cell type-specific gene expression of midbrain dopaminergic neurons reveals molecules involved in their vulnerability and protection. _Hum. Mol.
Genet._ 14, 1709–1725 (2005). Article CAS PubMed Google Scholar * Brochier, C. et al. Quantitative gene expression profiling of mouse brain regions reveals differential transcripts
conserved in human and affected in disease models. _Physiol. Genomics_ 33, 170–179 (2008). Article CAS PubMed Google Scholar * Brichta, L. et al. Identification of neurodegenerative
factors using translatome–regulatory network analysis. _Nat. Neurosci._ 18, 1325–1333 (2015). Article CAS PubMed PubMed Central Google Scholar * Tiklová, K. et al. Single-cell RNA
sequencing reveals midbrain dopamine neuron diversity emerging during mouse brain development. _Nat. Commun._ 10, 1–12 (2019). Article Google Scholar * Hook, P. W. et al. Single-cell
RNA-Seq of mouse dopaminergic neurons informs candidate gene selection for sporadic parkinson disease. _Am. J. Hum. Genet._ 102, 427–446 (2018). Article CAS PubMed PubMed Central Google
Scholar * Saunders, A. et al. Molecular diversity and specializations among the cells of the adult mouse brain. _Cell_ 174, 1015–1030.e16 (2018). Article CAS PubMed PubMed Central
Google Scholar * La Manno, G. et al. Molecular diversity of midbrain development in mouse, human, and stem cells. _Cell_ 167, 566–580.e19 (2016). Article PubMed PubMed Central Google
Scholar * Poulin, J.-F., Gaertner, Z., Moreno-Ramos, O. A. & Awatramani, R. Classification of midbrain dopamine neurons using single-cell gene expression profiling approaches. _Trends
Neurosci._ 43, 155–169 (2020). Article CAS PubMed PubMed Central Google Scholar * Poulin, J. F. et al. Defining midbrain dopaminergic neuron diversity by single-cell gene expression
profiling. _Cell Rep._ 9, 930–943 (2014). Article CAS PubMed PubMed Central Google Scholar * Kramer, D. J., Risso, D., Kosillo, P., Ngai, J. & Bateup, H. S. Combinatorial expression
of Grp and Neurod6 defines dopamine neuron populations with distinct projection patterns and disease vulnerability. _eNeuro_ 5, ENEURO.0152-18.2018 (2018). Article PubMed PubMed Central
Google Scholar * Farassat, N. et al. In vivo functional diversity of midbrain dopamine neurons within identified axonal projections. _Elife_ 8, e48408 (2019). Article CAS PubMed PubMed
Central Google Scholar * Beier, K. T. et al. Circuit architecture of VTA dopamine neurons revealed by systematic input-output mapping. _Cell_ 162, 622–634 (2015). Article CAS PubMed
PubMed Central Google Scholar * Beier, K. T. et al. Topological organization of ventral tegmental area connectivity revealed by viral-genetic dissection of input-output relations. _Cell
Rep._ 26, 159–167 (2019). Article CAS PubMed PubMed Central Google Scholar * Lammel, S., Ion, D. I., Roeper, J. & Malenka, R. C. Projection-specific modulation of dopamine neuron
synapses by aversive and rewarding stimuli. _Neuron_ 70, 855–862 (2011). Article CAS PubMed PubMed Central Google Scholar * Lammel, S. et al. Unique properties of mesoprefrontal neurons
within a dual mesocorticolimbic dopamine system. _Neuron_ 57, 760–773 (2008). Article CAS PubMed Google Scholar * de Jong, J. W. et al. A neural circuit mechanism for encoding aversive
stimuli in the mesolimbic dopamine system. _Neuron_ 101, 133–151.e7 (2019). Article PubMed Google Scholar * Tang, W., Kochubey, O., Kintscher, M. & Schneggenburger, R. A VTA to basal
amygdala dopamine projection contributes to signal salient somatosensory events during fear learning. _J. Neurosci._ 40, 3969–3980 (2020). Article PubMed PubMed Central Google Scholar *
Lerner, T. N. et al. Intact-brain analyses reveal distinct information carried by SNc dopamine subcircuits. _Cell_ 162, 635–647 (2015). Article CAS PubMed PubMed Central Google Scholar
* Bimpisidis, Z. et al. The NeuroD6 subtype of VTA neurons contributes to psychostimulant sensitization and behavioral reinforcement. _eNeuro_ 6, ENEURO.0066-19.2019 (2019). Article PubMed
PubMed Central Google Scholar * Viereckel, T. et al. Midbrain gene screening identifies a new mesoaccumbal glutamatergic pathway and a marker for dopamine cells neuroprotected in
Parkinson’s disease. _Sci. Rep._ 6, 35203 (2016). Article CAS PubMed PubMed Central Google Scholar * Watabe-Uchida, M., Zhu, L., Ogawa, S. K., Vamanrao, A. & Uchida, N. Whole-brain
mapping of direct inputs to midbrain dopamine neurons. _Neuron_ 74, 858–873 (2012). Article CAS PubMed Google Scholar * Menegas, W. et al. Dopamine neurons projecting to the posterior
striatum form an anatomically distinct subclass. _Elife_ 4, e10032 (2015). Article PubMed PubMed Central Google Scholar * Menegas, W., Babayan, B. M., Uchida, N. & Watabe-Uchida, M.
Opposite initialization to novel cues in dopamine signaling in ventral and posterior striatum in mice. _Elife_ 6, e21886 (2017). Article PubMed PubMed Central Google Scholar * Menegas,
W., Akiti, K., Amo, R., Uchida, N. & Watabe-Uchida, M. Dopamine neurons projecting to the posterior striatum reinforce avoidance of threatening stimuli. _Nat. Neurosci._ 21, 1421–1430
(2018). Article CAS PubMed PubMed Central Google Scholar * Engelhard, B. et al. Specialized coding of sensory, motor and cognitive variables in VTA dopamine neurons. _Nature_ 570,
509–513 (2019). Article CAS PubMed PubMed Central Google Scholar * Roeper, J. Dissecting the diversity of midbrain dopamine neurons. _Trends Neurosci._ 36, 336–342 (2013). Article CAS
PubMed Google Scholar * Steinkellner, T. et al. Role for VGLUT2 in selective vulnerability of midbrain dopamine neurons. _J. Clin. Invest._ 128, 774–788 (2018). Article PubMed PubMed
Central Google Scholar * Pereira Luppi, M. et al. Sox6 expression distinguishes dorsally and ventrally biased dopamine neurons in the substantia nigra with distinctive properties and
embryonic origins. _Cell Rep._ 37, 109975 (2021). Article CAS PubMed Google Scholar * Tolve, M. et al. The transcription factor BCL11A defines distinct subsets of midbrain dopaminergic
neurons. _Cell Rep._ 36, 109697 (2021). Article CAS PubMed Google Scholar * Phillips, R. A. et al. An atlas of transcriptionally defined cell populations in the rat ventral tegmental
area. _Cell Rep._ 39, 110616 (2022). Article CAS PubMed Google Scholar * Aguila, J. et al. Spatial RNA sequencing identifies robust markers of vulnerable and resistant human midbrain
dopamine neurons and their expression in Parkinson’s disease. _Front. Mol. Neurosci._ 14, 699562 (2021). Article CAS PubMed PubMed Central Google Scholar * Monzón-Sandoval, J. et al.
Human-specific transcriptome of ventral and dorsal midbrain dopamine neurons. _Ann. Neurol._ 87, 853–868 (2020). Article PubMed PubMed Central Google Scholar * Cantuti-Castelvetri, I. et
al. Effects of gender on nigral gene expression and Parkinson disease. _Neurobiol. Dis._ 26, 606–614 (2007). Article CAS PubMed PubMed Central Google Scholar * Zheng, B. et al. PGC-1α,
a potential therapeutic target for early intervention in Parkinson’s disease. _Sci. Transl. Med._ 2, 52ra73 (2010). Article PubMed PubMed Central Google Scholar * Kamath, T. et al.
Single-cell genomic profiling of human dopamine neurons identifies a population that selectively degenerates in Parkinson’s disease. _Nat. Neurosci._ 25, 588–595 (2022). Article CAS PubMed
PubMed Central Google Scholar * Smajic, S. et al. Single-cell sequencing of human midbrain reveals glial activation and a Parkinson-specific neuronal state. _Brain_ 145, 964–978 (2022).
Article PubMed Google Scholar * Reyes, S. et al. GIRK2 expression in dopamine neurons of the substantia nigra and ventral tegmental area. _J. Comp. Neurol._ 520, 2591–2607 (2012). Article
CAS PubMed Google Scholar * Reyes, S. et al. Trophic factors differentiate dopamine neurons vulnerable to Parkinson’s disease. _Neurobiol. Aging_ 34, 873–886 (2013). Article CAS
PubMed Google Scholar * Reyes, S., Cottam, V., Kirik, D., Double, K. L. & Halliday, G. M. Variability in neuronal expression of dopamine receptors and transporters in the substantia
nigra. _Mov. Disord._ 28, 1351–1359 (2013). Article CAS PubMed Google Scholar * Afonso-Oramas, D. et al. Dopamine transporter glycosylation correlates with the vulnerability of midbrain
dopaminergic cells in Parkinson’s disease. _Neurobiol. Dis._ 36, 494–508 (2009). Article CAS PubMed Google Scholar * Damier, P., Hirsch, E. C., Agid, Y. & Graybiel, A. M. The
substantia nigra of the human brain: II. Patterns of loss of dopamine-containing neurons in Parkinson’s disease. _Brain_ 122, 1437–1448 (1999). Article PubMed Google Scholar * Agarwal, D.
et al. A single-cell atlas of the human substantia nigra reveals cell-specific pathways associated with neurological disorders. _Nat. Commun._ 11, 1–11 (2020). Article Google Scholar *
Rodriques, S. G. et al. Slide-seq: a scalable technology for measuring genome-wide expression at high spatial resolution. _Science_ 363, 1463–1467 (2019). Article CAS PubMed PubMed
Central Google Scholar * Arenas, E., Denham, M. & Villaescusa, J. C. How to make a midbrain dopaminergic neuron. _Development_ 142, 1918–1936 (2015). Article CAS PubMed Google
Scholar * Blaess, S. & Ang, S. L. Genetic control of midbrain dopaminergic neuron development. _Wiley Interdiscip. Rev. Dev. Biol._ 4, 113–134 (2015). Article CAS PubMed Google
Scholar * Brignani, S. & Pasterkamp, R. J. Neuronal subset-specific migration and axonal wiring mechanisms in the developing midbrain dopamine system. _Front. Neuroanat._ 11, 55 (2017).
Article PubMed PubMed Central Google Scholar * Rhinn, M. et al. Sequential roles for Otx2 in visceral endoderm and neuroectoderm for forebrain and midbrain induction and specification.
_Development_ 125, 845–856 (1998). Article CAS PubMed Google Scholar * Millet, S. et al. A role for Gbx2 in repression of Otx2 and positioning the mid/hindbrain organizer. _Nature_ 401,
161–164 (1999). Article CAS PubMed Google Scholar * Wassarman, K. M. et al. Specification of the anterior hindbrain and establishment of a normal mid/hindbrain organizer is dependent on
Gbx2 gene function. _Development_ 124, 2923–2934 (1997). Article CAS PubMed Google Scholar * Joyner, A. L., Liu, A. & Millet, S. Otx2, Gbx2 and Fgf8 interact to position and maintain
a mid-hindbrain organizer. _Curr. Opin. Cell Biol._ 12, 736–741 (2000). Article CAS PubMed Google Scholar * Ono, Y. et al. Differences in neurogenic potential in floor plate cells along
an anteroposterior location: midbrain dopaminergic neurons originate from mesencephalic floor plate cells. _Development_ 134, 3213–3225 (2007). Article CAS PubMed Google Scholar *
Wilkinson, D. G., Bailes, J. A. & McMahon, A. P. Expression of the proto-oncogene int-1 is restricted to specific neural cells in the developing mouse embryo. _Cell_ 50, 79–88 (1987).
Article CAS PubMed Google Scholar * Rhinn, M., Dierich, A., Meur, Mle & Ang, S. Cell autonomous and non-cell autonomous functions of Otx2 in patterning the rostral brain.
_Development_ 126, 4295–4304 (1999). Article CAS PubMed Google Scholar * Brodski, C. et al. Location and size of dopaminergic and serotonergic cell populations are controlled by the
position of the midbrain-hindbrain organizer. _J. Neurosci._ 23, 4199–4207 (2003). Article CAS PubMed PubMed Central Google Scholar * Basson, M. A. et al. Specific regions within the
embryonic midbrain and cerebellum require different levels of FGF signaling during development. _Development_ 135, 889–898 (2008). Article CAS PubMed Google Scholar * Sasaki, H., Hui, C.
C., Nakafuku, M. & Kondoh, H. A binding site for Gli proteins is essential for HNF-3beta floor plate enhancer activity in transgenics and can respond to Shh in vitro. _Development_ 124,
1313–1322 (1997). Article CAS PubMed Google Scholar * Roelink, H. et al. Floor plate and motor neuron induction by different concentrations of the amino-terminal cleavage product of
sonic hedgehog autoproteolysis. _Cell_ 81, 445–455 (1995). Article CAS PubMed Google Scholar * Lin, W. et al. Foxa1 and Foxa2 function both upstream of and cooperatively with Lmx1a and
Lmx1b in a feedforward loop promoting mesodiencephalic dopaminergic neuron development. _Dev. Biol._ 333, 386–396 (2009). Article CAS PubMed Google Scholar * Ang, S. L. et al. The
formation and maintenance of the definitive endoderm lineage in the mouse: involvement of HNF3/forkhead proteins. _Development_ 119, 1301–1315 (1993). Article CAS PubMed Google Scholar *
Omodei, D. et al. Anterior-posterior graded response to Otx2 controls proliferation and differentiation of dopaminergic progenitors in the ventral mesencephalon. _Development_ 135,
3459–3470 (2008). Article CAS PubMed Google Scholar * Deng, Q. et al. Specific and integrated roles of Lmx1a, Lmx1b and Phox2a in ventral midbrain development. _Development_ 138,
3399–3408 (2011). Article CAS PubMed Google Scholar * Andersson, E. et al. Identification of intrinsic determinants of midbrain dopamine neurons. _Cell_ 124, 393–405 (2006). Article CAS
PubMed Google Scholar * Kele, J. et al. Neurogenin 2 is required for the development of ventral midbrain dopaminergic neurons. _Development_ 133, 495–505 (2006). Article CAS PubMed
Google Scholar * Kawano, H., Ohyama, K., Kawamura, K. & Nagatsu, I. Migration of dopaminergic neurons in the embryonic mesencephalon of mice. _Brain Res. Dev. Brain Res._ 86, 101–113
(1995). Article CAS PubMed Google Scholar * Yang, S. et al. Cxcl12/Cxcr4 signaling controls the migration and process orientation of A9-A10 dopaminergic neurons. _Development_ 140,
4554–4564 (2013). Article CAS PubMed Google Scholar * Sacchetti, P., Mitchell, T. R., Granneman, J. G. & Bannon, M. J. Nurr1 enhances transcription of the human dopamine transporter
gene through a novel mechanism. _J. Neurochem._ 76, 1565–1572 (2001). Article CAS PubMed Google Scholar * Chung, S. et al. Wnt1-lmx1a forms a novel autoregulatory loop and controls
midbrain dopaminergic differentiation synergistically with the SHH-FoxA2 pathway. _Cell Stem Cell_ 5, 646–658 (2009). Article CAS PubMed PubMed Central Google Scholar * Prakash, N. et
al. A Wnt1-regulated genetic network controls the identity and fate of midbrain-dopaminergic progenitors in vivo. _Development_ 133, 89–98 (2006). Article CAS PubMed Google Scholar *
Ferri, A. L. M. et al. Foxa1 and Foxa2 regulate multiple phases of midbrain dopaminergic neuron development in a dosage-dependent manner. _Development_ 134, 2761–2769 (2007). Article CAS
PubMed Google Scholar * Blaess, S. et al. Temporal-spatial changes in Sonic Hedgehog expression and signaling reveal different potentials of ventral mesencephalic progenitors to populate
distinct ventral midbrain nuclei. _Neural Dev._ 6, 29 (2011). Article PubMed PubMed Central Google Scholar * Panman, L. et al. Sox6 and Otx2 control the specification of substantia nigra
and ventral tegmental area dopamine neurons. _Cell Rep._ 8, 1018–1025 (2014). Article CAS PubMed Google Scholar * Bayer, S. A., Wills, K. V., Triarhou, L. C. & Ghetti, B. Time of
neuron origin and gradients of neurogenesis in midbrain dopaminergic neurons in the mouse. _Exp. Brain Res._ 105, 191–199 (1995). Article CAS PubMed Google Scholar * Bye, C. R.,
Thompson, L. H. & Parish, C. L. Birth dating of midbrain dopamine neurons identifies A9 enriched tissue for transplantation into parkinsonian mice. _Exp. Neurol._ 236, 58–68 (2012).
Article CAS PubMed Google Scholar * Bodea, G. O. et al. Reelin and CXCL12 regulate distinct migratory behaviors during the development of the dopaminergic system. _Development_ 141,
661–673 (2014). Article CAS PubMed Google Scholar * Levitt, P. & Rakic, P. The time of genesis, embryonic origin and differentiation of the brain stem monoamine neurons in the rhesus
monkey. _Brain Res._ 256, 35–57 (1982). Article CAS PubMed Google Scholar * Altman, J. & Bayer, S. A. Development of the brain stem in the rat. V. Thymidine-radiographic study of
the time of origin of neurons in the midbrain tegmentum. _J. Comp. Neurol._ 198, 677–716 (1981). Article CAS PubMed Google Scholar * Ribes, V. et al. Distinct Sonic Hedgehog signaling
dynamics specify floor plate and ventral neuronal progenitors in the vertebrate neural tube. _Genes Dev._ 24, 1186–1200 (2010). Article CAS PubMed PubMed Central Google Scholar *
Mavromatakis, Y. E. et al. Foxa1 and Foxa2 positively and negatively regulate Shh signalling to specify ventral midbrain progenitor identity. _Mech. Dev._ 128, 90–103 (2011). Article CAS
PubMed Google Scholar * Hayes, L., Zhang, Z., Albert, P., Zervas, M. & Ahn, S. The timing of _Sonic hedgehog_ and _Gli1_ expression segregates midbrain dopamine neurons. _J. Comp.
Neurol._ 519, 3001 (2011). Article CAS PubMed PubMed Central Google Scholar * Kabanova, A. et al. Function and developmental origin of a mesocortical inhibitory circuit. _Nat.
Neurosci._ 18, 872–882 (2015). Article CAS PubMed Google Scholar * Verwey, M. et al. Mesocortical dopamine phenotypes in mice lacking the Sonic Hedgehog receptor Cdon. _eNeuro_ 3,
ENEURO.0009-16.2016 (2016). Article PubMed PubMed Central Google Scholar * Joksimovic, M. et al. Spatiotemporally separable Shh domains in the midbrain define distinct dopaminergic
progenitor pools. _Proc. Natl Acad. Sci. USA_ 106, 19185 (2009). Article CAS PubMed PubMed Central Google Scholar * Brown, A., Machan, J. T., Hayes, L. & Zervas, M. Molecular
organization and timing of Wnt1 expression define cohorts of midbrain dopamine neuron progenitors in vivo. _J. Comp. Neurol._ 519, 2978 (2011). Article CAS PubMed PubMed Central Google
Scholar * Nouri, P. et al. Dose-dependent and subset-specific regulation of midbrain dopaminergic neuron differentiation by LEF1-mediated WNT1/b-catenin signaling. _Front. Cell Dev. Biol._
8, 587778 (2020). Article PubMed PubMed Central Google Scholar * Gyllborg, D. et al. The matricellular protein R-spondin 2 promotes midbrain dopaminergic neurogenesis and
differentiation. _Stem Cell Rep._ 11, 651 (2018). Article CAS Google Scholar * Hoekstra, E. J. et al. Lmx1a encodes a rostral set of mesodiencephalic dopaminergic neurons marked by the
Wnt/B-catenin signaling activator R-spondin 2. _PLoS ONE_ 8, e74049 (2013). Article CAS PubMed PubMed Central Google Scholar * Zhang, J. et al. A WNT1-regulated developmental gene
cascade prevents dopaminergic neurodegeneration in adult _En1_+/- mice. _Neurobiol. Dis._ 82, 32–45 (2015). Article CAS PubMed Google Scholar * Fukusumi, Y. et al. Dickkopf 3 promotes
the differentiation of a rostrolateral midbrain dopaminergic neuronal subset in vivo and from pluripotent stem cells in vitro in the mouse. _J. Neurosci._ 35, 13385 (2015). Article CAS
PubMed PubMed Central Google Scholar * Jung, H., Lee, S. K. & Jho, E. H. Mest/Peg1 inhibits Wnt signalling through regulation of LRP6 glycosylation. _Biochem. J._ 436, 263–269 (2011).
Article CAS PubMed Google Scholar * Mesman, S., van Hooft, J. A. & Smidt, M. P. _Mest_/_Peg1_ is essential for the development and maintenance of a SNc neuronal subset. _Front. Mol.
Neurosci._ 9, 166 (2017). Article PubMed PubMed Central Google Scholar * Smidt, M. P. et al. Early developmental failure of substantia nigra dopamine neurons in mice lacking the
homeodomain gene Pitx3. _Development_ 131, 1145–1155 (2004). Article CAS PubMed Google Scholar * Maxwell, S. L., Ho, H. Y., Kuehner, E., Zhao, S. & Li, M. Pitx3 regulates tyrosine
hydroxylase expression in the substantia nigra and identifies a subgroup of mesencephalic dopaminergic progenitor neurons during mouse development. _Dev. Biol._ 282, 467–479 (2005). Article
CAS PubMed Google Scholar * Jacobs, F. M. J. et al. Retinoic acid counteracts developmental defects in the substantia nigra caused by Pitx3 deficiency. _Development_ 134, 2673–2684
(2007). Article CAS PubMed Google Scholar * Jacobs, F. M. J. et al. Retinoic acid-dependent and -independent gene-regulatory pathways of Pitx3 in meso-diencephalic dopaminergic neurons.
_Development_ 138, 5213–5222 (2011). Article CAS PubMed Google Scholar * Veenvliet, J. V. et al. Specification of dopaminergic subsets involves interplay of En1 and Pitx3. _Development_
140, 3373–3384 (2013). Article CAS PubMed Google Scholar * di Giovannantonio, L. G. et al. Otx2 selectively controls the neurogenesis of specific neuronal subtypes of the ventral
tegmental area and compensates En1-dependent neuronal loss and MPTP vulnerability. _Dev. Biol._ 373, 176–183 (2013). Article PubMed Google Scholar * di Salvio, M. et al. Otx2 controls
neuron subtype identity in ventral tegmental area and antagonizes vulnerability to MPTP. _Nat. Neurosci._ 13, 1481–1489 (2010). Article PubMed Google Scholar * Oosterveen, T. et al.
Pluripotent stem cell derived dopaminergic subpopulations model the selective neuron degeneration in Parkinson’s disease. _Stem Cell Rep._ 16, 2718–2735 (2021). Article CAS Google Scholar
* Khan, S. et al. Survival of a novel subset of midbrain dopaminergic neurons projecting to the lateral septum is dependent on NeuroD proteins. _J. Neurosci._ 37, 2305 (2017). Article CAS
PubMed PubMed Central Google Scholar * Lo, P. S., Rymar, V. V., Kennedy, T. E. & Sadikot, A. F. The netrin-1 receptor DCC promotes the survival of a subpopulation of midbrain
dopaminergic neurons: relevance for ageing and Parkinson’s disease. _J. Neurochem._ 161, 254–265 (2022). Article CAS PubMed PubMed Central Google Scholar * Hoekstra, E. J., von Oerthel,
L., van der Linden, A. J. A. & Smidt, M. P. Phox2b influences the development of a caudal dopaminergic subset. _PLoS ONE_ 7, e52118 (2012). Article CAS PubMed PubMed Central Google
Scholar * Mesman, S., Wever, I. & Smidt, M. P. Tcf4 is involved in subset specification of mesodiencephalic dopaminergic neurons. _Biomedicines_ 9, 317 (2021). Article CAS PubMed
PubMed Central Google Scholar * Yin, M. et al. Ventral mesencephalon-enriched genes that regulate the development of dopaminergic neurons in vivo. _J. Neurosci._ 29, 5170–5182 (2009).
Article CAS PubMed PubMed Central Google Scholar * Rabe, T. I. et al. The transcription factor Uncx4.1 acts in a short window of midbrain dopaminergic neuron differentiation. _Neural
Dev._ 7, 1–16 (2012). Article Google Scholar * Lee, S., Lumelsky, N., Studer, L., Auerbach, J. M. & McKay, R. D. Efficient generation of midbrain and hindbrain neurons from mouse
embryonic stem cells. _Nat. Biotechnol._ 18, 675–679 (2000). Article CAS PubMed Google Scholar * Ye, W., Shimamura, K., Rubenstein, J. L. R., Hynes, M. A. & Rosenthal, A. FGF and Shh
signals control dopaminergic and serotonergic cell fate in the anterior neural plate. _Cell_ 93, 755–766 (1998). Article CAS PubMed Google Scholar * Friling, S. et al. Efficient
production of mesencephalic dopamine neurons by Lmxla expression in embryonic stem cells. _Proc. Natl Acad. Sci. USA_ 106, 7613–7618 (2009). Article CAS PubMed PubMed Central Google
Scholar * Panman, L. et al. Transcription factor-induced lineage selection of stem-cell-derived neural progenitor cells. _Cell Stem Cell_ 8, 663–675 (2011). Article CAS PubMed Google
Scholar * Kriks, S. et al. Dopamine neurons derived from human ES cells efficiently engraft in animal models of Parkinson’s disease. _Nature_ 480, 547–551 (2011). Article CAS PubMed
PubMed Central Google Scholar * Kirkeby, A. et al. Generation of regionally specified neural progenitors and functional neurons from human embryonic stem cells under defined conditions.
_Cell Rep._ 1, 703–714 (2012). Article CAS PubMed Google Scholar * Kim, T. W. et al. Biphasic activation of WNT signaling facilitates the derivation of midbrain dopamine neurons from
hESCs for translational use. _Cell Stem Cell_ 28, 343–355.e5 (2021). Article CAS PubMed PubMed Central Google Scholar * Sandor, C. et al. Transcriptomic profiling of purified
patient-derived dopamine neurons identifies convergent perturbations and therapeutics for Parkinson’s disease. _Hum. Mol. Genet._ 26, 552–566 (2017). CAS PubMed PubMed Central Google
Scholar * Fernandes, H. J. R. et al. Single-cell transcriptomics of Parkinson’s disease human in vitro models reveals dopamine neuron-specific stress responses. _Cell Rep._ 33, 108263
(2020). Article CAS PubMed Google Scholar * Kawasaki, H. et al. Induction of midbrain dopaminergic neurons from ES cells by stromal cell-derived inducing activity. _Neuron_ 28, 31–40
(2000). Article CAS PubMed Google Scholar * Vazin, T., Chen, J., Lee, C.-T., Amable, R. & Freed, W. J. Assessment of stromal-derived inducing activity in the generation of
dopaminergic neurons from human embryonic stem cell. _Stem Cells_ 26, 1517–1525 (2008). Article PubMed Google Scholar * Vazin, T. et al. A novel combination of factors, termed SPIE, which
promotes dopaminergic neuron differentiation from human embryonic stem cells. _PLoS ONE_ 4, e6606 (2009). Article PubMed PubMed Central Google Scholar * Shults, C. W., Hashimoto, R.,
Brady, R. M. & Gage, F. H. Dopaminergic cells align along radial glia in the developing mesencephalon of the rat. _Neuroscience_ 38, 427–436 (1990). Article CAS PubMed Google Scholar
* Marín, O., Valiente, M., Ge, X. & Tsai, L. H. Guiding neuronal cell migrations. _Cold Spring Harb. Perspect. Biol._ 2, a001834 (2010). Article PubMed PubMed Central Google Scholar
* Brignani, S. et al. Remotely produced and axon-derived netrin-1 instructs GABAergic neuron migration and dopaminergic substantia nigra development. _Neuron_ 107, 684–702.e9 (2020).
Article CAS PubMed Google Scholar * Li, J. et al. Evidence for topographic guidance of dopaminergic axons by differential Netrin-1 expression in the striatum. _Mol. Cell Neurosci._ 61,
85–96 (2014). Article CAS PubMed Google Scholar * Xu, B. et al. Critical roles for the netrin receptor deleted in colorectal cancer in dopaminergic neuronal precursor migration, axon
guidance, and axon arborization. _Neuroscience_ 169, 932–949 (2010). Article CAS PubMed Google Scholar * Nishikawa, S., Goto, S., Yamada, K., Hamasaki, T. & Ushio, Y. Lack of Reelin
causes malpositioning of nigral dopaminergic neurons: evidence from comparison of normal and _Reln__rl_ mutant mice. _J. Comp. Neurol._ 461, 166–173 (2003). Article CAS PubMed Google
Scholar * Kang, W.-Y. et al. Migratory defect of mesencephalic dopaminergic neurons in developing reeler mice. _Anat. Cell Biol._ 43, 241 (2010). Article PubMed PubMed Central Google
Scholar * Sharaf, A., Bock, H. H., Spittau, B., Bouché, E. & Krieglstein, K. ApoER2 and VLDLr are required for mediating reelin signalling pathway for normal migration and positioning
of mesencephalic dopaminergic neurons. _PLoS ONE_ 8, 71091 (2013). Article Google Scholar * Vaswani, A. R. et al. Correct setup of the substantia nigra requires Reelin-mediated fast,
laterally-directed migration of dopaminergic neurons. _Elife_ 8, e41623 (2019). Article PubMed PubMed Central Google Scholar * Poulin, J. F. et al. Mapping projections of molecularly
defined dopamine neuron subtypes using intersectional genetic approaches. _Nat. Neurosci._ 21, 1260–1271 (2018). Article CAS PubMed PubMed Central Google Scholar * Evans, R. C., Zhu, M.
& Khaliq, Z. M. Dopamine inhibition differentially controls excitability of substantia nigra dopamine neuron subpopulations through T-type calcium channels. _J. Neurosci._ 37, 3704–3720
(2017). Article CAS PubMed PubMed Central Google Scholar * Carmichael, K. et al. Function and regulation of ALDH1A1-positive nigrostriatal dopaminergic neurons in motor control and
Parkinson’s disease. _Front. Neural Circuits_ 15, 644776 (2021). Article CAS PubMed PubMed Central Google Scholar * Jin, X. & Costa, R. M. Start/stop signals emerge in nigrostriatal
circuits during sequence learning. _Nature_ 466, 457–462 (2010). Article CAS PubMed PubMed Central Google Scholar * Howe, M. W. & Dombeck, D. A. Rapid signalling in distinct
dopaminergic axons during locomotion and reward. _Nature_ 535, 505–510 (2016). Article CAS PubMed PubMed Central Google Scholar * Sgobio, C. et al. Aldehyde dehydrogenase 1–positive
nigrostriatal dopaminergic fibers exhibit distinct projection pattern and dopamine release dynamics at mouse dorsal striatum. _Sci. Rep._ 7, 5283 (2017). Article PubMed PubMed Central
Google Scholar * Wu, J. et al. Distinct connectivity and functionality of aldehyde dehydrogenase 1a1-positive nigrostriatal dopaminergic neurons in motor learning. _Cell Rep._ 28,
1167–1181.e7 (2019). Article CAS PubMed PubMed Central Google Scholar * Matsumoto, M. & Hikosaka, O. Two types of dopamine neuron distinctly convey positive and negative
motivational signals. _Nature_ 459, 837–841 (2009). Article CAS PubMed PubMed Central Google Scholar * Hauser, T. U., Eldar, E. & Dolan, R. J. Separate mesocortical and mesolimbic
pathways encode effort and reward learning signals. _Proc. Natl Acad. Sci. USA_ 114, E7395–E7404 (2017). Article CAS PubMed PubMed Central Google Scholar * Halbout, B. et al. Mesolimbic
dopamine projections mediate cue-motivated reward seeking but not reward retrieval in rats. _Elife_ 8, e43551 (2019). Article PubMed PubMed Central Google Scholar * Ioanas, H.-I., Saab,
B. J. & Rudin, M. Whole-brain opto-fMRI map of mouse VTA dopaminergic activation reflects structural projections with small but significant deviations. _Transl. Psychiatry_ 12, 60
(2022). Article CAS PubMed PubMed Central Google Scholar * Ikemoto, S. Dopamine reward circuitry: two projection systems from the ventral midbrain to the nucleus accumbens–olfactory
tubercle complex. _Brain Res. Rev._ 56, 27–78 (2007). Article CAS PubMed PubMed Central Google Scholar * Heymann, G. et al. Synergy of distinct dopamine projection populations in
behavioral reinforcement. _Neuron_ 105, 909–920.e5 (2020). Article CAS PubMed Google Scholar * Lammel, S. et al. Input-specific control of reward and aversion in the ventral tegmental
area. _Nature_ 491, 212–217 (2012). Article CAS PubMed PubMed Central Google Scholar * Miranda-Barrientos, J. et al. Ventral tegmental area GABA, glutamate, and glutamate-GABA neurons
are heterogeneous in their electrophysiological and pharmacological properties. _Eur. J. Neurosci._ 54, 4061–4084 (2021). Article CAS Google Scholar * Root, D. H. et al. Distinct
signaling by ventral tegmental area glutamate, GABA, and combinatorial glutamate-GABA neurons in motivated behavior. _Cell Rep._ 32, 108094 (2020). Article CAS PubMed PubMed Central
Google Scholar * Saunders, B. T., Richard, J. M., Margolis, E. B. & Janak, P. H. Dopamine neurons create Pavlovian conditioned stimuli with circuit-defined motivational properties.
_Nat. Neurosci._ 21, 1072–1083 (2018). Article CAS PubMed PubMed Central Google Scholar * Brischoux, F., Chakraborty, S., Brierley, D. I. & Ungless, M. A. Phasic excitation of
dopamine neurons in ventral VTA by noxious stimuli. _Proc. Natl Acad. Sci. USA_ 106, 4894–4899 (2009). Article CAS PubMed PubMed Central Google Scholar * de Jong, J. W., Fraser, K. M.
& Lammel, S. Mesoaccumbal dopamine heterogeneity: what do dopamine firing and release have to do with it? _Annu. Rev. Neurosci._ 45, 109–129 (2022). Article PubMed Google Scholar *
Zhao, Q. et al. Histochemical characterization of the dorsal raphe-periaqueductal grey dopamine transporter neurons projecting to the extended amygdala. _eNeuro_
https://doi.org/10.1523/ENEURO.0121-22.2022 (2022). Article PubMed PubMed Central Google Scholar * Lin, R. et al. The raphe dopamine system controls the expression of incentive memory.
_Neuron_ 106, 498–514.e8 (2020). Article CAS PubMed Google Scholar * Lin, R., Liang, J. & Luo, M. The raphe dopamine system: roles in salience encoding, memory expression, and
addiction. _Trends Neurosci._ 44, 366–377 (2021). Article CAS PubMed Google Scholar * Yu, W. et al. Periaqueductal gray/dorsal raphe dopamine neurons contribute to sex differences in
pain-related behaviors. _Neuron_ 109, 1365–1380.e5 (2021). Article CAS PubMed Google Scholar * Darvas, M., Fadok, J. P. & Palmiter, R. D. Requirement of dopamine signaling in the
amygdala and striatum for learning and maintenance of a conditioned avoidance response. _Learn. Mem._ 18, 136–143 (2011). Article CAS PubMed PubMed Central Google Scholar * Fadok, J.
P., Dickerson, T. M. K. & Palmiter, R. D. Dopamine is necessary for cue-dependent fear conditioning. _J. Neurosci._ 29, 11089–11097 (2009). Article CAS PubMed PubMed Central Google
Scholar * Fadok, J. P., Darvas, M., Dickerson, T. M. K. & Palmiter, R. D. Long-term memory for pavlovian fear conditioning requires dopamine in the nucleus accumbens and basolateral
amygdala. _PLoS ONE_ 5, e12751 (2010). Article PubMed PubMed Central Google Scholar * Morel, C. et al. Midbrain projection to the basolateral amygdala encodes anxiety-like but not
depression-like behaviors. _Nat. Commun._ 13, 1–13 (2022). Article Google Scholar * Ball, K. T., Bennardo, G. M., Roe, J. & Wunderlich, K. J. Dopamine D1-like receptors in prelimbic,
but not infralimbic, medial prefrontal cortex contribute to chronic stress-induced increases in cue-induced relapse to palatable food seeking during forced abstinence. _Behav. Brain Res._
417, 113583 (2022). Article CAS PubMed Google Scholar * Zubair, M. et al. Divergent whole brain projections from the ventral midbrain in macaques. _Cereb. Cortex_ 31, 2913 (2021).
Article PubMed PubMed Central Google Scholar * Kramer, D. J. et al. Generation of a DAT-P2A-Flpo mouse line for intersectional genetic targeting of dopamine neuron subpopulations. _Cell
Rep._ 35, 109123 (2021). Article CAS PubMed PubMed Central Google Scholar * Nakamura, S., Ito, Y., Shirasaki, R. & Murakami, F. Local directional cues control growth polarity of
dopaminergic axons along the rostrocaudal Axis. _J. Neurosci._ 20, 4112–4119 (2000). Article CAS PubMed PubMed Central Google Scholar * Gates, M. A., Coupe, V. M., Torres, E. M.,
Fricker-Gates, R. A. & Dunnett, S. B. Spatially and temporally restricted chemoattractive and chemorepulsive cues direct the formation of the nigro-striatal circuit. _Eur. J. Neurosci._
19, 831–844 (2004). Article PubMed Google Scholar * Prestoz, L., Jaber, M. & Gaillard, A. Dopaminergic axon guidance: which makes what? _Front. Cell. Neurosci._ 6, 32 (2012). Article
PubMed PubMed Central Google Scholar * van den Heuvel, D. M. A. & Pasterkamp, R. J. Getting connected in the dopamine system. _Prog. Neurobiol._ 85, 75–93 (2008). Article PubMed
Google Scholar * Marillat, V. et al. Spatiotemporal expression patterns of _slit_ and _robo_ genes in the rat brain. _J. Comp. Neurol._ 442, 130–155 (2002). Article PubMed Google Scholar
* Fenstermaker, A. G. et al. Wnt/planar cell polarity signaling controls the anterior–posterior organization of monoaminergic axons in the brainstem. _J. Neurosci._ 30, 16053–16064 (2010).
Article CAS PubMed PubMed Central Google Scholar * Lin, L., Rao, Y. & Isacson, O. Netrin-1 and slit-2 regulate and direct neurite growth of ventral midbrain dopaminergic neurons.
_Mol. Cell. Neurosci._ 28, 547–555 (2005). Article CAS PubMed Google Scholar * Hernández-Montiel, H. L., Tamariz, E., Sandoval-Minero, M. T. & Varela-Echavarría, A. Semaphorins 3A,
3C, and 3F in mesencephalic dopaminergic axon pathfinding. _J. Comp. Neurol._ 506, 387–397 (2008). Article PubMed Google Scholar * Yamauchi, K. et al. FGF8 signaling regulates growth of
midbrain dopaminergic axons by inducing semaphorin 3F. _J. Neurosci._ 29, 4044–4055 (2009). Article CAS PubMed PubMed Central Google Scholar * Blakely, B. D. et al. Wnt5a regulates
midbrain dopaminergic axon growth and guidance. _PLoS ONE_ 6, e18373 (2011). Article CAS PubMed PubMed Central Google Scholar * Kolk, S. M. et al. Semaphorin 3F is a bifunctional
guidance cue for dopaminergic axons and controls their fasciculation, channeling, rostral growth, and intracortical targeting. _J. Neurosci._ 29, 12542–12557 (2009). Article CAS PubMed
PubMed Central Google Scholar * Torre, E. R., Gutekunst, C. A. & Gross, R. E. Expression by midbrain dopamine neurons of Sema3A and 3F receptors is associated with chemorepulsion in
vitro but a mild in vivo phenotype. _Mol. Cell Neurosci._ 44, 135–153 (2010). Article CAS PubMed PubMed Central Google Scholar * Hammond, R., Blaess, S. & Abeliovich, A. Sonic
hedgehog is a chemoattractant for midbrain dopaminergic axons. _PLoS ONE_ 4, e7007 (2009). Article PubMed PubMed Central Google Scholar * Soleilhavoup, C. et al. Nolz1 expression is
required in dopaminergic axon guidance and striatal innervation. _Nat. Commun._ 11, 3111 (2020). Article CAS PubMed PubMed Central Google Scholar * Marín, O., Baker, J., Puelles, L.
& Rubenstein, J. L. R. Patterning of the basal telencephalon and hypothalamus is essential for guidance of cortical projections. _Development_ 129, 761–773 (2002). Article PubMed
Google Scholar * Dugan, J. P., Stratton, A., Riley, H. P., Farmer, W. T. & Mastick, G. S. Midbrain dopaminergic axons are guided longitudinally through the diencephalon by Slit/Robo
signals. _Mol. Cell. Neurosci._ 46, 347–356 (2011). Article CAS PubMed Google Scholar * Kawano, H. et al. Aberrant trajectory of ascending dopaminergic pathway in mice lacking Nkx2.1.
_Exp. Neurol._ 182, 103–112 (2003). Article CAS PubMed Google Scholar * Bagri, A. et al. Slit proteins prevent midline crossing and determine the dorsoventral position of major axonal
pathways in the mammalian forebrain. _Neuron_ 33, 233–248 (2002). Article CAS PubMed Google Scholar * Deschamps, C. et al. EphrinA5 protein distribution in the developing mouse brain.
_BMC Neurosci._ 11, 105 (2010). Article PubMed PubMed Central Google Scholar * Deschamps, C., Faideau, M., Jaber, M., Gaillard, A. & Prestoz, L. Expression of ephrinA5 during
development and potential involvement in the guidance of the mesostriatal pathway. _Exp. Neurol._ 219, 466–480 (2009). Article CAS PubMed Google Scholar * García-Peña, C. M. et al.
Ascending midbrain dopaminergic axons require descending GAD65 axon fascicles for normal pathfinding. _Front. Neuroanat._ 8, 43 (2014). PubMed PubMed Central Google Scholar * Schmidt, E.
R. E. et al. Subdomain-mediated axon-axon signaling and chemoattraction cooperate to regulate afferent innervation of the lateral habenula. _Neuron_ 83, 372–387 (2014). Article CAS PubMed
Google Scholar * Prensa, L. & Parent, A. The nigrostriatal pathway in the rat: a single-axon study of the relationship between dorsal and ventral tier nigral neurons and the
striosome/matrix striatal compartments. _J. Neurosci._ 21, 7247–7260 (2001). Article CAS PubMed PubMed Central Google Scholar * Matsuda, W. et al. Single nigrostriatal dopaminergic
neurons form widely spread and highly dense axonal arborizations in the neostriatum. _J. Neurosci._ 29, 444–453 (2009). Article CAS PubMed PubMed Central Google Scholar * Aransay, A.,
Rodríguez-López, C., García-Amado, M., Clascá, F. & Prensa, L. Long-range projection neurons of the mouse ventral tegmental area: a single-cell axon tracing analysis. _Front. Neuroanat._
9, 59 (2015). Article PubMed PubMed Central Google Scholar * Barker, D. J., Root, D. H., Zhang, S. & Morales, M. Multiplexed neurochemical signaling by neurons of the ventral
tegmental area. _J. Chem. Neuroanat._ 73, 33–42 (2016). Article CAS PubMed PubMed Central Google Scholar * Gauthier, J., Parent, M., Lévesque, M. & Parent, A. The axonal
arborization of single nigrostriatal neurons in rats. _Brain Res._ 834, 228–232 (1999). Article CAS PubMed Google Scholar * Zhang, S. et al. Dopaminergic and glutamatergic microdomains
in a subset of rodent mesoaccumbens axons. _Nat. Neurosci._ 18, 386–392 (2015). Article CAS PubMed PubMed Central Google Scholar * Fortin, G. M. et al. Segregation of dopamine and
glutamate release sites in dopamine neuron axons: regulation by striatal target cells. _FASEB J._ 33, 400–417 (2019). Article CAS PubMed Google Scholar * Banerjee, A. et al. Molecular
and functional architecture of striatal dopamine release sites. _Neuron_ 110, 248–265.e9 (2022). Article CAS PubMed Google Scholar * Pereira, D. B. et al. Fluorescent false
neurotransmitter reveals functionally silent dopamine vesicle clusters in the striatum. _Nat. Neurosci._ 19, 578–586 (2016). Article CAS PubMed PubMed Central Google Scholar * Manier,
M. et al. Striatal target‐induced axonal branching of dopaminergic mesencephalic neurons in culture via diffusible factors. _J. Neurosci. Res._ 48, 358–371 (1997). Article CAS PubMed
Google Scholar * Hu, Z., Cooper, M., Crockett, D. P. & Zhou, R. Differentiation of the midbrain dopaminergic pathways during mouse development. _J. Comp. Neurol._ 476, 301–311 (2004).
Article PubMed Google Scholar * Flanagan, J. G. Neural map specification by gradients. _Curr. Opin. Neurobiol._ 16, 59–66 (2006). Article CAS PubMed Google Scholar * Jaumotte, J. D.
& Zigmond, M. J. Dopaminergic innervation of forebrain by ventral mesencephalon in organotypic slice co-cultures: effects of GDNF. _Brain Res. Mol. Brain Res._ 134, 139–146 (2005).
Article CAS PubMed Google Scholar * Janis, L. S., Cassidy, R. M. & Kromer, L. F. Ephrin-A binding and EphA receptor expression delineate the matrix compartment of the striatum. _J.
Neurosci._ 19, 4962–4971 (1999). Article CAS PubMed PubMed Central Google Scholar * Yamaguchi, T., Wang, H. L., Li, X., Ng, T. H. & Morales, M. Mesocorticolimbic glutamatergic
pathway. _J. Neurosci._ 31, 8476 (2011). Article CAS PubMed PubMed Central Google Scholar * Islam, K. U. S., Meli, N. & Blaess, S. The development of the mesoprefrontal dopaminergic
system in health and disease. _Front. Neural Circuits_ 15, 746582 (2021). Article CAS PubMed PubMed Central Google Scholar * Reynolds, L. M. et al. DCC receptors drive prefrontal
cortex maturation by determining dopamine axon targeting in adolescence. _Biol. Psychiatry_ 83, 181 (2018). Article CAS PubMed Google Scholar * Manitt, C. et al. The netrin receptor DCC
is required in the pubertal organization of mesocortical dopamine circuitry. _J. Neurosci._ 31, 8381 (2011). Article CAS PubMed PubMed Central Google Scholar * Cuesta, S. et al.
Dopamine axon targeting in the nucleus accumbens in adolescence requires Netrin-1. _Front. Cell Dev. Biol._ 8, 487 (2020). Article PubMed PubMed Central Google Scholar * Pasterkamp, R.
J., Kolk, S. M., Hellemons, A. J. & Kolodkin, A. L. Expression patterns of semaphorin7A and plexinC1during rat neural development suggest roles in axon guidance and neuronal migration.
_BMC Dev. Biol._ 7, 98 (2007). Article PubMed PubMed Central Google Scholar * Chabrat, A. et al. Transcriptional repression of Plxnc1 by Lmx1a and Lmx1b directs topographic dopaminergic
circuit formation. _Nat. Commun._ 8, 933 (2017). Article PubMed PubMed Central Google Scholar * Chung, C. Y. et al. The transcription factor orthodenticle homeobox 2 influences axonal
projections and vulnerability of midbrain dopaminergic neurons. _Brain_ 133, 2022 (2010). Article PubMed PubMed Central Google Scholar * Shigeoka, T. et al. Dynamic axonal translation in
developing and mature visual circuits. _Cell_ 166, 181–192 (2016). Article CAS PubMed PubMed Central Google Scholar * Kegeles, L. S. et al. Increased synaptic dopamine function in
associative regions of the striatum in schizophrenia. _Arch. Gen. Psychiatry_ 67, 231–239 (2010). Article CAS PubMed Google Scholar * McCutcheon, R. A., Abi-Dargham, A. & Howes, O.
D. Schizophrenia, dopamine and the striatum: from biology to symptoms. _Trends Neurosci._ 42, 205–220 (2019). Article CAS PubMed PubMed Central Google Scholar * Poisson, C. L., Engel,
L. & Saunders, B. T. Dopamine circuit mechanisms of addiction-like behaviors. _Front. Neural Circuits_ 15, 752420 (2021). Article CAS PubMed PubMed Central Google Scholar * Corre,
J. et al. Dopamine neurons projecting to medial shell of the nucleus accumbens drive heroin reinforcement. _Elife_ 7, 1–22 (2018). Article Google Scholar * Cassidy, C. M. et al. Evidence
for dopamine abnormalities in the substantia nigra in cocaine addiction revealed by neuromelanin-sensitive MRI. _Am. J. Psychiatry_ 177, 1038–1047 (2020). Article PubMed PubMed Central
Google Scholar * Fearnley, J. M. & Lees, A. J. Ageing and Parkinson’s disease: substantia nigra regional selectivity. _Brain_ 114, 2283–2301 (1991). Article PubMed Google Scholar *
Gibb, W. R. G. & Lees, A. J. Anatomy, pigmentation, ventral and dorsal subpopulations of the substantia nigra, and differential cell death in Parkinson’s disease. _J. Neurol. Neurosurg.
Psychiatry_ 54, 388–396 (1991). Article CAS PubMed PubMed Central Google Scholar * Liu, G. et al. Aldehyde dehydrogenase 1 defines and protects a nigrostriatal dopaminergic neuron
subpopulation. _J. Clin. Invest._ 124, 3032–3046 (2014). Article CAS PubMed PubMed Central Google Scholar * Schwarz, S. T. et al. Parkinson’s disease related signal change in the
nigrosomes 1–5 and the substantia nigra using T2* weighted 7T MRI. _Neuroimage Clin._ 19, 683–689 (2018). Article PubMed PubMed Central Google Scholar * Huddleston, D. E. et al. In vivo
detection of lateral–ventral tier nigral degeneration in Parkinson’s disease. _Hum. Brain Mapp._ 38, 2627–2634 (2017). Article PubMed PubMed Central Google Scholar * Sulzer, D. et al.
Neuromelanin biosynthesis is driven by excess cytosolic catecholamines not accumulated by synaptic vesicles. _Proc. Natl Acad. Sci. USA_ 97, 11869–11874 (2000). Article CAS PubMed PubMed
Central Google Scholar * Segura-Aguilar, J. et al. Protective and toxic roles of dopamine in Parkinson’s disease. _J. Neurochem._ 129, 898–915 (2014). Article CAS PubMed Google Scholar
* Yamada, T., McGeer, P. L., Baimbridge, K. G. & McGeer, E. G. Relative sparing in Parkinson’s disease of substantia nigra dopamine neurons containing calbindin-D28K. _Brain Res._ 526,
303–307 (1990). Article CAS PubMed Google Scholar * German, D. C., Manaye, K. F., Brooksd, B. A. & Sonsalla, P. K. Midbrain dopaminergic cell loss in Parkinson’s disease and
MPTP-induced parkinsonism: sparing of calbindin-D28k–containing cells. _Ann. N. Y. Acad. Sci._ 648, 42–62 (1992). Article CAS PubMed Google Scholar * Liang, C. L., Sinton, C. M.,
Sonsalla, P. K. & German, D. C. Midbrain dopaminergic neurons in the mouse that contain calbindin-D28k exhibit reduced vulnerability to MPTP-induced neurodegeneration.
_Neurodegeneration_ 5, 313–318 (1996). Article CAS PubMed Google Scholar * Rcom-H’cheo-Gauthier, A., Goodwin, J. & Pountney, D. L. Interactions between calcium and alpha-synuclein in
neurodegeneration. _Biomolecules_ 4, 795–811 (2014). Article PubMed PubMed Central Google Scholar * Post, M. R., Lieberman, O. J. & Mosharov, E. V. Can interactions between
α-synuclein, dopamine and calcium explain selective neurodegeneration in Parkinson’s disease? _Front. Neurosci._ 12, 161 (2018). Article PubMed PubMed Central Google Scholar *
Uittenbogaard, M., Baxter, K. K. & Chiaramello, A. The neurogenic basic helix-loop-helix transcription factor NeuroD6 confers tolerance to oxidative stress by triggering an antioxidant
response and sustaining the mitochondrial biomass. _ASN Neuro_ 2, 115–133 (2010). Article CAS Google Scholar * Buck, S. A. et al. VGLUT2 is a determinant of dopamine neuron resilience in
a rotenone model of dopamine neurodegeneration. _J. Neurosci._ 41, 4937–4947 (2021). Article CAS PubMed PubMed Central Google Scholar * Buck, S. A. et al. Roles of VGLUT2 and
dopamine/glutamate co-transmission in selective vulnerability to dopamine neurodegeneration. _ACS Chem. Neurosci._ 13, 187–193 (2022). Article CAS PubMed Google Scholar * Steinkellner,
T. et al. Dopamine neurons exhibit emergent glutamatergic identity in Parkinson’s disease. _Brain_ 143, 879–886 (2021). Google Scholar * Björklund, A. & Stenevi, U. Reconstruction of
the nigrostriatal dopamine pathway by intracerebral nigral transplants. _Brain Res._ 177, 555–560 (1979). Article PubMed Google Scholar * Lindvall, O. et al. Human fetal dopamine neurons
grafted into the striatum in two patients with severe Parkinson’s disease: a detailed account of methodology and a 6-month follow-up. _Arch. Neurol._ 46, 615–631 (1989). Article CAS PubMed
Google Scholar * Lindvall, O. et al. Grafts of fetal dopamine neurons survive and improve motor function in Parkinson’s disease. _Science_ 247, 574–577 (1990). Article CAS PubMed
Google Scholar * Parmar, M., Torper, O. & Drouin-Ouellet, J. Cell-based therapy for Parkinson’s disease: a journey through decades toward the light side of the Force. _Eur. J.
Neurosci._ 49, 463–471 (2019). Article PubMed Google Scholar * Henchcliffe, C. & Sarva, H. Restoring function to dopaminergic neurons: progress in the development of cell-based
therapies for Parkinson’s disease. _CNS Drugs_ 34, 559–577 (2020). Article PubMed Google Scholar * Björklund, A. & Parmar, M. Dopamine cell therapy: from cell replacement to circuitry
repair. _J. Parkinsons Dis._ 11, S159–S165 (2021). Article PubMed PubMed Central Google Scholar * Guo, X., Tang, L. & Tang, X. Current developments in cell replacement therapy for
Parkinson’s disease. _Neuroscience_ 463, 370–382 (2021). Article CAS PubMed Google Scholar * Li, J. Y. & Li, W. Postmortem studies of fetal grafts in Parkinson’s disease: what
lessons have we learned? _Front. Cell Dev. Biol._ 9, 666675 (2021). Article PubMed PubMed Central Google Scholar * Rodríguez-Pallares, J., García-Garrote, M., Parga, J. &
Labandeira-García, J. Combined cell-based therapy strategies for the treatment of Parkinson’s disease: focus on mesenchymal stromal cells. _Neural Regen. Res._ 18, 478 (2023). Article
PubMed Google Scholar * Gaillard, A. et al. Anatomical and functional reconstruction of the nigrostriatal pathway by intranigral transplants. _Neurobiol. Dis._ 35, 477–488 (2009). Article
PubMed Google Scholar * Kirkeby, A. et al. Predictive markers guide differentiation to improve graft outcome in clinical translation of hESC-based therapy for Parkinson’s disease. _Cell
Stem Cell_ 20, 135–148 (2017). Article CAS PubMed PubMed Central Google Scholar * Grealish, S. et al. Human ESC-derived dopamine neurons show similar preclinical efficacy and potency to
fetal neurons when grafted in a rat model of Parkinson’s disease. _Cell Stem Cell_ 15, 653–665 (2014). Article CAS PubMed PubMed Central Google Scholar * Aldrin-Kirk, P. et al. A novel
two-factor monosynaptic TRIO tracing method for assessment of circuit integration of hESC-derived dopamine transplants. _Stem Cell Rep._ 17, 159–172 (2022). Article CAS Google Scholar *
Morizane, A. et al. MHC matching improves engraftment of iPSC-derived neurons in non-human primates. _Nat. Commun._ 8, 385 (2017). Article PubMed PubMed Central Google Scholar *
Morizane, A. et al. Direct comparison of autologous and allogeneic transplantation of IPSC-derived neural cells in the brain of a nonhuman primate. _Stem Cell Rep._ 1, 283–292 (2013).
Article CAS Google Scholar * Schweitzer, J. S. et al. Personalized iPSC-derived dopamine progenitor cells for Parkinson’s disease. _N. Engl. J. Med._ 382, 1926–1932 (2020). Article CAS
PubMed PubMed Central Google Scholar * Tao, Y. et al. Autologous transplant therapy alleviates motor and depressive behaviors in parkinsonian monkeys. _Nat. Med._ 27, 632–639 (2021).
Article CAS PubMed PubMed Central Google Scholar * van de Haar, L. L. et al. Molecular signatures and cellular diversity during mouse habenula development. _Cell Rep._ 40, 111029
(2022). Article PubMed Google Scholar * Melani, R. & Tritsch, N. X. Inhibitory co-transmission from midbrain dopamine neurons relies on presynaptic GABA uptake. _Cell Rep._ 39, 110716
(2022). Article CAS PubMed PubMed Central Google Scholar * Parkinson, J. An essay on the shaking palsy. _J. Neuropsychiatry Clin. Neurosci._ 14, 223–236 (2002). Article PubMed Google
Scholar * Lees, A. J., Hardy, J. & Revesz, T. Parkinson’s disease. _Lancet_ 373, 2055–2066 (2009). Article CAS PubMed Google Scholar * Dickson, D. W. Parkinson’s disease and
parkinsonism: neuropathology. _Cold Spring Harb. Perspect. Med._ 2, a009258 (2012). Article PubMed PubMed Central Google Scholar * Schapira, A. H. V., Chaudhuri, K. R. & Jenner, P.
Non-motor features of Parkinson disease. _Nat. Rev. Neurosci._ 18, 435–450 (2017). Article CAS PubMed Google Scholar * Blauwendraat, C., Nalls, M. A. & Singleton, A. B. The genetic
architecture of Parkinson’s disease. _Lancet Neurol._ 19, 170–178 (2020). Article CAS PubMed Google Scholar * Polymeropoulos, M. H. et al. Mutation in the alpha-synuclein gene identified
in families with Parkinson’s disease. _Science_ 276, 2045–2047 (1997). Article CAS PubMed Google Scholar * Healy, D. G. et al. Phenotype, genotype, and worldwide genetic penetrance of
LRRK2-associated Parkinson’s disease: a case-control study. _Lancet Neurol._ 7, 583–590 (2008). Article CAS PubMed PubMed Central Google Scholar * Goker-Alpan, O. et al. Parkinsonism
among Gaucher disease carriers. _J. Med. Genet._ 41, 937–940 (2004). Article CAS PubMed PubMed Central Google Scholar * Kakkar, A. K. & Dahiya, N. Management of Parkinson’s disease:
current and future pharmacotherapy. _Eur. J. Pharmacol._ 750, 74–81 (2015). Article CAS PubMed Google Scholar * Oxtoby, N. P. et al. Sequence of clinical and neurodegeneration events in
Parkinson’s disease progression. _Brain_ 144, 975–988 (2021). Article PubMed PubMed Central Google Scholar * Elkouzi, A., Vedam-Mai, V., Eisinger, R. S. & Okun, M. S. Emerging
therapies in Parkinson disease — repurposed drugs and new approaches. _Nat. Rev. Neurol._ 15, 204–223 (2019). Article PubMed PubMed Central Google Scholar * Bolam, J. P. & Pissadaki,
E. K. Living on the edge with too many mouths to feed: why dopamine neurons die. _Mov. Disord._ 27, 1478–1483 (2012). Article CAS PubMed PubMed Central Google Scholar * Pacelli, C. et
al. Elevated mitochondrial bioenergetics and axonal arborization size are key contributors to the vulnerability of dopamine neurons. _Curr. Biol._ 25, 2349–2360 (2015). Article CAS PubMed
Google Scholar * Giguère, N. et al. Increased vulnerability of nigral dopamine neurons after expansion of their axonal arborization size through D2 dopamine receptor conditional knockout.
_PLoS Genet._ 15, 1–26 (2019). Article Google Scholar * Ricke, K. M. et al. Mitochondrial dysfunction combined with high calcium load leads to impaired antioxidant defense underlying the
selective loss of nigral dopaminergic neurons. _J. Neurosci._ 40, 1975–1986 (2020). Article CAS PubMed PubMed Central Google Scholar * Kanaan, N. M., Kordower, J. H. & Collier, T.
J. Age-related changes in dopamine transporters and accumulation of 3-nitrotyrosine in rhesus monkey midbrain dopamine neurons: Relevance in selective neuronal vulnerability to degeneration.
_Eur. J. Neurosci._ 27, 3205–3215 (2008). Article CAS PubMed PubMed Central Google Scholar * Nakajima, S. et al. Age-related vulnerability to nigral dopaminergic degeneration in rats
via Zn2+-permeable GluR2-lacking AMPA receptor activation. _Neurotoxicology_ 83, 69–76 (2021). Article CAS PubMed Google Scholar * Shi, H. et al. Sirt3 protects dopaminergic neurons from
mitochondrial oxidative stress. _Hum. Mol. Genet._ 26, 1915–1926 (2017). Article CAS PubMed PubMed Central Google Scholar * Guillot, T. S. & Miller, G. W. Protective actions of the
vesicular monoamine transporter 2 (VMAT2) in monoaminergic neurons. _Mol. Neurobiol._ 39, 149–170 (2009). Article CAS PubMed Google Scholar * Fahn, S. Does levodopa slow or hasten the
rate of progression of Parkinson’s disease? _J. Neurol._ 252, 37–42 (2005). Article Google Scholar * Mosharov, E. V. et al. Interplay between cytosolic dopamine, calcium, and α-synuclein
causes selective death of substantia nigra neurons. _Neuron_ 62, 218–229 (2009). Article CAS PubMed PubMed Central Google Scholar * Surmeier, D. J., Guzman, J. N., Sanchez-Padilla, J.
& Schumacker, P. T. The role of calcium and mitochondrial oxidant stress in the loss of substantia nigra pars compacta dopaminergic neurons in Parkinson’s disease. _Neuroscience_ 198,
221–231 (2011). Article CAS PubMed Google Scholar * Zucca, F. A. et al. Interactions of iron, dopamine and neuromelanin pathways in brain aging and Parkinson’s disease. _Prog.
Neurobiol._ 155, 96–119 (2017). Article CAS PubMed Google Scholar * Jansen van Rensburg, Z., Abrahams, S., Bardien, S. & Kenyon, C. Toxic feedback loop involving iron, reactive
oxygen species, α-synuclein and neuromelanin in Parkinson’s disease and intervention with turmeric. _Mol. Neurobiol._ 58, 5920–5936 (2021). Article CAS PubMed Google Scholar *
Nedergaard, S., Flatman, J. A. & Engberg, I. Nifedipine- and omega-conotoxin-sensitive Ca2+ conductances in guinea-pig substantia nigra pars compacta neurones. _J. Physiol._ 466, 727–747
(1993). CAS PubMed PubMed Central Google Scholar * Philippart, F. et al. Differential somatic Ca2+ channel profile in midbrain dopaminergic neurons. _J. Neurosci._ 36, 7234–7245 (2016).
Article CAS PubMed PubMed Central Google Scholar * Conway, K. A., Rochet, J. C., Bieganski, R. M. & Lansbury, J. Kinetic stabilization of the α-synuclein protofibril by a
dopamine-α-synuclein adduct. _Science_ 294, 1346–1349 (2001). Article CAS PubMed Google Scholar * Ren, Y., Liu, W., Jiang, H., Jiang, Q. & Feng, J. Selective vulnerability of
dopaminergic neurons to microtubule depolymerization. _J. Biol. Chem._ 280, 34105–34112 (2005). Article CAS PubMed Google Scholar * Ulusoy, A., Björklund, T., Buck, K. & Kirik, D.
Dysregulated dopamine storage increases the vulnerability to α-synuclein in nigral neurons. _Neurobiol. Dis._ 47, 367–377 (2012). Article CAS PubMed Google Scholar * Biondetti, E. et al.
The spatiotemporal changes in dopamine, neuromelanin and iron characterizing Parkinson’s disease. _Brain_ 144, 3114–3125 (2021). Article PubMed PubMed Central Google Scholar * Thomsen,
M. B. et al. PET imaging reveals early and progressive dopaminergic deficits after intra-striatal injection of preformed alpha-synuclein fibrils in rats. _Neurobiol. Dis._ 149, 105229
(2021). Article CAS PubMed Google Scholar * Uchihara, T. An order in Lewy body disorders: retrograde degeneration in hyperbranching axons as a fundamental structural template accounting
for focal/multifocal Lewy body disease. _Neuropathology_ 37, 129–149 (2017). Article CAS PubMed Google Scholar * Bellucci, A., Antonini, A., Pizzi, M. & Spano, P. F. The end is the
beginning: Parkinson’s disease in the light of brain imaging. _Front. Aging Neurosci._ 9, 330 (2017). Article PubMed PubMed Central Google Scholar Download references ACKNOWLEDGEMENTS
The authors thank P. Lingor for input on the manuscript. Work on the dopamine system in the laboratory of the authors is supported by Stichting Parkinson Fonds, the Dutch Research Council
(NWO; ALW-VICI 865.14.004) and the NWO Gravitation programme BRAINSCAPES: A Roadmap from Neurogenetics to Neurobiology (NWO: 024.004.012) to R.J.P. The authors apologize to all investigators
whose research could not be appropriately cited owing to space limitations. AUTHOR INFORMATION Author notes * These authors contributed equally: Oxana Garritsen, Eljo Y. van Battum, Laurens
M. Grossouw. AUTHORS AND AFFILIATIONS * Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center, Utrecht University, Utrecht, Netherlands Oxana
Garritsen, Eljo Y. van Battum, Laurens M. Grossouw & R. Jeroen Pasterkamp Authors * Oxana Garritsen View author publications You can also search for this author inPubMed Google Scholar *
Eljo Y. van Battum View author publications You can also search for this author inPubMed Google Scholar * Laurens M. Grossouw View author publications You can also search for this author
inPubMed Google Scholar * R. Jeroen Pasterkamp View author publications You can also search for this author inPubMed Google Scholar CONTRIBUTIONS All authors contributed to all aspects of
the article. CORRESPONDING AUTHOR Correspondence to R. Jeroen Pasterkamp. ETHICS DECLARATIONS COMPETING INTERESTS The authors declare no competing interests. PEER REVIEW PEER REVIEW
INFORMATION _Nature Reviews Neuroscience_ thanks S. Blaess, L. Zweifel and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. ADDITIONAL INFORMATION
PUBLISHER’S NOTE Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. GLOSSARY *
1-Methyl-4-phenyl-1,2,3,5-tetrahydropyridine Neurotoxin that upon intracerebral injection causes rapid degeneration of the substantia nigra and parkinsonian symptoms, a method used for
modelling (late-stage) Parkinson disease in animal models. * 1-Methyl-4-phenylpyridinium A toxic metabolite of 1-methyl-4-phenyl-1,2,3,5-tetrahydropyridine. * [3H]Thymidine Radioactive
thymidine analogue that is taken up when DNA is synthesized, used as a marker for cell proliferation. * Assembloid A fused region-specific organoid used to model interactions between
different tissue types or organs. * Axon guidance Process during which extrinsic molecules instruct the orientation of axonal growth through attraction and/or repulsion of the axon tip. *
Embryonic stem cells (ES cells). Pluripotent stem cells derived from the inner cell mass of blastocyst-stage embryos. * Floorplate A ventral organizer region along the midline of the neural
tube that regulates neuronal differentiation and positioning. * Genetic fate mapping Genetic labelling of ancestor cells and their descendants to map the anatomical and cellular origin of
cells of interest. * Induced pluripotent stem cells (iPS cells). Pluripotent stem cells that are generated through the reprogramming of somatic cells by expression of a set of transcription
factors. * Intersectional genetics Selective targeting of cells by exploiting the combinatorial expression of two or more genes to express genetically encoded recombinases that results in
the activation of proteins to label or manipulate cells. * Laser capture microdissection Laser- and microscope-assisted cutting that enables precise dissection of microregions within the
tissue of interest. * Lineage tracing The identification of cellular progeny at subsequent developmental stages and processes by labelling an ancestor (progenitor) cell. * Major
histocompatibility complex Cell surface proteins that present self-antigens to prevent an autoimmune response. * Marginal zone Cell-sparse, outermost zone of the neural tube or brain
containing primarily axons and glial cells. * Neuroblast An undifferentiated precursor cell in the central nervous system that will eventually develop into a fully differentiated neural
cell. * Organoids Stem cell-derived and self-assembled 3D cultures that represent key features of the represented organ. * Radial glia-like cells Cells that are positive for radial glia
markers in single-cell RNA sequencing datasets. * Radial migration Migration of cells along radial glia fibres away from the ventricular zone. * Ribo-tagging Tagging of ribosomal subunits to
enable immunopurification and downstream processing of ribosomes and attached mRNAs. * Single-cell RNA sequencing (scRNA-seq). Dissociation and isolation of individual cells followed by
sequencing of the RNA transcriptome per cell. * Single-nucleus RNA sequencing (snRNA-seq). Dissociation and isolation of individual nuclei followed by sequencing of the RNA transcriptome per
nucleus. * Slide-seq Processing of tissue sections on an indexed slide to label RNA transcripts so as to preserve their spatial origin. * Spatial transcriptomics Methods to assign cell
types (based on mRNA readouts) to their anatomical location in tissue sections. * Tangential migration Migration of cells along the medial–lateral axis, parallel to the ventricular surface
and orthogonal to radial glia fibres. * Ventricular zone A transient layer of tissue lining the ventricles of the central nervous system that contains neural stem cells. RIGHTS AND
PERMISSIONS Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s);
author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Reprints and permissions ABOUT THIS
ARTICLE CITE THIS ARTICLE Garritsen, O., van Battum, E.Y., Grossouw, L.M. _et al._ Development, wiring and function of dopamine neuron subtypes. _Nat Rev Neurosci_ 24, 134–152 (2023).
https://doi.org/10.1038/s41583-022-00669-3 Download citation * Accepted: 15 December 2022 * Published: 18 January 2023 * Issue Date: March 2023 * DOI:
https://doi.org/10.1038/s41583-022-00669-3 SHARE THIS ARTICLE Anyone you share the following link with will be able to read this content: Get shareable link Sorry, a shareable link is not
currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative