Development, wiring and function of dopamine neuron subtypes

feature-image

Play all audios:

Loading...

ABSTRACT The midbrain dopamine (mDA) system is composed of molecularly and functionally distinct neuron subtypes that mediate specific behaviours and are linked to various brain diseases.


Considerable progress has been made in identifying mDA neuron subtypes, and recent work has begun to unveil how these neuronal subtypes develop and organize into functional brain structures.


This progress is important for further understanding the disparate physiological functions of mDA neurons and their selective vulnerability in disease, and will ultimately accelerate


therapy development. This Review discusses recent advances in our understanding of molecularly defined mDA neuron subtypes and their circuits, ranging from early developmental events, such


as neuron migration and axon guidance, to their wiring and function, and future implications for therapeutic strategies. Access through your institution Buy or subscribe This is a preview of


subscription content, access via your institution ACCESS OPTIONS Access through your institution Access Nature and 54 other Nature Portfolio journals Get Nature+, our best-value


online-access subscription $29.99 / 30 days cancel any time Learn more Subscribe to this journal Receive 12 print issues and online access $189.00 per year only $15.75 per issue Learn more


Buy this article * Purchase on SpringerLink * Instant access to full article PDF Buy now Prices may be subject to local taxes which are calculated during checkout ADDITIONAL ACCESS OPTIONS:


* Log in * Learn about institutional subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS HOW CHANGES IN DOPAMINE D2 RECEPTOR LEVELS ALTER STRIATAL


CIRCUIT FUNCTION AND MOTIVATION Article 12 August 2021 A SINGLE-CELL TRAJECTORY ATLAS OF STRIATAL DEVELOPMENT Article Open access 03 June 2023 UNIQUE FUNCTIONAL RESPONSES DIFFERENTIALLY MAP


ONTO GENETIC SUBTYPES OF DOPAMINE NEURONS Article Open access 03 August 2023 REFERENCES * Björklund, A. & Dunnett, S. B. Dopamine neuron systems in the brain: an update. _Trends


Neurosci._ 30, 194–202 (2007). Article  PubMed  Google Scholar  * Hegarty, S. V., Sullivan, A. M. & O’Keeffe, G. W. Midbrain dopaminergic neurons: a review of the molecular circuitry


that regulates their development. _Dev. Biol._ 379, 123–138 (2013). Article  CAS  PubMed  Google Scholar  * Maiti, P., Manna, J., Dunbar, G. L., Maiti, P. & Dunbar, G. L. Current


understanding of the molecular mechanisms in Parkinson’s disease: targets for potential treatments. _Transl. Neurodegener._ 6, 1–35 (2017). Article  Google Scholar  * Kalia, L. V. &


Lang, A. E. Parkinson’s disease. _Lancet_ 386, 896–912 (2015). Article  CAS  PubMed  Google Scholar  * Morales, M. & Margolis, E. B. Ventral tegmental area: cellular heterogeneity,


connectivity and behaviour. _Nat. Rev. Neurosci._ 18, 73–85 (2017). Article  CAS  PubMed  Google Scholar  * Meyer-Lindenberg, A. et al. Reduced prefrontal activity predicts exaggerated


striatal dopaminergic function in schizophrenia. _Nat. Neurosci._ 5, 267–271 (2002). Article  CAS  PubMed  Google Scholar  * Milton, A. L. & Everitt, B. J. The persistence of maladaptive


memory: addiction, drug memories and anti-relapse treatments. _Neurosci. Biobehav. Rev._ 36, 1119–1139 (2012). Article  PubMed  Google Scholar  * Fu, Y. H. et al. A cytoarchitectonic and


chemoarchitectonic analysis of the dopamine cell groups in the substantia nigra, ventral tegmental area, and retrorubral field in the mouse. _Brain Struct. Funct._ 217, 591–612 (2012).


Article  PubMed  Google Scholar  * Damier, P., Hirsch, E. C., Agid, Y. & Graybiel, A. M. The substantia nigra of the human brain: I. Nigrosomes and the nigral matrix, a compartmental


organization based on calbindin D28K immunohistochemistry. _Brain_ 122, 1421–1436 (1999). Article  PubMed  Google Scholar  * Grimm, J., Mueller, A., Hefti, F. & Rosenthal, A. Molecular


basis for catecholaminergic neuron diversity. _Proc. Natl Acad. Sci. USA_ 101, 13891–13896 (2004). Article  CAS  PubMed  PubMed Central  Google Scholar  * Greene, J. G., Dingledine, R. &


Greenamyre, J. T. Gene expression profiling of rat midbrain dopamine neurons: implications for selective vulnerability in parkinsonism. _Neurobiol. Dis._ 18, 19–31 (2005). Article  CAS 


PubMed  Google Scholar  * Chung, C. Y. et al. Cell type-specific gene expression of midbrain dopaminergic neurons reveals molecules involved in their vulnerability and protection. _Hum. Mol.


Genet._ 14, 1709–1725 (2005). Article  CAS  PubMed  Google Scholar  * Brochier, C. et al. Quantitative gene expression profiling of mouse brain regions reveals differential transcripts


conserved in human and affected in disease models. _Physiol. Genomics_ 33, 170–179 (2008). Article  CAS  PubMed  Google Scholar  * Brichta, L. et al. Identification of neurodegenerative


factors using translatome–regulatory network analysis. _Nat. Neurosci._ 18, 1325–1333 (2015). Article  CAS  PubMed  PubMed Central  Google Scholar  * Tiklová, K. et al. Single-cell RNA


sequencing reveals midbrain dopamine neuron diversity emerging during mouse brain development. _Nat. Commun._ 10, 1–12 (2019). Article  Google Scholar  * Hook, P. W. et al. Single-cell


RNA-Seq of mouse dopaminergic neurons informs candidate gene selection for sporadic parkinson disease. _Am. J. Hum. Genet._ 102, 427–446 (2018). Article  CAS  PubMed  PubMed Central  Google


Scholar  * Saunders, A. et al. Molecular diversity and specializations among the cells of the adult mouse brain. _Cell_ 174, 1015–1030.e16 (2018). Article  CAS  PubMed  PubMed Central 


Google Scholar  * La Manno, G. et al. Molecular diversity of midbrain development in mouse, human, and stem cells. _Cell_ 167, 566–580.e19 (2016). Article  PubMed  PubMed Central  Google


Scholar  * Poulin, J.-F., Gaertner, Z., Moreno-Ramos, O. A. & Awatramani, R. Classification of midbrain dopamine neurons using single-cell gene expression profiling approaches. _Trends


Neurosci._ 43, 155–169 (2020). Article  CAS  PubMed  PubMed Central  Google Scholar  * Poulin, J. F. et al. Defining midbrain dopaminergic neuron diversity by single-cell gene expression


profiling. _Cell Rep._ 9, 930–943 (2014). Article  CAS  PubMed  PubMed Central  Google Scholar  * Kramer, D. J., Risso, D., Kosillo, P., Ngai, J. & Bateup, H. S. Combinatorial expression


of Grp and Neurod6 defines dopamine neuron populations with distinct projection patterns and disease vulnerability. _eNeuro_ 5, ENEURO.0152-18.2018 (2018). Article  PubMed  PubMed Central 


Google Scholar  * Farassat, N. et al. In vivo functional diversity of midbrain dopamine neurons within identified axonal projections. _Elife_ 8, e48408 (2019). Article  CAS  PubMed  PubMed


Central  Google Scholar  * Beier, K. T. et al. Circuit architecture of VTA dopamine neurons revealed by systematic input-output mapping. _Cell_ 162, 622–634 (2015). Article  CAS  PubMed 


PubMed Central  Google Scholar  * Beier, K. T. et al. Topological organization of ventral tegmental area connectivity revealed by viral-genetic dissection of input-output relations. _Cell


Rep._ 26, 159–167 (2019). Article  CAS  PubMed  PubMed Central  Google Scholar  * Lammel, S., Ion, D. I., Roeper, J. & Malenka, R. C. Projection-specific modulation of dopamine neuron


synapses by aversive and rewarding stimuli. _Neuron_ 70, 855–862 (2011). Article  CAS  PubMed  PubMed Central  Google Scholar  * Lammel, S. et al. Unique properties of mesoprefrontal neurons


within a dual mesocorticolimbic dopamine system. _Neuron_ 57, 760–773 (2008). Article  CAS  PubMed  Google Scholar  * de Jong, J. W. et al. A neural circuit mechanism for encoding aversive


stimuli in the mesolimbic dopamine system. _Neuron_ 101, 133–151.e7 (2019). Article  PubMed  Google Scholar  * Tang, W., Kochubey, O., Kintscher, M. & Schneggenburger, R. A VTA to basal


amygdala dopamine projection contributes to signal salient somatosensory events during fear learning. _J. Neurosci._ 40, 3969–3980 (2020). Article  PubMed  PubMed Central  Google Scholar  *


Lerner, T. N. et al. Intact-brain analyses reveal distinct information carried by SNc dopamine subcircuits. _Cell_ 162, 635–647 (2015). Article  CAS  PubMed  PubMed Central  Google Scholar 


* Bimpisidis, Z. et al. The NeuroD6 subtype of VTA neurons contributes to psychostimulant sensitization and behavioral reinforcement. _eNeuro_ 6, ENEURO.0066-19.2019 (2019). Article  PubMed


  PubMed Central  Google Scholar  * Viereckel, T. et al. Midbrain gene screening identifies a new mesoaccumbal glutamatergic pathway and a marker for dopamine cells neuroprotected in


Parkinson’s disease. _Sci. Rep._ 6, 35203 (2016). Article  CAS  PubMed  PubMed Central  Google Scholar  * Watabe-Uchida, M., Zhu, L., Ogawa, S. K., Vamanrao, A. & Uchida, N. Whole-brain


mapping of direct inputs to midbrain dopamine neurons. _Neuron_ 74, 858–873 (2012). Article  CAS  PubMed  Google Scholar  * Menegas, W. et al. Dopamine neurons projecting to the posterior


striatum form an anatomically distinct subclass. _Elife_ 4, e10032 (2015). Article  PubMed  PubMed Central  Google Scholar  * Menegas, W., Babayan, B. M., Uchida, N. & Watabe-Uchida, M.


Opposite initialization to novel cues in dopamine signaling in ventral and posterior striatum in mice. _Elife_ 6, e21886 (2017). Article  PubMed  PubMed Central  Google Scholar  * Menegas,


W., Akiti, K., Amo, R., Uchida, N. & Watabe-Uchida, M. Dopamine neurons projecting to the posterior striatum reinforce avoidance of threatening stimuli. _Nat. Neurosci._ 21, 1421–1430


(2018). Article  CAS  PubMed  PubMed Central  Google Scholar  * Engelhard, B. et al. Specialized coding of sensory, motor and cognitive variables in VTA dopamine neurons. _Nature_ 570,


509–513 (2019). Article  CAS  PubMed  PubMed Central  Google Scholar  * Roeper, J. Dissecting the diversity of midbrain dopamine neurons. _Trends Neurosci._ 36, 336–342 (2013). Article  CAS


  PubMed  Google Scholar  * Steinkellner, T. et al. Role for VGLUT2 in selective vulnerability of midbrain dopamine neurons. _J. Clin. Invest._ 128, 774–788 (2018). Article  PubMed  PubMed


Central  Google Scholar  * Pereira Luppi, M. et al. Sox6 expression distinguishes dorsally and ventrally biased dopamine neurons in the substantia nigra with distinctive properties and


embryonic origins. _Cell Rep._ 37, 109975 (2021). Article  CAS  PubMed  Google Scholar  * Tolve, M. et al. The transcription factor BCL11A defines distinct subsets of midbrain dopaminergic


neurons. _Cell Rep._ 36, 109697 (2021). Article  CAS  PubMed  Google Scholar  * Phillips, R. A. et al. An atlas of transcriptionally defined cell populations in the rat ventral tegmental


area. _Cell Rep._ 39, 110616 (2022). Article  CAS  PubMed  Google Scholar  * Aguila, J. et al. Spatial RNA sequencing identifies robust markers of vulnerable and resistant human midbrain


dopamine neurons and their expression in Parkinson’s disease. _Front. Mol. Neurosci._ 14, 699562 (2021). Article  CAS  PubMed  PubMed Central  Google Scholar  * Monzón-Sandoval, J. et al.


Human-specific transcriptome of ventral and dorsal midbrain dopamine neurons. _Ann. Neurol._ 87, 853–868 (2020). Article  PubMed  PubMed Central  Google Scholar  * Cantuti-Castelvetri, I. et


al. Effects of gender on nigral gene expression and Parkinson disease. _Neurobiol. Dis._ 26, 606–614 (2007). Article  CAS  PubMed  PubMed Central  Google Scholar  * Zheng, B. et al. PGC-1α,


a potential therapeutic target for early intervention in Parkinson’s disease. _Sci. Transl. Med._ 2, 52ra73 (2010). Article  PubMed  PubMed Central  Google Scholar  * Kamath, T. et al.


Single-cell genomic profiling of human dopamine neurons identifies a population that selectively degenerates in Parkinson’s disease. _Nat. Neurosci._ 25, 588–595 (2022). Article  CAS  PubMed


  PubMed Central  Google Scholar  * Smajic, S. et al. Single-cell sequencing of human midbrain reveals glial activation and a Parkinson-specific neuronal state. _Brain_ 145, 964–978 (2022).


Article  PubMed  Google Scholar  * Reyes, S. et al. GIRK2 expression in dopamine neurons of the substantia nigra and ventral tegmental area. _J. Comp. Neurol._ 520, 2591–2607 (2012). Article


  CAS  PubMed  Google Scholar  * Reyes, S. et al. Trophic factors differentiate dopamine neurons vulnerable to Parkinson’s disease. _Neurobiol. Aging_ 34, 873–886 (2013). Article  CAS 


PubMed  Google Scholar  * Reyes, S., Cottam, V., Kirik, D., Double, K. L. & Halliday, G. M. Variability in neuronal expression of dopamine receptors and transporters in the substantia


nigra. _Mov. Disord._ 28, 1351–1359 (2013). Article  CAS  PubMed  Google Scholar  * Afonso-Oramas, D. et al. Dopamine transporter glycosylation correlates with the vulnerability of midbrain


dopaminergic cells in Parkinson’s disease. _Neurobiol. Dis._ 36, 494–508 (2009). Article  CAS  PubMed  Google Scholar  * Damier, P., Hirsch, E. C., Agid, Y. & Graybiel, A. M. The


substantia nigra of the human brain: II. Patterns of loss of dopamine-containing neurons in Parkinson’s disease. _Brain_ 122, 1437–1448 (1999). Article  PubMed  Google Scholar  * Agarwal, D.


et al. A single-cell atlas of the human substantia nigra reveals cell-specific pathways associated with neurological disorders. _Nat. Commun._ 11, 1–11 (2020). Article  Google Scholar  *


Rodriques, S. G. et al. Slide-seq: a scalable technology for measuring genome-wide expression at high spatial resolution. _Science_ 363, 1463–1467 (2019). Article  CAS  PubMed  PubMed


Central  Google Scholar  * Arenas, E., Denham, M. & Villaescusa, J. C. How to make a midbrain dopaminergic neuron. _Development_ 142, 1918–1936 (2015). Article  CAS  PubMed  Google


Scholar  * Blaess, S. & Ang, S. L. Genetic control of midbrain dopaminergic neuron development. _Wiley Interdiscip. Rev. Dev. Biol._ 4, 113–134 (2015). Article  CAS  PubMed  Google


Scholar  * Brignani, S. & Pasterkamp, R. J. Neuronal subset-specific migration and axonal wiring mechanisms in the developing midbrain dopamine system. _Front. Neuroanat._ 11, 55 (2017).


Article  PubMed  PubMed Central  Google Scholar  * Rhinn, M. et al. Sequential roles for Otx2 in visceral endoderm and neuroectoderm for forebrain and midbrain induction and specification.


_Development_ 125, 845–856 (1998). Article  CAS  PubMed  Google Scholar  * Millet, S. et al. A role for Gbx2 in repression of Otx2 and positioning the mid/hindbrain organizer. _Nature_ 401,


161–164 (1999). Article  CAS  PubMed  Google Scholar  * Wassarman, K. M. et al. Specification of the anterior hindbrain and establishment of a normal mid/hindbrain organizer is dependent on


Gbx2 gene function. _Development_ 124, 2923–2934 (1997). Article  CAS  PubMed  Google Scholar  * Joyner, A. L., Liu, A. & Millet, S. Otx2, Gbx2 and Fgf8 interact to position and maintain


a mid-hindbrain organizer. _Curr. Opin. Cell Biol._ 12, 736–741 (2000). Article  CAS  PubMed  Google Scholar  * Ono, Y. et al. Differences in neurogenic potential in floor plate cells along


an anteroposterior location: midbrain dopaminergic neurons originate from mesencephalic floor plate cells. _Development_ 134, 3213–3225 (2007). Article  CAS  PubMed  Google Scholar  *


Wilkinson, D. G., Bailes, J. A. & McMahon, A. P. Expression of the proto-oncogene int-1 is restricted to specific neural cells in the developing mouse embryo. _Cell_ 50, 79–88 (1987).


Article  CAS  PubMed  Google Scholar  * Rhinn, M., Dierich, A., Meur, Mle & Ang, S. Cell autonomous and non-cell autonomous functions of Otx2 in patterning the rostral brain.


_Development_ 126, 4295–4304 (1999). Article  CAS  PubMed  Google Scholar  * Brodski, C. et al. Location and size of dopaminergic and serotonergic cell populations are controlled by the


position of the midbrain-hindbrain organizer. _J. Neurosci._ 23, 4199–4207 (2003). Article  CAS  PubMed  PubMed Central  Google Scholar  * Basson, M. A. et al. Specific regions within the


embryonic midbrain and cerebellum require different levels of FGF signaling during development. _Development_ 135, 889–898 (2008). Article  CAS  PubMed  Google Scholar  * Sasaki, H., Hui, C.


C., Nakafuku, M. & Kondoh, H. A binding site for Gli proteins is essential for HNF-3beta floor plate enhancer activity in transgenics and can respond to Shh in vitro. _Development_ 124,


1313–1322 (1997). Article  CAS  PubMed  Google Scholar  * Roelink, H. et al. Floor plate and motor neuron induction by different concentrations of the amino-terminal cleavage product of


sonic hedgehog autoproteolysis. _Cell_ 81, 445–455 (1995). Article  CAS  PubMed  Google Scholar  * Lin, W. et al. Foxa1 and Foxa2 function both upstream of and cooperatively with Lmx1a and


Lmx1b in a feedforward loop promoting mesodiencephalic dopaminergic neuron development. _Dev. Biol._ 333, 386–396 (2009). Article  CAS  PubMed  Google Scholar  * Ang, S. L. et al. The


formation and maintenance of the definitive endoderm lineage in the mouse: involvement of HNF3/forkhead proteins. _Development_ 119, 1301–1315 (1993). Article  CAS  PubMed  Google Scholar  *


Omodei, D. et al. Anterior-posterior graded response to Otx2 controls proliferation and differentiation of dopaminergic progenitors in the ventral mesencephalon. _Development_ 135,


3459–3470 (2008). Article  CAS  PubMed  Google Scholar  * Deng, Q. et al. Specific and integrated roles of Lmx1a, Lmx1b and Phox2a in ventral midbrain development. _Development_ 138,


3399–3408 (2011). Article  CAS  PubMed  Google Scholar  * Andersson, E. et al. Identification of intrinsic determinants of midbrain dopamine neurons. _Cell_ 124, 393–405 (2006). Article  CAS


  PubMed  Google Scholar  * Kele, J. et al. Neurogenin 2 is required for the development of ventral midbrain dopaminergic neurons. _Development_ 133, 495–505 (2006). Article  CAS  PubMed 


Google Scholar  * Kawano, H., Ohyama, K., Kawamura, K. & Nagatsu, I. Migration of dopaminergic neurons in the embryonic mesencephalon of mice. _Brain Res. Dev. Brain Res._ 86, 101–113


(1995). Article  CAS  PubMed  Google Scholar  * Yang, S. et al. Cxcl12/Cxcr4 signaling controls the migration and process orientation of A9-A10 dopaminergic neurons. _Development_ 140,


4554–4564 (2013). Article  CAS  PubMed  Google Scholar  * Sacchetti, P., Mitchell, T. R., Granneman, J. G. & Bannon, M. J. Nurr1 enhances transcription of the human dopamine transporter


gene through a novel mechanism. _J. Neurochem._ 76, 1565–1572 (2001). Article  CAS  PubMed  Google Scholar  * Chung, S. et al. Wnt1-lmx1a forms a novel autoregulatory loop and controls


midbrain dopaminergic differentiation synergistically with the SHH-FoxA2 pathway. _Cell Stem Cell_ 5, 646–658 (2009). Article  CAS  PubMed  PubMed Central  Google Scholar  * Prakash, N. et


al. A Wnt1-regulated genetic network controls the identity and fate of midbrain-dopaminergic progenitors in vivo. _Development_ 133, 89–98 (2006). Article  CAS  PubMed  Google Scholar  *


Ferri, A. L. M. et al. Foxa1 and Foxa2 regulate multiple phases of midbrain dopaminergic neuron development in a dosage-dependent manner. _Development_ 134, 2761–2769 (2007). Article  CAS 


PubMed  Google Scholar  * Blaess, S. et al. Temporal-spatial changes in Sonic Hedgehog expression and signaling reveal different potentials of ventral mesencephalic progenitors to populate


distinct ventral midbrain nuclei. _Neural Dev._ 6, 29 (2011). Article  PubMed  PubMed Central  Google Scholar  * Panman, L. et al. Sox6 and Otx2 control the specification of substantia nigra


and ventral tegmental area dopamine neurons. _Cell Rep._ 8, 1018–1025 (2014). Article  CAS  PubMed  Google Scholar  * Bayer, S. A., Wills, K. V., Triarhou, L. C. & Ghetti, B. Time of


neuron origin and gradients of neurogenesis in midbrain dopaminergic neurons in the mouse. _Exp. Brain Res._ 105, 191–199 (1995). Article  CAS  PubMed  Google Scholar  * Bye, C. R.,


Thompson, L. H. & Parish, C. L. Birth dating of midbrain dopamine neurons identifies A9 enriched tissue for transplantation into parkinsonian mice. _Exp. Neurol._ 236, 58–68 (2012).


Article  CAS  PubMed  Google Scholar  * Bodea, G. O. et al. Reelin and CXCL12 regulate distinct migratory behaviors during the development of the dopaminergic system. _Development_ 141,


661–673 (2014). Article  CAS  PubMed  Google Scholar  * Levitt, P. & Rakic, P. The time of genesis, embryonic origin and differentiation of the brain stem monoamine neurons in the rhesus


monkey. _Brain Res._ 256, 35–57 (1982). Article  CAS  PubMed  Google Scholar  * Altman, J. & Bayer, S. A. Development of the brain stem in the rat. V. Thymidine-radiographic study of


the time of origin of neurons in the midbrain tegmentum. _J. Comp. Neurol._ 198, 677–716 (1981). Article  CAS  PubMed  Google Scholar  * Ribes, V. et al. Distinct Sonic Hedgehog signaling


dynamics specify floor plate and ventral neuronal progenitors in the vertebrate neural tube. _Genes Dev._ 24, 1186–1200 (2010). Article  CAS  PubMed  PubMed Central  Google Scholar  *


Mavromatakis, Y. E. et al. Foxa1 and Foxa2 positively and negatively regulate Shh signalling to specify ventral midbrain progenitor identity. _Mech. Dev._ 128, 90–103 (2011). Article  CAS 


PubMed  Google Scholar  * Hayes, L., Zhang, Z., Albert, P., Zervas, M. & Ahn, S. The timing of _Sonic hedgehog_ and _Gli1_ expression segregates midbrain dopamine neurons. _J. Comp.


Neurol._ 519, 3001 (2011). Article  CAS  PubMed  PubMed Central  Google Scholar  * Kabanova, A. et al. Function and developmental origin of a mesocortical inhibitory circuit. _Nat.


Neurosci._ 18, 872–882 (2015). Article  CAS  PubMed  Google Scholar  * Verwey, M. et al. Mesocortical dopamine phenotypes in mice lacking the Sonic Hedgehog receptor Cdon. _eNeuro_ 3,


ENEURO.0009-16.2016 (2016). Article  PubMed  PubMed Central  Google Scholar  * Joksimovic, M. et al. Spatiotemporally separable Shh domains in the midbrain define distinct dopaminergic


progenitor pools. _Proc. Natl Acad. Sci. USA_ 106, 19185 (2009). Article  CAS  PubMed  PubMed Central  Google Scholar  * Brown, A., Machan, J. T., Hayes, L. & Zervas, M. Molecular


organization and timing of Wnt1 expression define cohorts of midbrain dopamine neuron progenitors in vivo. _J. Comp. Neurol._ 519, 2978 (2011). Article  CAS  PubMed  PubMed Central  Google


Scholar  * Nouri, P. et al. Dose-dependent and subset-specific regulation of midbrain dopaminergic neuron differentiation by LEF1-mediated WNT1/b-catenin signaling. _Front. Cell Dev. Biol._


8, 587778 (2020). Article  PubMed  PubMed Central  Google Scholar  * Gyllborg, D. et al. The matricellular protein R-spondin 2 promotes midbrain dopaminergic neurogenesis and


differentiation. _Stem Cell Rep._ 11, 651 (2018). Article  CAS  Google Scholar  * Hoekstra, E. J. et al. Lmx1a encodes a rostral set of mesodiencephalic dopaminergic neurons marked by the


Wnt/B-catenin signaling activator R-spondin 2. _PLoS ONE_ 8, e74049 (2013). Article  CAS  PubMed  PubMed Central  Google Scholar  * Zhang, J. et al. A WNT1-regulated developmental gene


cascade prevents dopaminergic neurodegeneration in adult _En1_+/- mice. _Neurobiol. Dis._ 82, 32–45 (2015). Article  CAS  PubMed  Google Scholar  * Fukusumi, Y. et al. Dickkopf 3 promotes


the differentiation of a rostrolateral midbrain dopaminergic neuronal subset in vivo and from pluripotent stem cells in vitro in the mouse. _J. Neurosci._ 35, 13385 (2015). Article  CAS 


PubMed  PubMed Central  Google Scholar  * Jung, H., Lee, S. K. & Jho, E. H. Mest/Peg1 inhibits Wnt signalling through regulation of LRP6 glycosylation. _Biochem. J._ 436, 263–269 (2011).


Article  CAS  PubMed  Google Scholar  * Mesman, S., van Hooft, J. A. & Smidt, M. P. _Mest_/_Peg1_ is essential for the development and maintenance of a SNc neuronal subset. _Front. Mol.


Neurosci._ 9, 166 (2017). Article  PubMed  PubMed Central  Google Scholar  * Smidt, M. P. et al. Early developmental failure of substantia nigra dopamine neurons in mice lacking the


homeodomain gene Pitx3. _Development_ 131, 1145–1155 (2004). Article  CAS  PubMed  Google Scholar  * Maxwell, S. L., Ho, H. Y., Kuehner, E., Zhao, S. & Li, M. Pitx3 regulates tyrosine


hydroxylase expression in the substantia nigra and identifies a subgroup of mesencephalic dopaminergic progenitor neurons during mouse development. _Dev. Biol._ 282, 467–479 (2005). Article


  CAS  PubMed  Google Scholar  * Jacobs, F. M. J. et al. Retinoic acid counteracts developmental defects in the substantia nigra caused by Pitx3 deficiency. _Development_ 134, 2673–2684


(2007). Article  CAS  PubMed  Google Scholar  * Jacobs, F. M. J. et al. Retinoic acid-dependent and -independent gene-regulatory pathways of Pitx3 in meso-diencephalic dopaminergic neurons.


_Development_ 138, 5213–5222 (2011). Article  CAS  PubMed  Google Scholar  * Veenvliet, J. V. et al. Specification of dopaminergic subsets involves interplay of En1 and Pitx3. _Development_


140, 3373–3384 (2013). Article  CAS  PubMed  Google Scholar  * di Giovannantonio, L. G. et al. Otx2 selectively controls the neurogenesis of specific neuronal subtypes of the ventral


tegmental area and compensates En1-dependent neuronal loss and MPTP vulnerability. _Dev. Biol._ 373, 176–183 (2013). Article  PubMed  Google Scholar  * di Salvio, M. et al. Otx2 controls


neuron subtype identity in ventral tegmental area and antagonizes vulnerability to MPTP. _Nat. Neurosci._ 13, 1481–1489 (2010). Article  PubMed  Google Scholar  * Oosterveen, T. et al.


Pluripotent stem cell derived dopaminergic subpopulations model the selective neuron degeneration in Parkinson’s disease. _Stem Cell Rep._ 16, 2718–2735 (2021). Article  CAS  Google Scholar


  * Khan, S. et al. Survival of a novel subset of midbrain dopaminergic neurons projecting to the lateral septum is dependent on NeuroD proteins. _J. Neurosci._ 37, 2305 (2017). Article  CAS


  PubMed  PubMed Central  Google Scholar  * Lo, P. S., Rymar, V. V., Kennedy, T. E. & Sadikot, A. F. The netrin-1 receptor DCC promotes the survival of a subpopulation of midbrain


dopaminergic neurons: relevance for ageing and Parkinson’s disease. _J. Neurochem._ 161, 254–265 (2022). Article  CAS  PubMed  PubMed Central  Google Scholar  * Hoekstra, E. J., von Oerthel,


L., van der Linden, A. J. A. & Smidt, M. P. Phox2b influences the development of a caudal dopaminergic subset. _PLoS ONE_ 7, e52118 (2012). Article  CAS  PubMed  PubMed Central  Google


Scholar  * Mesman, S., Wever, I. & Smidt, M. P. Tcf4 is involved in subset specification of mesodiencephalic dopaminergic neurons. _Biomedicines_ 9, 317 (2021). Article  CAS  PubMed 


PubMed Central  Google Scholar  * Yin, M. et al. Ventral mesencephalon-enriched genes that regulate the development of dopaminergic neurons in vivo. _J. Neurosci._ 29, 5170–5182 (2009).


Article  CAS  PubMed  PubMed Central  Google Scholar  * Rabe, T. I. et al. The transcription factor Uncx4.1 acts in a short window of midbrain dopaminergic neuron differentiation. _Neural


Dev._ 7, 1–16 (2012). Article  Google Scholar  * Lee, S., Lumelsky, N., Studer, L., Auerbach, J. M. & McKay, R. D. Efficient generation of midbrain and hindbrain neurons from mouse


embryonic stem cells. _Nat. Biotechnol._ 18, 675–679 (2000). Article  CAS  PubMed  Google Scholar  * Ye, W., Shimamura, K., Rubenstein, J. L. R., Hynes, M. A. & Rosenthal, A. FGF and Shh


signals control dopaminergic and serotonergic cell fate in the anterior neural plate. _Cell_ 93, 755–766 (1998). Article  CAS  PubMed  Google Scholar  * Friling, S. et al. Efficient


production of mesencephalic dopamine neurons by Lmxla expression in embryonic stem cells. _Proc. Natl Acad. Sci. USA_ 106, 7613–7618 (2009). Article  CAS  PubMed  PubMed Central  Google


Scholar  * Panman, L. et al. Transcription factor-induced lineage selection of stem-cell-derived neural progenitor cells. _Cell Stem Cell_ 8, 663–675 (2011). Article  CAS  PubMed  Google


Scholar  * Kriks, S. et al. Dopamine neurons derived from human ES cells efficiently engraft in animal models of Parkinson’s disease. _Nature_ 480, 547–551 (2011). Article  CAS  PubMed 


PubMed Central  Google Scholar  * Kirkeby, A. et al. Generation of regionally specified neural progenitors and functional neurons from human embryonic stem cells under defined conditions.


_Cell Rep._ 1, 703–714 (2012). Article  CAS  PubMed  Google Scholar  * Kim, T. W. et al. Biphasic activation of WNT signaling facilitates the derivation of midbrain dopamine neurons from


hESCs for translational use. _Cell Stem Cell_ 28, 343–355.e5 (2021). Article  CAS  PubMed  PubMed Central  Google Scholar  * Sandor, C. et al. Transcriptomic profiling of purified


patient-derived dopamine neurons identifies convergent perturbations and therapeutics for Parkinson’s disease. _Hum. Mol. Genet._ 26, 552–566 (2017). CAS  PubMed  PubMed Central  Google


Scholar  * Fernandes, H. J. R. et al. Single-cell transcriptomics of Parkinson’s disease human in vitro models reveals dopamine neuron-specific stress responses. _Cell Rep._ 33, 108263


(2020). Article  CAS  PubMed  Google Scholar  * Kawasaki, H. et al. Induction of midbrain dopaminergic neurons from ES cells by stromal cell-derived inducing activity. _Neuron_ 28, 31–40


(2000). Article  CAS  PubMed  Google Scholar  * Vazin, T., Chen, J., Lee, C.-T., Amable, R. & Freed, W. J. Assessment of stromal-derived inducing activity in the generation of


dopaminergic neurons from human embryonic stem cell. _Stem Cells_ 26, 1517–1525 (2008). Article  PubMed  Google Scholar  * Vazin, T. et al. A novel combination of factors, termed SPIE, which


promotes dopaminergic neuron differentiation from human embryonic stem cells. _PLoS ONE_ 4, e6606 (2009). Article  PubMed  PubMed Central  Google Scholar  * Shults, C. W., Hashimoto, R.,


Brady, R. M. & Gage, F. H. Dopaminergic cells align along radial glia in the developing mesencephalon of the rat. _Neuroscience_ 38, 427–436 (1990). Article  CAS  PubMed  Google Scholar


  * Marín, O., Valiente, M., Ge, X. & Tsai, L. H. Guiding neuronal cell migrations. _Cold Spring Harb. Perspect. Biol._ 2, a001834 (2010). Article  PubMed  PubMed Central  Google Scholar


  * Brignani, S. et al. Remotely produced and axon-derived netrin-1 instructs GABAergic neuron migration and dopaminergic substantia nigra development. _Neuron_ 107, 684–702.e9 (2020).


Article  CAS  PubMed  Google Scholar  * Li, J. et al. Evidence for topographic guidance of dopaminergic axons by differential Netrin-1 expression in the striatum. _Mol. Cell Neurosci._ 61,


85–96 (2014). Article  CAS  PubMed  Google Scholar  * Xu, B. et al. Critical roles for the netrin receptor deleted in colorectal cancer in dopaminergic neuronal precursor migration, axon


guidance, and axon arborization. _Neuroscience_ 169, 932–949 (2010). Article  CAS  PubMed  Google Scholar  * Nishikawa, S., Goto, S., Yamada, K., Hamasaki, T. & Ushio, Y. Lack of Reelin


causes malpositioning of nigral dopaminergic neurons: evidence from comparison of normal and _Reln__rl_ mutant mice. _J. Comp. Neurol._ 461, 166–173 (2003). Article  CAS  PubMed  Google


Scholar  * Kang, W.-Y. et al. Migratory defect of mesencephalic dopaminergic neurons in developing reeler mice. _Anat. Cell Biol._ 43, 241 (2010). Article  PubMed  PubMed Central  Google


Scholar  * Sharaf, A., Bock, H. H., Spittau, B., Bouché, E. & Krieglstein, K. ApoER2 and VLDLr are required for mediating reelin signalling pathway for normal migration and positioning


of mesencephalic dopaminergic neurons. _PLoS ONE_ 8, 71091 (2013). Article  Google Scholar  * Vaswani, A. R. et al. Correct setup of the substantia nigra requires Reelin-mediated fast,


laterally-directed migration of dopaminergic neurons. _Elife_ 8, e41623 (2019). Article  PubMed  PubMed Central  Google Scholar  * Poulin, J. F. et al. Mapping projections of molecularly


defined dopamine neuron subtypes using intersectional genetic approaches. _Nat. Neurosci._ 21, 1260–1271 (2018). Article  CAS  PubMed  PubMed Central  Google Scholar  * Evans, R. C., Zhu, M.


& Khaliq, Z. M. Dopamine inhibition differentially controls excitability of substantia nigra dopamine neuron subpopulations through T-type calcium channels. _J. Neurosci._ 37, 3704–3720


(2017). Article  CAS  PubMed  PubMed Central  Google Scholar  * Carmichael, K. et al. Function and regulation of ALDH1A1-positive nigrostriatal dopaminergic neurons in motor control and


Parkinson’s disease. _Front. Neural Circuits_ 15, 644776 (2021). Article  CAS  PubMed  PubMed Central  Google Scholar  * Jin, X. & Costa, R. M. Start/stop signals emerge in nigrostriatal


circuits during sequence learning. _Nature_ 466, 457–462 (2010). Article  CAS  PubMed  PubMed Central  Google Scholar  * Howe, M. W. & Dombeck, D. A. Rapid signalling in distinct


dopaminergic axons during locomotion and reward. _Nature_ 535, 505–510 (2016). Article  CAS  PubMed  PubMed Central  Google Scholar  * Sgobio, C. et al. Aldehyde dehydrogenase 1–positive


nigrostriatal dopaminergic fibers exhibit distinct projection pattern and dopamine release dynamics at mouse dorsal striatum. _Sci. Rep._ 7, 5283 (2017). Article  PubMed  PubMed Central 


Google Scholar  * Wu, J. et al. Distinct connectivity and functionality of aldehyde dehydrogenase 1a1-positive nigrostriatal dopaminergic neurons in motor learning. _Cell Rep._ 28,


1167–1181.e7 (2019). Article  CAS  PubMed  PubMed Central  Google Scholar  * Matsumoto, M. & Hikosaka, O. Two types of dopamine neuron distinctly convey positive and negative


motivational signals. _Nature_ 459, 837–841 (2009). Article  CAS  PubMed  PubMed Central  Google Scholar  * Hauser, T. U., Eldar, E. & Dolan, R. J. Separate mesocortical and mesolimbic


pathways encode effort and reward learning signals. _Proc. Natl Acad. Sci. USA_ 114, E7395–E7404 (2017). Article  CAS  PubMed  PubMed Central  Google Scholar  * Halbout, B. et al. Mesolimbic


dopamine projections mediate cue-motivated reward seeking but not reward retrieval in rats. _Elife_ 8, e43551 (2019). Article  PubMed  PubMed Central  Google Scholar  * Ioanas, H.-I., Saab,


B. J. & Rudin, M. Whole-brain opto-fMRI map of mouse VTA dopaminergic activation reflects structural projections with small but significant deviations. _Transl. Psychiatry_ 12, 60


(2022). Article  CAS  PubMed  PubMed Central  Google Scholar  * Ikemoto, S. Dopamine reward circuitry: two projection systems from the ventral midbrain to the nucleus accumbens–olfactory


tubercle complex. _Brain Res. Rev._ 56, 27–78 (2007). Article  CAS  PubMed  PubMed Central  Google Scholar  * Heymann, G. et al. Synergy of distinct dopamine projection populations in


behavioral reinforcement. _Neuron_ 105, 909–920.e5 (2020). Article  CAS  PubMed  Google Scholar  * Lammel, S. et al. Input-specific control of reward and aversion in the ventral tegmental


area. _Nature_ 491, 212–217 (2012). Article  CAS  PubMed  PubMed Central  Google Scholar  * Miranda-Barrientos, J. et al. Ventral tegmental area GABA, glutamate, and glutamate-GABA neurons


are heterogeneous in their electrophysiological and pharmacological properties. _Eur. J. Neurosci._ 54, 4061–4084 (2021). Article  CAS  Google Scholar  * Root, D. H. et al. Distinct


signaling by ventral tegmental area glutamate, GABA, and combinatorial glutamate-GABA neurons in motivated behavior. _Cell Rep._ 32, 108094 (2020). Article  CAS  PubMed  PubMed Central 


Google Scholar  * Saunders, B. T., Richard, J. M., Margolis, E. B. & Janak, P. H. Dopamine neurons create Pavlovian conditioned stimuli with circuit-defined motivational properties.


_Nat. Neurosci._ 21, 1072–1083 (2018). Article  CAS  PubMed  PubMed Central  Google Scholar  * Brischoux, F., Chakraborty, S., Brierley, D. I. & Ungless, M. A. Phasic excitation of


dopamine neurons in ventral VTA by noxious stimuli. _Proc. Natl Acad. Sci. USA_ 106, 4894–4899 (2009). Article  CAS  PubMed  PubMed Central  Google Scholar  * de Jong, J. W., Fraser, K. M.


& Lammel, S. Mesoaccumbal dopamine heterogeneity: what do dopamine firing and release have to do with it? _Annu. Rev. Neurosci._ 45, 109–129 (2022). Article  PubMed  Google Scholar  *


Zhao, Q. et al. Histochemical characterization of the dorsal raphe-periaqueductal grey dopamine transporter neurons projecting to the extended amygdala. _eNeuro_


https://doi.org/10.1523/ENEURO.0121-22.2022 (2022). Article  PubMed  PubMed Central  Google Scholar  * Lin, R. et al. The raphe dopamine system controls the expression of incentive memory.


_Neuron_ 106, 498–514.e8 (2020). Article  CAS  PubMed  Google Scholar  * Lin, R., Liang, J. & Luo, M. The raphe dopamine system: roles in salience encoding, memory expression, and


addiction. _Trends Neurosci._ 44, 366–377 (2021). Article  CAS  PubMed  Google Scholar  * Yu, W. et al. Periaqueductal gray/dorsal raphe dopamine neurons contribute to sex differences in


pain-related behaviors. _Neuron_ 109, 1365–1380.e5 (2021). Article  CAS  PubMed  Google Scholar  * Darvas, M., Fadok, J. P. & Palmiter, R. D. Requirement of dopamine signaling in the


amygdala and striatum for learning and maintenance of a conditioned avoidance response. _Learn. Mem._ 18, 136–143 (2011). Article  CAS  PubMed  PubMed Central  Google Scholar  * Fadok, J.


P., Dickerson, T. M. K. & Palmiter, R. D. Dopamine is necessary for cue-dependent fear conditioning. _J. Neurosci._ 29, 11089–11097 (2009). Article  CAS  PubMed  PubMed Central  Google


Scholar  * Fadok, J. P., Darvas, M., Dickerson, T. M. K. & Palmiter, R. D. Long-term memory for pavlovian fear conditioning requires dopamine in the nucleus accumbens and basolateral


amygdala. _PLoS ONE_ 5, e12751 (2010). Article  PubMed  PubMed Central  Google Scholar  * Morel, C. et al. Midbrain projection to the basolateral amygdala encodes anxiety-like but not


depression-like behaviors. _Nat. Commun._ 13, 1–13 (2022). Article  Google Scholar  * Ball, K. T., Bennardo, G. M., Roe, J. & Wunderlich, K. J. Dopamine D1-like receptors in prelimbic,


but not infralimbic, medial prefrontal cortex contribute to chronic stress-induced increases in cue-induced relapse to palatable food seeking during forced abstinence. _Behav. Brain Res._


417, 113583 (2022). Article  CAS  PubMed  Google Scholar  * Zubair, M. et al. Divergent whole brain projections from the ventral midbrain in macaques. _Cereb. Cortex_ 31, 2913 (2021).


Article  PubMed  PubMed Central  Google Scholar  * Kramer, D. J. et al. Generation of a DAT-P2A-Flpo mouse line for intersectional genetic targeting of dopamine neuron subpopulations. _Cell


Rep._ 35, 109123 (2021). Article  CAS  PubMed  PubMed Central  Google Scholar  * Nakamura, S., Ito, Y., Shirasaki, R. & Murakami, F. Local directional cues control growth polarity of


dopaminergic axons along the rostrocaudal Axis. _J. Neurosci._ 20, 4112–4119 (2000). Article  CAS  PubMed  PubMed Central  Google Scholar  * Gates, M. A., Coupe, V. M., Torres, E. M.,


Fricker-Gates, R. A. & Dunnett, S. B. Spatially and temporally restricted chemoattractive and chemorepulsive cues direct the formation of the nigro-striatal circuit. _Eur. J. Neurosci._


19, 831–844 (2004). Article  PubMed  Google Scholar  * Prestoz, L., Jaber, M. & Gaillard, A. Dopaminergic axon guidance: which makes what? _Front. Cell. Neurosci._ 6, 32 (2012). Article


  PubMed  PubMed Central  Google Scholar  * van den Heuvel, D. M. A. & Pasterkamp, R. J. Getting connected in the dopamine system. _Prog. Neurobiol._ 85, 75–93 (2008). Article  PubMed 


Google Scholar  * Marillat, V. et al. Spatiotemporal expression patterns of _slit_ and _robo_ genes in the rat brain. _J. Comp. Neurol._ 442, 130–155 (2002). Article  PubMed  Google Scholar


  * Fenstermaker, A. G. et al. Wnt/planar cell polarity signaling controls the anterior–posterior organization of monoaminergic axons in the brainstem. _J. Neurosci._ 30, 16053–16064 (2010).


Article  CAS  PubMed  PubMed Central  Google Scholar  * Lin, L., Rao, Y. & Isacson, O. Netrin-1 and slit-2 regulate and direct neurite growth of ventral midbrain dopaminergic neurons.


_Mol. Cell. Neurosci._ 28, 547–555 (2005). Article  CAS  PubMed  Google Scholar  * Hernández-Montiel, H. L., Tamariz, E., Sandoval-Minero, M. T. & Varela-Echavarría, A. Semaphorins 3A,


3C, and 3F in mesencephalic dopaminergic axon pathfinding. _J. Comp. Neurol._ 506, 387–397 (2008). Article  PubMed  Google Scholar  * Yamauchi, K. et al. FGF8 signaling regulates growth of


midbrain dopaminergic axons by inducing semaphorin 3F. _J. Neurosci._ 29, 4044–4055 (2009). Article  CAS  PubMed  PubMed Central  Google Scholar  * Blakely, B. D. et al. Wnt5a regulates


midbrain dopaminergic axon growth and guidance. _PLoS ONE_ 6, e18373 (2011). Article  CAS  PubMed  PubMed Central  Google Scholar  * Kolk, S. M. et al. Semaphorin 3F is a bifunctional


guidance cue for dopaminergic axons and controls their fasciculation, channeling, rostral growth, and intracortical targeting. _J. Neurosci._ 29, 12542–12557 (2009). Article  CAS  PubMed 


PubMed Central  Google Scholar  * Torre, E. R., Gutekunst, C. A. & Gross, R. E. Expression by midbrain dopamine neurons of Sema3A and 3F receptors is associated with chemorepulsion in


vitro but a mild in vivo phenotype. _Mol. Cell Neurosci._ 44, 135–153 (2010). Article  CAS  PubMed  PubMed Central  Google Scholar  * Hammond, R., Blaess, S. & Abeliovich, A. Sonic


hedgehog is a chemoattractant for midbrain dopaminergic axons. _PLoS ONE_ 4, e7007 (2009). Article  PubMed  PubMed Central  Google Scholar  * Soleilhavoup, C. et al. Nolz1 expression is


required in dopaminergic axon guidance and striatal innervation. _Nat. Commun._ 11, 3111 (2020). Article  CAS  PubMed  PubMed Central  Google Scholar  * Marín, O., Baker, J., Puelles, L.


& Rubenstein, J. L. R. Patterning of the basal telencephalon and hypothalamus is essential for guidance of cortical projections. _Development_ 129, 761–773 (2002). Article  PubMed 


Google Scholar  * Dugan, J. P., Stratton, A., Riley, H. P., Farmer, W. T. & Mastick, G. S. Midbrain dopaminergic axons are guided longitudinally through the diencephalon by Slit/Robo


signals. _Mol. Cell. Neurosci._ 46, 347–356 (2011). Article  CAS  PubMed  Google Scholar  * Kawano, H. et al. Aberrant trajectory of ascending dopaminergic pathway in mice lacking Nkx2.1.


_Exp. Neurol._ 182, 103–112 (2003). Article  CAS  PubMed  Google Scholar  * Bagri, A. et al. Slit proteins prevent midline crossing and determine the dorsoventral position of major axonal


pathways in the mammalian forebrain. _Neuron_ 33, 233–248 (2002). Article  CAS  PubMed  Google Scholar  * Deschamps, C. et al. EphrinA5 protein distribution in the developing mouse brain.


_BMC Neurosci._ 11, 105 (2010). Article  PubMed  PubMed Central  Google Scholar  * Deschamps, C., Faideau, M., Jaber, M., Gaillard, A. & Prestoz, L. Expression of ephrinA5 during


development and potential involvement in the guidance of the mesostriatal pathway. _Exp. Neurol._ 219, 466–480 (2009). Article  CAS  PubMed  Google Scholar  * García-Peña, C. M. et al.


Ascending midbrain dopaminergic axons require descending GAD65 axon fascicles for normal pathfinding. _Front. Neuroanat._ 8, 43 (2014). PubMed  PubMed Central  Google Scholar  * Schmidt, E.


R. E. et al. Subdomain-mediated axon-axon signaling and chemoattraction cooperate to regulate afferent innervation of the lateral habenula. _Neuron_ 83, 372–387 (2014). Article  CAS  PubMed


  Google Scholar  * Prensa, L. & Parent, A. The nigrostriatal pathway in the rat: a single-axon study of the relationship between dorsal and ventral tier nigral neurons and the


striosome/matrix striatal compartments. _J. Neurosci._ 21, 7247–7260 (2001). Article  CAS  PubMed  PubMed Central  Google Scholar  * Matsuda, W. et al. Single nigrostriatal dopaminergic


neurons form widely spread and highly dense axonal arborizations in the neostriatum. _J. Neurosci._ 29, 444–453 (2009). Article  CAS  PubMed  PubMed Central  Google Scholar  * Aransay, A.,


Rodríguez-López, C., García-Amado, M., Clascá, F. & Prensa, L. Long-range projection neurons of the mouse ventral tegmental area: a single-cell axon tracing analysis. _Front. Neuroanat._


9, 59 (2015). Article  PubMed  PubMed Central  Google Scholar  * Barker, D. J., Root, D. H., Zhang, S. & Morales, M. Multiplexed neurochemical signaling by neurons of the ventral


tegmental area. _J. Chem. Neuroanat._ 73, 33–42 (2016). Article  CAS  PubMed  PubMed Central  Google Scholar  * Gauthier, J., Parent, M., Lévesque, M. & Parent, A. The axonal


arborization of single nigrostriatal neurons in rats. _Brain Res._ 834, 228–232 (1999). Article  CAS  PubMed  Google Scholar  * Zhang, S. et al. Dopaminergic and glutamatergic microdomains


in a subset of rodent mesoaccumbens axons. _Nat. Neurosci._ 18, 386–392 (2015). Article  CAS  PubMed  PubMed Central  Google Scholar  * Fortin, G. M. et al. Segregation of dopamine and


glutamate release sites in dopamine neuron axons: regulation by striatal target cells. _FASEB J._ 33, 400–417 (2019). Article  CAS  PubMed  Google Scholar  * Banerjee, A. et al. Molecular


and functional architecture of striatal dopamine release sites. _Neuron_ 110, 248–265.e9 (2022). Article  CAS  PubMed  Google Scholar  * Pereira, D. B. et al. Fluorescent false


neurotransmitter reveals functionally silent dopamine vesicle clusters in the striatum. _Nat. Neurosci._ 19, 578–586 (2016). Article  CAS  PubMed  PubMed Central  Google Scholar  * Manier,


M. et al. Striatal target‐induced axonal branching of dopaminergic mesencephalic neurons in culture via diffusible factors. _J. Neurosci. Res._ 48, 358–371 (1997). Article  CAS  PubMed 


Google Scholar  * Hu, Z., Cooper, M., Crockett, D. P. & Zhou, R. Differentiation of the midbrain dopaminergic pathways during mouse development. _J. Comp. Neurol._ 476, 301–311 (2004).


Article  PubMed  Google Scholar  * Flanagan, J. G. Neural map specification by gradients. _Curr. Opin. Neurobiol._ 16, 59–66 (2006). Article  CAS  PubMed  Google Scholar  * Jaumotte, J. D.


& Zigmond, M. J. Dopaminergic innervation of forebrain by ventral mesencephalon in organotypic slice co-cultures: effects of GDNF. _Brain Res. Mol. Brain Res._ 134, 139–146 (2005).


Article  CAS  PubMed  Google Scholar  * Janis, L. S., Cassidy, R. M. & Kromer, L. F. Ephrin-A binding and EphA receptor expression delineate the matrix compartment of the striatum. _J.


Neurosci._ 19, 4962–4971 (1999). Article  CAS  PubMed  PubMed Central  Google Scholar  * Yamaguchi, T., Wang, H. L., Li, X., Ng, T. H. & Morales, M. Mesocorticolimbic glutamatergic


pathway. _J. Neurosci._ 31, 8476 (2011). Article  CAS  PubMed  PubMed Central  Google Scholar  * Islam, K. U. S., Meli, N. & Blaess, S. The development of the mesoprefrontal dopaminergic


system in health and disease. _Front. Neural Circuits_ 15, 746582 (2021). Article  CAS  PubMed  PubMed Central  Google Scholar  * Reynolds, L. M. et al. DCC receptors drive prefrontal


cortex maturation by determining dopamine axon targeting in adolescence. _Biol. Psychiatry_ 83, 181 (2018). Article  CAS  PubMed  Google Scholar  * Manitt, C. et al. The netrin receptor DCC


is required in the pubertal organization of mesocortical dopamine circuitry. _J. Neurosci._ 31, 8381 (2011). Article  CAS  PubMed  PubMed Central  Google Scholar  * Cuesta, S. et al.


Dopamine axon targeting in the nucleus accumbens in adolescence requires Netrin-1. _Front. Cell Dev. Biol._ 8, 487 (2020). Article  PubMed  PubMed Central  Google Scholar  * Pasterkamp, R.


J., Kolk, S. M., Hellemons, A. J. & Kolodkin, A. L. Expression patterns of semaphorin7A and plexinC1during rat neural development suggest roles in axon guidance and neuronal migration.


_BMC Dev. Biol._ 7, 98 (2007). Article  PubMed  PubMed Central  Google Scholar  * Chabrat, A. et al. Transcriptional repression of Plxnc1 by Lmx1a and Lmx1b directs topographic dopaminergic


circuit formation. _Nat. Commun._ 8, 933 (2017). Article  PubMed  PubMed Central  Google Scholar  * Chung, C. Y. et al. The transcription factor orthodenticle homeobox 2 influences axonal


projections and vulnerability of midbrain dopaminergic neurons. _Brain_ 133, 2022 (2010). Article  PubMed  PubMed Central  Google Scholar  * Shigeoka, T. et al. Dynamic axonal translation in


developing and mature visual circuits. _Cell_ 166, 181–192 (2016). Article  CAS  PubMed  PubMed Central  Google Scholar  * Kegeles, L. S. et al. Increased synaptic dopamine function in


associative regions of the striatum in schizophrenia. _Arch. Gen. Psychiatry_ 67, 231–239 (2010). Article  CAS  PubMed  Google Scholar  * McCutcheon, R. A., Abi-Dargham, A. & Howes, O.


D. Schizophrenia, dopamine and the striatum: from biology to symptoms. _Trends Neurosci._ 42, 205–220 (2019). Article  CAS  PubMed  PubMed Central  Google Scholar  * Poisson, C. L., Engel,


L. & Saunders, B. T. Dopamine circuit mechanisms of addiction-like behaviors. _Front. Neural Circuits_ 15, 752420 (2021). Article  CAS  PubMed  PubMed Central  Google Scholar  * Corre,


J. et al. Dopamine neurons projecting to medial shell of the nucleus accumbens drive heroin reinforcement. _Elife_ 7, 1–22 (2018). Article  Google Scholar  * Cassidy, C. M. et al. Evidence


for dopamine abnormalities in the substantia nigra in cocaine addiction revealed by neuromelanin-sensitive MRI. _Am. J. Psychiatry_ 177, 1038–1047 (2020). Article  PubMed  PubMed Central 


Google Scholar  * Fearnley, J. M. & Lees, A. J. Ageing and Parkinson’s disease: substantia nigra regional selectivity. _Brain_ 114, 2283–2301 (1991). Article  PubMed  Google Scholar  *


Gibb, W. R. G. & Lees, A. J. Anatomy, pigmentation, ventral and dorsal subpopulations of the substantia nigra, and differential cell death in Parkinson’s disease. _J. Neurol. Neurosurg.


Psychiatry_ 54, 388–396 (1991). Article  CAS  PubMed  PubMed Central  Google Scholar  * Liu, G. et al. Aldehyde dehydrogenase 1 defines and protects a nigrostriatal dopaminergic neuron


subpopulation. _J. Clin. Invest._ 124, 3032–3046 (2014). Article  CAS  PubMed  PubMed Central  Google Scholar  * Schwarz, S. T. et al. Parkinson’s disease related signal change in the


nigrosomes 1–5 and the substantia nigra using T2* weighted 7T MRI. _Neuroimage Clin._ 19, 683–689 (2018). Article  PubMed  PubMed Central  Google Scholar  * Huddleston, D. E. et al. In vivo


detection of lateral–ventral tier nigral degeneration in Parkinson’s disease. _Hum. Brain Mapp._ 38, 2627–2634 (2017). Article  PubMed  PubMed Central  Google Scholar  * Sulzer, D. et al.


Neuromelanin biosynthesis is driven by excess cytosolic catecholamines not accumulated by synaptic vesicles. _Proc. Natl Acad. Sci. USA_ 97, 11869–11874 (2000). Article  CAS  PubMed  PubMed


Central  Google Scholar  * Segura-Aguilar, J. et al. Protective and toxic roles of dopamine in Parkinson’s disease. _J. Neurochem._ 129, 898–915 (2014). Article  CAS  PubMed  Google Scholar


  * Yamada, T., McGeer, P. L., Baimbridge, K. G. & McGeer, E. G. Relative sparing in Parkinson’s disease of substantia nigra dopamine neurons containing calbindin-D28K. _Brain Res._ 526,


303–307 (1990). Article  CAS  PubMed  Google Scholar  * German, D. C., Manaye, K. F., Brooksd, B. A. & Sonsalla, P. K. Midbrain dopaminergic cell loss in Parkinson’s disease and


MPTP-induced parkinsonism: sparing of calbindin-D28k–containing cells. _Ann. N. Y. Acad. Sci._ 648, 42–62 (1992). Article  CAS  PubMed  Google Scholar  * Liang, C. L., Sinton, C. M.,


Sonsalla, P. K. & German, D. C. Midbrain dopaminergic neurons in the mouse that contain calbindin-D28k exhibit reduced vulnerability to MPTP-induced neurodegeneration.


_Neurodegeneration_ 5, 313–318 (1996). Article  CAS  PubMed  Google Scholar  * Rcom-H’cheo-Gauthier, A., Goodwin, J. & Pountney, D. L. Interactions between calcium and alpha-synuclein in


neurodegeneration. _Biomolecules_ 4, 795–811 (2014). Article  PubMed  PubMed Central  Google Scholar  * Post, M. R., Lieberman, O. J. & Mosharov, E. V. Can interactions between


α-synuclein, dopamine and calcium explain selective neurodegeneration in Parkinson’s disease? _Front. Neurosci._ 12, 161 (2018). Article  PubMed  PubMed Central  Google Scholar  *


Uittenbogaard, M., Baxter, K. K. & Chiaramello, A. The neurogenic basic helix-loop-helix transcription factor NeuroD6 confers tolerance to oxidative stress by triggering an antioxidant


response and sustaining the mitochondrial biomass. _ASN Neuro_ 2, 115–133 (2010). Article  CAS  Google Scholar  * Buck, S. A. et al. VGLUT2 is a determinant of dopamine neuron resilience in


a rotenone model of dopamine neurodegeneration. _J. Neurosci._ 41, 4937–4947 (2021). Article  CAS  PubMed  PubMed Central  Google Scholar  * Buck, S. A. et al. Roles of VGLUT2 and


dopamine/glutamate co-transmission in selective vulnerability to dopamine neurodegeneration. _ACS Chem. Neurosci._ 13, 187–193 (2022). Article  CAS  PubMed  Google Scholar  * Steinkellner,


T. et al. Dopamine neurons exhibit emergent glutamatergic identity in Parkinson’s disease. _Brain_ 143, 879–886 (2021). Google Scholar  * Björklund, A. & Stenevi, U. Reconstruction of


the nigrostriatal dopamine pathway by intracerebral nigral transplants. _Brain Res._ 177, 555–560 (1979). Article  PubMed  Google Scholar  * Lindvall, O. et al. Human fetal dopamine neurons


grafted into the striatum in two patients with severe Parkinson’s disease: a detailed account of methodology and a 6-month follow-up. _Arch. Neurol._ 46, 615–631 (1989). Article  CAS  PubMed


  Google Scholar  * Lindvall, O. et al. Grafts of fetal dopamine neurons survive and improve motor function in Parkinson’s disease. _Science_ 247, 574–577 (1990). Article  CAS  PubMed 


Google Scholar  * Parmar, M., Torper, O. & Drouin-Ouellet, J. Cell-based therapy for Parkinson’s disease: a journey through decades toward the light side of the Force. _Eur. J.


Neurosci._ 49, 463–471 (2019). Article  PubMed  Google Scholar  * Henchcliffe, C. & Sarva, H. Restoring function to dopaminergic neurons: progress in the development of cell-based


therapies for Parkinson’s disease. _CNS Drugs_ 34, 559–577 (2020). Article  PubMed  Google Scholar  * Björklund, A. & Parmar, M. Dopamine cell therapy: from cell replacement to circuitry


repair. _J. Parkinsons Dis._ 11, S159–S165 (2021). Article  PubMed  PubMed Central  Google Scholar  * Guo, X., Tang, L. & Tang, X. Current developments in cell replacement therapy for


Parkinson’s disease. _Neuroscience_ 463, 370–382 (2021). Article  CAS  PubMed  Google Scholar  * Li, J. Y. & Li, W. Postmortem studies of fetal grafts in Parkinson’s disease: what


lessons have we learned? _Front. Cell Dev. Biol._ 9, 666675 (2021). Article  PubMed  PubMed Central  Google Scholar  * Rodríguez-Pallares, J., García-Garrote, M., Parga, J. &


Labandeira-García, J. Combined cell-based therapy strategies for the treatment of Parkinson’s disease: focus on mesenchymal stromal cells. _Neural Regen. Res._ 18, 478 (2023). Article 


PubMed  Google Scholar  * Gaillard, A. et al. Anatomical and functional reconstruction of the nigrostriatal pathway by intranigral transplants. _Neurobiol. Dis._ 35, 477–488 (2009). Article


  PubMed  Google Scholar  * Kirkeby, A. et al. Predictive markers guide differentiation to improve graft outcome in clinical translation of hESC-based therapy for Parkinson’s disease. _Cell


Stem Cell_ 20, 135–148 (2017). Article  CAS  PubMed  PubMed Central  Google Scholar  * Grealish, S. et al. Human ESC-derived dopamine neurons show similar preclinical efficacy and potency to


fetal neurons when grafted in a rat model of Parkinson’s disease. _Cell Stem Cell_ 15, 653–665 (2014). Article  CAS  PubMed  PubMed Central  Google Scholar  * Aldrin-Kirk, P. et al. A novel


two-factor monosynaptic TRIO tracing method for assessment of circuit integration of hESC-derived dopamine transplants. _Stem Cell Rep._ 17, 159–172 (2022). Article  CAS  Google Scholar  *


Morizane, A. et al. MHC matching improves engraftment of iPSC-derived neurons in non-human primates. _Nat. Commun._ 8, 385 (2017). Article  PubMed  PubMed Central  Google Scholar  *


Morizane, A. et al. Direct comparison of autologous and allogeneic transplantation of IPSC-derived neural cells in the brain of a nonhuman primate. _Stem Cell Rep._ 1, 283–292 (2013).


Article  CAS  Google Scholar  * Schweitzer, J. S. et al. Personalized iPSC-derived dopamine progenitor cells for Parkinson’s disease. _N. Engl. J. Med._ 382, 1926–1932 (2020). Article  CAS 


PubMed  PubMed Central  Google Scholar  * Tao, Y. et al. Autologous transplant therapy alleviates motor and depressive behaviors in parkinsonian monkeys. _Nat. Med._ 27, 632–639 (2021).


Article  CAS  PubMed  PubMed Central  Google Scholar  * van de Haar, L. L. et al. Molecular signatures and cellular diversity during mouse habenula development. _Cell Rep._ 40, 111029


(2022). Article  PubMed  Google Scholar  * Melani, R. & Tritsch, N. X. Inhibitory co-transmission from midbrain dopamine neurons relies on presynaptic GABA uptake. _Cell Rep._ 39, 110716


(2022). Article  CAS  PubMed  PubMed Central  Google Scholar  * Parkinson, J. An essay on the shaking palsy. _J. Neuropsychiatry Clin. Neurosci._ 14, 223–236 (2002). Article  PubMed  Google


Scholar  * Lees, A. J., Hardy, J. & Revesz, T. Parkinson’s disease. _Lancet_ 373, 2055–2066 (2009). Article  CAS  PubMed  Google Scholar  * Dickson, D. W. Parkinson’s disease and


parkinsonism: neuropathology. _Cold Spring Harb. Perspect. Med._ 2, a009258 (2012). Article  PubMed  PubMed Central  Google Scholar  * Schapira, A. H. V., Chaudhuri, K. R. & Jenner, P.


Non-motor features of Parkinson disease. _Nat. Rev. Neurosci._ 18, 435–450 (2017). Article  CAS  PubMed  Google Scholar  * Blauwendraat, C., Nalls, M. A. & Singleton, A. B. The genetic


architecture of Parkinson’s disease. _Lancet Neurol._ 19, 170–178 (2020). Article  CAS  PubMed  Google Scholar  * Polymeropoulos, M. H. et al. Mutation in the alpha-synuclein gene identified


in families with Parkinson’s disease. _Science_ 276, 2045–2047 (1997). Article  CAS  PubMed  Google Scholar  * Healy, D. G. et al. Phenotype, genotype, and worldwide genetic penetrance of


LRRK2-associated Parkinson’s disease: a case-control study. _Lancet Neurol._ 7, 583–590 (2008). Article  CAS  PubMed  PubMed Central  Google Scholar  * Goker-Alpan, O. et al. Parkinsonism


among Gaucher disease carriers. _J. Med. Genet._ 41, 937–940 (2004). Article  CAS  PubMed  PubMed Central  Google Scholar  * Kakkar, A. K. & Dahiya, N. Management of Parkinson’s disease:


current and future pharmacotherapy. _Eur. J. Pharmacol._ 750, 74–81 (2015). Article  CAS  PubMed  Google Scholar  * Oxtoby, N. P. et al. Sequence of clinical and neurodegeneration events in


Parkinson’s disease progression. _Brain_ 144, 975–988 (2021). Article  PubMed  PubMed Central  Google Scholar  * Elkouzi, A., Vedam-Mai, V., Eisinger, R. S. & Okun, M. S. Emerging


therapies in Parkinson disease — repurposed drugs and new approaches. _Nat. Rev. Neurol._ 15, 204–223 (2019). Article  PubMed  PubMed Central  Google Scholar  * Bolam, J. P. & Pissadaki,


E. K. Living on the edge with too many mouths to feed: why dopamine neurons die. _Mov. Disord._ 27, 1478–1483 (2012). Article  CAS  PubMed  PubMed Central  Google Scholar  * Pacelli, C. et


al. Elevated mitochondrial bioenergetics and axonal arborization size are key contributors to the vulnerability of dopamine neurons. _Curr. Biol._ 25, 2349–2360 (2015). Article  CAS  PubMed


  Google Scholar  * Giguère, N. et al. Increased vulnerability of nigral dopamine neurons after expansion of their axonal arborization size through D2 dopamine receptor conditional knockout.


_PLoS Genet._ 15, 1–26 (2019). Article  Google Scholar  * Ricke, K. M. et al. Mitochondrial dysfunction combined with high calcium load leads to impaired antioxidant defense underlying the


selective loss of nigral dopaminergic neurons. _J. Neurosci._ 40, 1975–1986 (2020). Article  CAS  PubMed  PubMed Central  Google Scholar  * Kanaan, N. M., Kordower, J. H. & Collier, T.


J. Age-related changes in dopamine transporters and accumulation of 3-nitrotyrosine in rhesus monkey midbrain dopamine neurons: Relevance in selective neuronal vulnerability to degeneration.


_Eur. J. Neurosci._ 27, 3205–3215 (2008). Article  CAS  PubMed  PubMed Central  Google Scholar  * Nakajima, S. et al. Age-related vulnerability to nigral dopaminergic degeneration in rats


via Zn2+-permeable GluR2-lacking AMPA receptor activation. _Neurotoxicology_ 83, 69–76 (2021). Article  CAS  PubMed  Google Scholar  * Shi, H. et al. Sirt3 protects dopaminergic neurons from


mitochondrial oxidative stress. _Hum. Mol. Genet._ 26, 1915–1926 (2017). Article  CAS  PubMed  PubMed Central  Google Scholar  * Guillot, T. S. & Miller, G. W. Protective actions of the


vesicular monoamine transporter 2 (VMAT2) in monoaminergic neurons. _Mol. Neurobiol._ 39, 149–170 (2009). Article  CAS  PubMed  Google Scholar  * Fahn, S. Does levodopa slow or hasten the


rate of progression of Parkinson’s disease? _J. Neurol._ 252, 37–42 (2005). Article  Google Scholar  * Mosharov, E. V. et al. Interplay between cytosolic dopamine, calcium, and α-synuclein


causes selective death of substantia nigra neurons. _Neuron_ 62, 218–229 (2009). Article  CAS  PubMed  PubMed Central  Google Scholar  * Surmeier, D. J., Guzman, J. N., Sanchez-Padilla, J.


& Schumacker, P. T. The role of calcium and mitochondrial oxidant stress in the loss of substantia nigra pars compacta dopaminergic neurons in Parkinson’s disease. _Neuroscience_ 198,


221–231 (2011). Article  CAS  PubMed  Google Scholar  * Zucca, F. A. et al. Interactions of iron, dopamine and neuromelanin pathways in brain aging and Parkinson’s disease. _Prog.


Neurobiol._ 155, 96–119 (2017). Article  CAS  PubMed  Google Scholar  * Jansen van Rensburg, Z., Abrahams, S., Bardien, S. & Kenyon, C. Toxic feedback loop involving iron, reactive


oxygen species, α-synuclein and neuromelanin in Parkinson’s disease and intervention with turmeric. _Mol. Neurobiol._ 58, 5920–5936 (2021). Article  CAS  PubMed  Google Scholar  *


Nedergaard, S., Flatman, J. A. & Engberg, I. Nifedipine- and omega-conotoxin-sensitive Ca2+ conductances in guinea-pig substantia nigra pars compacta neurones. _J. Physiol._ 466, 727–747


(1993). CAS  PubMed  PubMed Central  Google Scholar  * Philippart, F. et al. Differential somatic Ca2+ channel profile in midbrain dopaminergic neurons. _J. Neurosci._ 36, 7234–7245 (2016).


Article  CAS  PubMed  PubMed Central  Google Scholar  * Conway, K. A., Rochet, J. C., Bieganski, R. M. & Lansbury, J. Kinetic stabilization of the α-synuclein protofibril by a


dopamine-α-synuclein adduct. _Science_ 294, 1346–1349 (2001). Article  CAS  PubMed  Google Scholar  * Ren, Y., Liu, W., Jiang, H., Jiang, Q. & Feng, J. Selective vulnerability of


dopaminergic neurons to microtubule depolymerization. _J. Biol. Chem._ 280, 34105–34112 (2005). Article  CAS  PubMed  Google Scholar  * Ulusoy, A., Björklund, T., Buck, K. & Kirik, D.


Dysregulated dopamine storage increases the vulnerability to α-synuclein in nigral neurons. _Neurobiol. Dis._ 47, 367–377 (2012). Article  CAS  PubMed  Google Scholar  * Biondetti, E. et al.


The spatiotemporal changes in dopamine, neuromelanin and iron characterizing Parkinson’s disease. _Brain_ 144, 3114–3125 (2021). Article  PubMed  PubMed Central  Google Scholar  * Thomsen,


M. B. et al. PET imaging reveals early and progressive dopaminergic deficits after intra-striatal injection of preformed alpha-synuclein fibrils in rats. _Neurobiol. Dis._ 149, 105229


(2021). Article  CAS  PubMed  Google Scholar  * Uchihara, T. An order in Lewy body disorders: retrograde degeneration in hyperbranching axons as a fundamental structural template accounting


for focal/multifocal Lewy body disease. _Neuropathology_ 37, 129–149 (2017). Article  CAS  PubMed  Google Scholar  * Bellucci, A., Antonini, A., Pizzi, M. & Spano, P. F. The end is the


beginning: Parkinson’s disease in the light of brain imaging. _Front. Aging Neurosci._ 9, 330 (2017). Article  PubMed  PubMed Central  Google Scholar  Download references ACKNOWLEDGEMENTS


The authors thank P. Lingor for input on the manuscript. Work on the dopamine system in the laboratory of the authors is supported by Stichting Parkinson Fonds, the Dutch Research Council


(NWO; ALW-VICI 865.14.004) and the NWO Gravitation programme BRAINSCAPES: A Roadmap from Neurogenetics to Neurobiology (NWO: 024.004.012) to R.J.P. The authors apologize to all investigators


whose research could not be appropriately cited owing to space limitations. AUTHOR INFORMATION Author notes * These authors contributed equally: Oxana Garritsen, Eljo Y. van Battum, Laurens


M. Grossouw. AUTHORS AND AFFILIATIONS * Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center, Utrecht University, Utrecht, Netherlands Oxana


Garritsen, Eljo Y. van Battum, Laurens M. Grossouw & R. Jeroen Pasterkamp Authors * Oxana Garritsen View author publications You can also search for this author inPubMed Google Scholar *


Eljo Y. van Battum View author publications You can also search for this author inPubMed Google Scholar * Laurens M. Grossouw View author publications You can also search for this author


inPubMed Google Scholar * R. Jeroen Pasterkamp View author publications You can also search for this author inPubMed Google Scholar CONTRIBUTIONS All authors contributed to all aspects of


the article. CORRESPONDING AUTHOR Correspondence to R. Jeroen Pasterkamp. ETHICS DECLARATIONS COMPETING INTERESTS The authors declare no competing interests. PEER REVIEW PEER REVIEW


INFORMATION _Nature Reviews Neuroscience_ thanks S. Blaess, L. Zweifel and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. ADDITIONAL INFORMATION


PUBLISHER’S NOTE Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. GLOSSARY *


1-Methyl-4-phenyl-1,2,3,5-tetrahydropyridine Neurotoxin that upon intracerebral injection causes rapid degeneration of the substantia nigra and parkinsonian symptoms, a method used for


modelling (late-stage) Parkinson disease in animal models. * 1-Methyl-4-phenylpyridinium A toxic metabolite of 1-methyl-4-phenyl-1,2,3,5-tetrahydropyridine. * [3H]Thymidine Radioactive


thymidine analogue that is taken up when DNA is synthesized, used as a marker for cell proliferation. * Assembloid A fused region-specific organoid used to model interactions between


different tissue types or organs. * Axon guidance Process during which extrinsic molecules instruct the orientation of axonal growth through attraction and/or repulsion of the axon tip. *


Embryonic stem cells (ES cells). Pluripotent stem cells derived from the inner cell mass of blastocyst-stage embryos. * Floorplate A ventral organizer region along the midline of the neural


tube that regulates neuronal differentiation and positioning. * Genetic fate mapping Genetic labelling of ancestor cells and their descendants to map the anatomical and cellular origin of


cells of interest. * Induced pluripotent stem cells (iPS cells). Pluripotent stem cells that are generated through the reprogramming of somatic cells by expression of a set of transcription


factors. * Intersectional genetics Selective targeting of cells by exploiting the combinatorial expression of two or more genes to express genetically encoded recombinases that results in


the activation of proteins to label or manipulate cells. * Laser capture microdissection Laser- and microscope-assisted cutting that enables precise dissection of microregions within the


tissue of interest. * Lineage tracing The identification of cellular progeny at subsequent developmental stages and processes by labelling an ancestor (progenitor) cell. * Major


histocompatibility complex Cell surface proteins that present self-antigens to prevent an autoimmune response. * Marginal zone Cell-sparse, outermost zone of the neural tube or brain


containing primarily axons and glial cells. * Neuroblast An undifferentiated precursor cell in the central nervous system that will eventually develop into a fully differentiated neural


cell. * Organoids Stem cell-derived and self-assembled 3D cultures that represent key features of the represented organ. * Radial glia-like cells Cells that are positive for radial glia


markers in single-cell RNA sequencing datasets. * Radial migration Migration of cells along radial glia fibres away from the ventricular zone. * Ribo-tagging Tagging of ribosomal subunits to


enable immunopurification and downstream processing of ribosomes and attached mRNAs. * Single-cell RNA sequencing (scRNA-seq). Dissociation and isolation of individual cells followed by


sequencing of the RNA transcriptome per cell. * Single-nucleus RNA sequencing (snRNA-seq). Dissociation and isolation of individual nuclei followed by sequencing of the RNA transcriptome per


nucleus. * Slide-seq Processing of tissue sections on an indexed slide to label RNA transcripts so as to preserve their spatial origin. * Spatial transcriptomics Methods to assign cell


types (based on mRNA readouts) to their anatomical location in tissue sections. * Tangential migration Migration of cells along the medial–lateral axis, parallel to the ventricular surface


and orthogonal to radial glia fibres. * Ventricular zone A transient layer of tissue lining the ventricles of the central nervous system that contains neural stem cells. RIGHTS AND


PERMISSIONS Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s);


author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Reprints and permissions ABOUT THIS


ARTICLE CITE THIS ARTICLE Garritsen, O., van Battum, E.Y., Grossouw, L.M. _et al._ Development, wiring and function of dopamine neuron subtypes. _Nat Rev Neurosci_ 24, 134–152 (2023).


https://doi.org/10.1038/s41583-022-00669-3 Download citation * Accepted: 15 December 2022 * Published: 18 January 2023 * Issue Date: March 2023 * DOI:


https://doi.org/10.1038/s41583-022-00669-3 SHARE THIS ARTICLE Anyone you share the following link with will be able to read this content: Get shareable link Sorry, a shareable link is not


currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative