
- Select a language for the TTS:
- UK English Female
- UK English Male
- US English Female
- US English Male
- Australian Female
- Australian Male
- Language selected: (auto detect) - EN
Play all audios:
ABSTRACT Resident progenitor and/or stem cell populations in the adult adrenal cortex enable cortical cells to undergo homeostatic renewal and regeneration after injury. Renewal occurs
predominantly in the outer layers of the adrenal gland but newly formed cells undergo centripetal migration, differentiation and lineage conversion in the process of forming the different
functional steroidogenic zones. Over the past 10 years, advances in the genetic characterization of adrenal diseases and studies of mouse models with altered adrenal phenotypes have helped
to elucidate the molecular pathways that regulate adrenal tissue renewal, several of which are fine-tuned via complex paracrine and endocrine influences. Moreover, the adrenal gland is a
sexually dimorphic organ, and testicular androgens have inhibitory effects on cell proliferation and progenitor cell recruitment in the adrenal cortex. This Review integrates these advances,
including the emerging role of sex hormones, into existing knowledge on adrenocortical cell renewal. An in-depth understanding of these mechanisms is expected to contribute to the
development of novel therapies for severe endocrine diseases, for which current treatments are unsatisfactory. KEY POINTS * The adrenal cortex undergoes renewal throughout life and can
regenerate after injury thanks to resident progenitor populations. * Paracrine and endocrine mechanisms regulate progenitor cell activity and establish adrenal cortex zonation; disruption of
these mechanisms leads to alterations in adrenal size. * Adrenocortical tissue turnover is sexually dimorphic owing, at least in part, to a suppressive effect of testicular androgens. *
Dysregulation of adrenocortical turnover pathways is associated with development of adrenal tumours. Access through your institution Buy or subscribe This is a preview of subscription
content, access via your institution ACCESS OPTIONS Access through your institution Access Nature and 54 other Nature Portfolio journals Get Nature+, our best-value online-access
subscription $32.99 / 30 days cancel any time Learn more Subscribe to this journal Receive 12 print issues and online access $209.00 per year only $17.42 per issue Learn more Buy this
article * Purchase on SpringerLink * Instant access to full article PDF Buy now Prices may be subject to local taxes which are calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in
* Learn about institutional subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS ADRENOCORTICAL STEM CELLS IN HEALTH AND DISEASE Article 10 March
2025 SOX2+ SUSTENTACULAR CELLS ARE STEM CELLS OF THE POSTNATAL ADRENAL MEDULLA Article Open access 02 January 2025 AGING INDUCES REGION-SPECIFIC DYSREGULATION OF HORMONE SYNTHESIS IN THE
PRIMATE ADRENAL GLAND Article 19 March 2024 REFERENCES * Bandiera, R., Sacco, S., Vidal, V. P. I., Chaboissier, M. C. & Schedl, A. Steroidogenic organ development and homeostasis: a
WT1-centric view. _Mol. Cell. Endocrinol._ 408, 145–155 (2015). Article CAS PubMed Google Scholar * Zubair, M., Ishihara, S., Oka, S., Okumura, K. & Morohashi, K. Two-step regulation
of Ad4BP/SF-1 gene transcription during fetal adrenal development: initiation by a Hox-Pbx1-Prep1 complex and maintenance via autoregulation by Ad4BP/SF-1. _Mol. Cell. Biol._ 26, 4111–4121
(2006). Article CAS PubMed PubMed Central Google Scholar * Zubair, M., Parker, K. L. & Morohashi, K. Developmental links between the fetal and adult zones of the adrenal cortex
revealed by lineage tracing. _Mol. Cell. Biol._ 28, 7030–7040 (2008). Article CAS PubMed PubMed Central Google Scholar * Bandiera, R. et al. WT1 maintains adrenal-gonadal primordium
identity and marks a population of AGP-like progenitors within the adrenal gland. _Dev. Cell_ 27, 5–18 (2013). Article CAS PubMed PubMed Central Google Scholar * Wood, M. A. et al.
Fetal adrenal capsular cells serve as progenitor cells for steroidogenic and stromal adrenocortical cell lineages in _M. musculus_. _Development_ 140, 4522–4532 (2013). Article CAS PubMed
PubMed Central Google Scholar * Engeland, W. C., Ennen, W. B., Elayaperumal, A., Durand, D. A. & Levay-Young, B. K. Zone-specific cell proliferation during compensatory adrenal
growth in rats. _Am. J. Physiol. Metab._ 288, E298–E306 (2005). CAS Google Scholar * Beuschlein, F. et al. Steroidogenic factor-1 is essential for compensatory adrenal growth following
unilateral adrenalectomy. _Endocrinology_ 143, 3122–3135 (2002). Article CAS PubMed Google Scholar * Holzwarth, M. A., Shinsako, J. & Dallman, M. F. Adrenal regeneration. Time
course, effect of hypothalamic hemi-islands and response to unilateral adrenalectomy. _Neuroendocrinology_ 31, 168–176 (1980). Article CAS PubMed Google Scholar * Greep, R. O. &
Deane, H. W. Histological, cytochemical and physiological observations on the regeneration of the rat’s adrenal gland following enucleation. _Endocrinology_ 45, 42–56 (1949). Article CAS
PubMed Google Scholar * Grabek, A. et al. The adult adrenal cortex undergoes rapid tissue renewal in a sex-specific manner. _Cell Stem Cell_ 25, 290–296.e2 (2019). Article CAS PubMed
Google Scholar * Bergmann, O. et al. Dynamics of cell generation and turnover in the human heart. _Cell_ 161, 1566–1575 (2015). Article CAS PubMed Google Scholar * Magrassi, L., Leto,
K. & Rossi, F. Lifespan of neurons is uncoupled from organismal lifespan. _Proc. Natl Acad. Sci. USA_ 110, 4374–4379 (2013). Article CAS PubMed Google Scholar * Simons, B. D. &
Clevers, H. Stem cell self-renewal in intestinal crypt. _Exp. Cell Res._ 317, 2719–2724 (2011). Article CAS PubMed Google Scholar * Chang, S. P. et al. Cell proliferation, movement and
differentiation during maintenance of the adult mouse adrenal cortex. _PLoS ONE_ 8, e81865 (2013). Article PubMed PubMed Central Google Scholar * Basham, K. J. et al. A ZNRF3-dependent
Wnt/β-catenin signaling gradient is required for adrenal homeostasis. _Genes Dev._ 33, 209–220 (2019). Article CAS PubMed PubMed Central Google Scholar * Mitani, F., Mukai, K.,
Miyamoto, H., Suematsu, M. & Ishimura, Y. The undifferentiated cell zone is a stem cell zone in adult rat adrenal cortex. _Biochim. Biophys. Acta_ 1619, 317–324 (2003). Article CAS
PubMed Google Scholar * Zajicek, G., Ariel, I. & Arber, N. The streaming adrenal cortex: direct evidence of centripetal migration of adrenocytes by estimation of cell turnover rate.
_J. Endocrinol._ 111, 477–482 (1986). Article CAS PubMed Google Scholar * Freedman, B. D. et al. Adrenocortical zonation results from lineage conversion of differentiated zona
glomerulosa cells. _Dev. Cell_ 26, 666–673 (2013). Article CAS PubMed PubMed Central Google Scholar * Belgorosky, A., Baquedano, M. S., Guercio, G. & Rivarola, M. A. Expression of
the IGF and the aromatase/estrogen receptor systems in human adrenal tissues from early infancy to late puberty: implications for the development of adrenarche. _Rev. Endocr. Metab. Disord._
10, 51–61 (2009). Article CAS PubMed Google Scholar * King, P., Paul, A. & Laufer, E. Shh signaling regulates adrenocortical development and identifies progenitors of steroidogenic
lineages. _Proc. Natl Acad. Sci. USA_ 106, 21185–21190 (2009). Article CAS PubMed Google Scholar * Huang, C.-C. J., Miyagawa, S., Matsumaru, D., Parker, K. L. & Yao, H. H.-C.
Progenitor cell expansion and organ size of mouse adrenal is regulated by sonic hedgehog. _Endocrinology_ 151, 1119–1128 (2010). Article CAS PubMed PubMed Central Google Scholar *
Finco, I., Lerario, A. M. & Hammer, G. D. Sonic hedgehog and WNT signaling promote adrenal gland regeneration in male mice. _Endocrinology_ 159, 579–596 (2018). Article CAS PubMed
Google Scholar * Walczak, E. M. et al. Wnt signaling inhibits adrenal steroidogenesis by cell-autonomous and non-cell-autonomous mechanisms. _Mol. Endocrinol._ 28, 1471–1486 (2014). Article
PubMed PubMed Central Google Scholar * Val, P., Martinez-Barbera, J. P. & Swain, A. Adrenal development is initiated by Cited2 and Wt1 through modulation of Sf-1 dosage.
_Development_ 134, 2349–2358 (2007). Article CAS PubMed Google Scholar * Wilhelm, D. & Englert, C. The Wilms tumor suppressor WT1 regulates early gonad development by activation of
Sf1. _Genes Dev._ 16, 1839–1851 (2002). Article CAS PubMed PubMed Central Google Scholar * Steenblock, C. et al. Isolation and characterization of adrenocortical progenitors involved in
the adaptation to stress. _Proc. Natl Acad. Sci. USA_ 115, 12997–13002 (2018). Article CAS PubMed Google Scholar * Steenblock, C. et al. Adrenal cortical and chromaffin stem cells: is
there a common progeny related to stress adaptation? _Mol. Cell. Endocrinol._ 441, 156–163 (2017). Article CAS PubMed Google Scholar * Ching, S. & Vilain, E. Targeted disruption of
sonic hedgehog in the mouse adrenal leads to adrenocortical hypoplasia. _Genesis_ 47, 628–637 (2009). Article CAS PubMed Google Scholar * Bourdeau, I. et al. Primary pigmented nodular
adrenocortical disease: paradoxical responses of cortisol secretion to dexamethasone occur in vitro and are associated with increased expression of the glucocorticoid receptor. _J. Clin.
Endocrinol. Metab._ 88, 3931–3937 (2003). Article CAS PubMed Google Scholar * Louiset, E. et al. The paradoxical increase in cortisol secretion induced by dexamethasone in primary
pigmented nodular adrenocortical disease involves a glucocorticoid receptor-mediated effect of dexamethasone on protein kinase A catalytic subunits. _J. Clin. Endocrinol. Metab._ 94,
2406–2413 (2009). Article CAS PubMed PubMed Central Google Scholar * Kim, A. C. et al. Targeted disruption of β-catenin in Sf1-expressing cells impairs development and maintenance of
the adrenal cortex. _Development_ 135, 2593–2602 (2008). Article CAS PubMed Google Scholar * Zebisch, M. et al. Structural and molecular basis of ZNRF3/RNF43 transmembrane ubiquitin
ligase inhibition by the Wnt agonist R-spondin. _Nat. Commun._ 4, 2787 (2013). Article PubMed PubMed Central Google Scholar * Hao, H. X. et al. ZNRF3 promotes Wnt receptor turnover in an
R-spondin-sensitive manner. _Nature_ 485, 195–202 (2012). Article CAS PubMed Google Scholar * Vidal, V. et al. The adrenal capsule is a signaling center controlling cell renewal and
zonation through Rspo3. _Genes Dev._ 30, 1389–1394 (2016). Article CAS PubMed PubMed Central Google Scholar * Berthon, A. et al. Constitutive β-catenin activation induces adrenal
hyperplasia and promotes adrenal cancer development. _Hum. Mol. Genet._ 19, 1561–1576 (2010). Article CAS PubMed Google Scholar * Pignatti, E. et al. β-Catenin causes adrenal hyperplasia
by blocking zonal transdifferentiation. _Cell Rep._ 31, 107524 (2020). Article CAS PubMed PubMed Central Google Scholar * Berthon, A. et al. WNT/β-catenin signalling is activated in
aldosterone-producing adenomas and controls aldosterone production. _Hum. Mol. Genet._ 23, 889–905 (2014). Article CAS PubMed Google Scholar * Leng, S. et al. β-Catenin and FGFR2
regulate postnatal rosette-based adrenocortical morphogenesis. _Nat. Commun._ 11, 1680 (2020). Article CAS PubMed PubMed Central Google Scholar * Rocha, A. S. et al. The angiocrine
factor Rspondin3 is a key determinant of liver zonation. _Cell Rep._ 13, 1757–1764 (2015). Article CAS PubMed Google Scholar * Wang, B., Zhao, L., Fish, M., Logan, C. Y. & Nusse, R.
Self-renewing diploid Axin2+ cells fuel homeostatic renewal of the liver. _Nature_ 524, 180–185 (2015). Article CAS PubMed PubMed Central Google Scholar * Deane, H. W. & Greep, R.
O. A morphological and histochemical study of the rat’s adrenal cortex after hypophysectomy, with comments on the liver. _Am. J. Anat._ 79, 117–145 (1946). Article CAS PubMed Google
Scholar * Gallo-Payet, N. 60 Years of POMC: adrenal and extra-adrenal functions of ACTH. _J. Mol. Endocrinol._ 56, T135–T156 (2016). Article CAS PubMed Google Scholar * Gorrigan, R. J.,
Guasti, L., King, P., Clark, A. J. & Chan, L. F. Localisation of the melanocortin-2-receptor and its accessory proteins in the developing and adult adrenal gland. _J. Mol. Endocrinol._
46, 227–232 (2011). Article CAS PubMed PubMed Central Google Scholar * Drelon, C. et al. PKA inhibits WNT signalling in adrenal cortex zonation and prevents malignant tumour
development. _Nat. Commun._ 7, 12751 (2016). Article CAS PubMed PubMed Central Google Scholar * Mathieu, M. et al. Steroidogenic differentiation and PKA signaling are programmed by
histone methyltransferase EZH2 in the adrenal cortex. _Proc. Natl Acad. Sci. USA_ 115, E12265–E12274 (2018). Article CAS PubMed Google Scholar * Xu, K. et al. EZH2 oncogenic activity in
castration-resistant prostate cancer cells is polycomb-independent. _Science_ 338, 1465–1469 (2012). Article CAS PubMed PubMed Central Google Scholar * Hornsby, P. J. Adrenarche: a cell
biological perspective. _J. Endocrinol._ 214, 113–119 (2012). Article CAS PubMed Google Scholar * Dumontet, T. et al. PKA signaling drives reticularis differentiation and sexually
dimorphic adrenal cortex renewal. _JCI Insight_ 3, e98394 (2018). Article PubMed Central Google Scholar * Mcewan, P. E., Lindop, G. B. M. & Kenyon, C. J. In vivo studies of the
control of DNA synthesis in the rat adrenal cortex and medulla. _Endocr. Res._ 21, 91–102 (1995). Article CAS PubMed Google Scholar * McEwan, P. E., Vinson, G. P. & Kenyon, C. J.
Control of adrenal cell proliferation by AT1 receptors in response to angiotensin II and low-sodium diet. _Am. J. Physiol. Endocrinol. Metab._ 276, E303–E309 (1999). Article CAS Google
Scholar * Nishimoto, K., Harris, R. B. S., Rainey, W. E. & Seki, T. Sodium deficiency regulates rat adrenal zona glomerulosa gene expression. _Endocrinology_ 155, 1363–1372 (2014).
Article PubMed PubMed Central Google Scholar * Clyne, C. D., Nicol, M. R., Macdonald, S. T., Williams, B. C. & Walker, S. W. Angiotensin II stimulates growth and steroidogenesis in
zona fasciculata/reticularis cells from bovine adrenal cortex via the AT1 receptor subtype. _Endocrinology_ 132, 2206–2212 (1993). Article CAS PubMed Google Scholar * Coll, A. P. et al.
The effects of proopiomelanocortin deficiency on murine adrenal development and responsiveness to adrenocorticotropin. _Endocrinology_ 145, 4721–4727 (2004). Article CAS PubMed Google
Scholar * Jefcoate, C. R., Lee, J., Cherradi, N., Takemori, H. & Duan, H. cAMP stimulation of StAR expression and cholesterol metabolism is modulated by co-expression of labile
suppressors of transcription and mRNA turnover. _Mol. Cell. Endocrinol._ 336, 53–62 (2011). Article CAS PubMed Google Scholar * Xing, Y., Parker, C. R., Edwards, M. & Rainey, W. E.
ACTH is a potent regulator of gene expression in human adrenal cells. _J. Mol. Endocrinol._ 45, 59–68 (2010). Article CAS PubMed PubMed Central Google Scholar * Lefrançois-Martinez, A.
M. et al. Product of side-chain cleavage of cholesterol, isocaproaldehyde, is an endogenous specific substrate of mouse vas deferens protein, an aldose reductase-like protein in
adrenocortical cells. _J. Biol. Chem._ 274, 32875–32880 (1999). Article PubMed Google Scholar * Thomas, M., Keramidas, M., Monchaux, E. & Feige, J.-J. Dual hormonal regulation of
endocrine tissue mass and vasculature by adrenocorticotropin in the adrenal cortex. _Endocrinology_ 145, 4320–4329 (2004). Article CAS PubMed Google Scholar * Metherell, L. A. et al.
Mutations in MRAP, encoding a new interacting partner of the ACTH receptor, cause familial glucocorticoid deficiency type 2. _Nat. Genet._ 37, 166–170 (2005). Article CAS PubMed Google
Scholar * Meimaridou, E. et al. ACTH resistance: genes and mechanisms. _Endocr. Dev._ 24, 57–66 (2013). Article CAS PubMed Google Scholar * Novoselova, T. V. et al. MRAP deficiency
impairs adrenal progenitor cell differentiation and gland zonation. _FASEB J._ 32, fj201701274RR (2018). Article Google Scholar * Chida, D. et al. Melanocortin 2 receptor is required for
adrenal gland development, steroidogenesis, and neonatal gluconeogenesis. _Proc. Natl Acad. Sci. USA_ 104, 18205–18210 (2007). Article CAS PubMed Google Scholar * Novoselova, T. V. et
al. ACTH signalling and adrenal development: lessons from mouse models. _Endocr. Connect._ 8, R122–R130 (2019). Article CAS PubMed PubMed Central Google Scholar * Ulrich-Lai, Y. M. et
al. Chronic stress induces adrenal hyperplasia and hypertrophy in a subregion-specific manner. _Am. J. Physiol. Endocrinol. Metab._ 291, E965–E973 (2006). Article CAS PubMed Google
Scholar * Estivariz, F. E., Carino, M., Lowry, P. J. & Jackson, S. Further evidence that N-terminal pro-opiomelanocortin peptides are involved in adrenal mitogenesis. _J. Endocrinol._
116, 201–206 (1988). Article CAS PubMed Google Scholar * de Mendonça, P. O. R. & Lotfi, C. F. P. The proliferative effect of synthetic N-POMC1-28 peptides in rat adrenal cortex: a
possible role for cyclin E. _Mol. Cell. Endocrinol._ 336, 156–161 (2011). Article PubMed Google Scholar * Fassnacht, M. et al. N-terminal proopiomelanocortin acts as a mitogen in
adrenocortical tumor cells and decreases adrenal steroidogenesis. _J. Clin. Endocrinol. Metab._ 88, 2171–2179 (2003). Article CAS PubMed Google Scholar * Coll, A. P. et al. Peripheral
administration of the N-terminal pro-opiomelanocortin fragment 1–28 to _Pomc_–/– mice reduces food intake and weight but does not affect adrenal growth or corticosterone production. _J.
Endocrinol._ 190, 515–525 (2006). Article CAS PubMed PubMed Central Google Scholar * De Joussineau, C. et al. The cAMP pathway and the control of adrenocortical development and growth.
_Mol. Cell. Endocrinol._ 351, 28–36 (2012). Article PubMed Google Scholar * Fragoso, M. C. B. V. et al. Cushing’s syndrome secondary to adrenocorticotropin-independent macronodular
adrenocortical hyperplasia due to activating mutations of _GNAS1_ gene. _J. Clin. Endocrinol. Metab._ 88, 2147–2151 (2003). Article CAS PubMed Google Scholar * Weinstein, L. S. et al.
Activating mutations of the stimulatory G protein in the McCune–Albright syndrome. _N. Engl. J. Med._ 325, 1688–1695 (1991). Article CAS PubMed Google Scholar * Taylor, M. J. et al.
Chemogenetic activation of adrenocortical Gq signaling causes hyperaldosteronism and disrupts functional zonation. _J. Clin. Invest._ 130, 83–93 (2020). Article CAS PubMed Google Scholar
* Suthiworachai, C. et al. Identification and functional analysis of six _DAX1_ mutations in patients with X-linked adrenal hypoplasia congenita. _J. Endocr. Soc._ 3, 171–180 (2019).
Article CAS PubMed Google Scholar * Zanaria, E. et al. An unusual member of the nuclear hormone receptor superfamily responsible for X-linked adrenal hypoplasia congenita. _Nature_ 372,
635–641 (1994). Article CAS PubMed Google Scholar * Muscatelli, F. et al. Mutations in the DAX-1 gene give rise to both X-linked adrenal hypoplasia congenita and hypogonadotropic
hypogonadism. _Nature_ 372, 672–676 (1994). Article CAS PubMed Google Scholar * Vargas, M. C. C. et al. Spontaneous fertility and variable spectrum of reproductive phenotype in a family
with adult-onset X-linked adrenal insufficiency harboring a novel DAX-1/NR0B1 mutation. _BMC Endocr. Disord._ 20, 21 (2020). Article CAS PubMed PubMed Central Google Scholar * Ito, M.,
Yu, R. & Jameson, J. L. DAX-1 inhibits SF-1-mediated transactivation via a carboxy-terminal domain that is deleted in adrenal hypoplasia congenita. _Mol. Cell. Biol._ 17, 1476–1483
(1997). Article CAS PubMed PubMed Central Google Scholar * Crawford, P. A., Dorn, C., Sadovsky, Y. & Milbrandt, J. Nuclear receptor DAX-1 recruits nuclear receptor corepressor N-CoR
to steroidogenic factor 1. _Mol. Cell. Biol._ 18, 2949–2956 (1998). Article CAS PubMed PubMed Central Google Scholar * Xing, Y., Morohashi, K. I., Ingraham, H. A. & Hammer, G. D.
Timing of adrenal regression controlled by synergistic interaction between SF1 SUMOylation and Dax1. _Development_ 144, 3798–3807 (2017). CAS PubMed PubMed Central Google Scholar *
Khalfallah, O., Rouleau, M., Barbry, P., Bardoni, B. & Lalli, E. Dax-1 knockdown in mouse embryonic stem cells induces loss of pluripotency and multilineage differentiation. _Stem Cell_
27, 1529–1537 (2009). Article CAS Google Scholar * Gummow, B. M., Scheys, J. O., Cancelli, V. R. & Hammer, G. D. Reciprocal regulation of a glucocorticoid receptor-steroidogenic
factor-1 transcription complex on the Dax-1 promoter by glucocorticoids and adrenocorticotropic hormone in the adrenal cortex. _Mol. Endocrinol._ 20, 2711–2723 (2006). Article CAS PubMed
Google Scholar * Babu, P. S. et al. Interaction between Dax-1 and steroidogenic factor-1 in vivo: Increased adrenal responsiveness to ACTH in the absence of Dax-1. _Endocrinology_ 143,
665–673 (2002). Article CAS PubMed Google Scholar * Scheys, J. O., Heaton, J. H. & Hammer, G. D. Evidence of adrenal failure in aging Dax1-deficient mice. _Endocrinology_ 152,
3430–3439 (2011). Article CAS PubMed PubMed Central Google Scholar * Levasseur, A., St-Jean, G., Paquet, M., Boerboom, D. & Boyer, A. Targeted disruption of YAP and TAZ impairs the
maintenance of the adrenal cortex. _Endocrinology_ 158, 3738–3753 (2017). Article CAS PubMed PubMed Central Google Scholar * Abduch, R. H. et al. Unraveling the expression of the
oncogene YAP1, a Wnt/β-catenin target, in adrenocortical tumors and its association with poor outcome in pediatric patients. _Oncotarget_ 7, 84634–84644 (2016). Article PubMed PubMed
Central Google Scholar * Ménard, A. et al. Targeted disruption of Lats1 and Lats2 in mice impairs adrenal cortex development and alters adrenocortical cell fate. _Endocrinology_ 161,
bqaa052 (2020). Article PubMed PubMed Central Google Scholar * Dimartino, J. F. et al. The Hox cofactor and proto-oncogene Pbx1 is required for maintenance of definitive hematopoiesis in
the fetal liver. _Blood_ 98, 618–626 (2001). Article CAS PubMed Google Scholar * Lichtenauer, U. D. et al. Pre-B-cell transcription factor 1 and steroidogenic factor 1 synergistically
regulate adrenocortical growth and steroidogenesis. _Endocrinology_ 148, 693–704 (2007). Article CAS PubMed Google Scholar * Bland, M. L., Fowkes, R. C. & Ingraham, H. A.
Differential requirement for steroidogenic factor-1 gene dosage in adrenal development versus endocrine function. _Mol. Endocrinol._ 18, 941–952 (2004). Article CAS PubMed Google Scholar
* Bielohuby, M. et al. Growth analysis of the mouse adrenal gland from weaning to adulthood: time- and gender-dependent alterations of cell size and number in the cortical compartment.
_Am. J. Physiol. Metab._ 293, E139–E146 (2007). CAS Google Scholar * Seale, J. V. et al. Gonadectomy reverses the sexually diergic patterns of circadian and stress-induced
hypothalamic-pituitary-adrenal axis activity in male and female rats. _J. Neuroendocrinol._ 16, 516–524 (2004). Article CAS PubMed Google Scholar * Bastida, C. M. et al. Sexual
dimorphism of ornithine decarboxylase in the mouse adrenal: influence of polyamine deprivation on catecholamine and corticoid levels. _Am. J. Physiol. Endocrinol. Metab._ 292, E1010–E1017
(2007). Article CAS PubMed Google Scholar * Mukai, T. et al. Sexually dimorphic expression of Dax-1 in the adrenal cortex. _Genes Cell_ 7, 717–729 (2002). Article CAS Google Scholar *
Hershkovitz, L., Beuschlein, F., Klammer, S., Krup, M. & Weinstein, Y. Adrenal 20α-hydroxysteroid dehydrogenase in the mouse catabolizes progesterone and 11-deoxycorticosterone and is
restricted to the X-zone. _Endocrinology_ 148, 976–988 (2007). Article CAS PubMed Google Scholar * El Wakil, A., Mari, B., Barhanin, J. & Lalli, E. Genomic analysis of sexual
dimorphism of gene expression in the mouse adrenal gland. _Horm. Metab. Res._ 45, 870–873 (2013). Article CAS PubMed Google Scholar * Jopek, K. et al. Transcriptome profile of rat
adrenal evoked by gonadectomy and testosterone or estradiol replacement. _Front. Endocrinol._ 8, 26 (2017). Article Google Scholar * Pisu, M. G. et al. Sex differences in the outcome of
juvenile social isolation on HPA axis function in rats. _Neuroscience_ 320, 172–182 (2016). Article CAS PubMed Google Scholar * Viau, V., Lee, P., Sampson, J. & Wu, J. A testicular
influence on restraint-induced activation of medial parvocellular neurons in the paraventricular nucleus in the male rat. _Endocrinology_ 144, 3067–3075 (2003). Article CAS PubMed Google
Scholar * Goel, N., Workman, J. L., Lee, T. T., Innala, L. & Viau, V. Sex differences in the HPA axis. _Compr. Physiol._ 4, 1121–1155 (2014). Article PubMed Google Scholar *
Bentvelsen, F. M., Mcphaul, M. J., Wilson, C. M., Wilson, J. D. & George, F. W. Regulation of immunoreactive androgen receptor in the adrenal gland of the adult rat. _Endocrinology_ 137,
2659–2663 (1996). Article CAS PubMed Google Scholar * Sar, M., Lubahn, D. B., French, F. S. & Wilson, E. M. Immunohistochemical localization of the androgen receptor in rat and
human tissues. _Endocrinology_ 127, 3180–3186 (1990). Article CAS PubMed Google Scholar * Gannon, A.-L. et al. Androgen receptor signalling in the male adrenal facilitates X-zone
regression, cell turnover and protects against adrenal degeneration during ageing. _Sci. Rep._ 9, 10457 (2019). Article PubMed PubMed Central Google Scholar * Miyamoto, J. et al. The
pituitary function of androgen receptor constitutes a glucocorticoid production circuit. _Mol. Cell. Biol._ 27, 4807–4814 (2007). Article CAS PubMed PubMed Central Google Scholar *
Huang, C.-C. J. & Kang, Y. The transient cortical zone in the adrenal gland: the mystery of the adrenal X-zone. _J. Endocrinol._ 241, R51–R63 (2019). Article CAS PubMed PubMed Central
Google Scholar * Stein, E., McCrank, E., Schaefer, B. & Goyer, R. Adrenal gland weight and suicide. _Can. J. Psychiatry_ 38, 563–566 (1993). Article CAS PubMed Google Scholar *
Lam, K. Y., Chan, A. C. L. & Lo, C. Y. Morphological analysis of adrenal glands: a prospective analysis. _Endocr. Pathol._ 12, 33–38 (2001). Article CAS PubMed Google Scholar *
Nonaka, K. et al. Correlation between telomere attrition of zona fasciculata and adrenal weight reduction in older men. _J. Clin. Endocrinol. Metab._ 105, e200–e210 (2019). Article Google
Scholar * Ludescher, B. et al. Gender specific correlations of adrenal gland size and body fat distribution: a whole body MRI study. _Horm. Metab. Res._ 39, 515–518 (2007). Article CAS
PubMed Google Scholar * Levasseur, A., Dumontet, T. & Martinez, A. Sexual dimorphism in adrenal gland development and tumorigenesis. _Curr. Opin. Endocr. Metab. Res._ 8, 60–65 (2019).
Article Google Scholar * Lacroix, A., Feelders, R. A., Stratakis, C. A. & Nieman, L. K. Cushing’s syndrome. _Lancet_ 386, 913–927 (2015). Article CAS PubMed Google Scholar *
Audenet, F., Méjean, A., Chartier-Kastler, E. & Rouprêt, M. Adrenal tumours are more predominant in females regardless of their histological subtype: a review. _World J. Urol._ 31,
1037–1043 (2013). Article PubMed Google Scholar * Michalkiewicz, E. et al. Clinical and outcome characteristics of children with adrenocortical tumors: a report from the international
pediatric adrenocortical tumor registry. _J. Clin. Oncol._ 22, 838–845 (2004). Article CAS PubMed Google Scholar * Sirianni, R. et al. Targeting estrogen receptor-α reduces
adrenocortical cancer (ACC) cell growth in vitro and in vivo: potential therapeutic role of selective estrogen receptor modulators (SERMs) for ACC treatment. _J. Clin. Endocrinol. Metab._
97, E2238–E2250 (2012). Article CAS PubMed Google Scholar * Rossi, R. et al. Evidence for androgen receptor gene expression and growth inhibitory effect of dihydrotestosterone on human
adrenocortical cells. _J. Endocrinol._ 159, 373–380 (1998). Article CAS PubMed Google Scholar * Crona, J. & Beuschlein, F. Adrenocortical carcinoma — towards genomics guided clinical
care. _Nat. Rev. Endocrinol._ 15, 548–560 (2019). Article CAS PubMed Google Scholar * Else, T. et al. Adrenocortical carcinoma. _Endocr. Rev._ 35, 282–326 (2014). Article CAS PubMed
Google Scholar * Borges, K. S. et al. Wnt/β-catenin activation cooperates with loss of p53 to cause adrenocortical carcinoma in mice. _Oncogene_ 39, 5282–5291 (2020). Article CAS PubMed
PubMed Central Google Scholar * Jouinot, A., Armignacco, R. & Assié, G. Genomics of benign adrenocortical tumors. _J. Steroid Biochem. Mol. Biol._ 193, 105414 (2019). Article CAS
PubMed Google Scholar * Goh, G. et al. Recurrent activating mutation in _PRKACA_ in cortisol-producing adrenal tumors. _Nat. Genet._ 46, 613–617 (2014). Article CAS PubMed PubMed
Central Google Scholar * Sato, Y. et al. Recurrent somatic mutations underlie corticotropin-independent Cushing’s syndrome. _Science_ 344, 917–920 (2014). Article CAS PubMed Google
Scholar * Cao, Y. et al. Activating hotspot L205R mutation in _PRKACA_ and adrenal Cushing’s syndrome. _Science_ 344, 913–917 (2014). Article CAS PubMed Google Scholar * Beuschlein, F.
et al. Constitutive activation of PKA catalytic subunit in adrenal Cushing’s syndrome. _N. Engl. J. Med._ 370, 1019–1028 (2014). Article CAS PubMed PubMed Central Google Scholar *
Horvath, A., Mericq, V. & Stratakis, C. A. Mutation in _PDE8B_, a cyclic AMP–specific phosphodiesterase in adrenal hyperplasia. _N. Engl. J. Med._ 358, 750–752 (2008). Article CAS
PubMed Google Scholar * Kirschner, L. S. et al. Mutations of the gene encoding the protein kinase A type I-α regulatory subunit in patients with the Carney complex. _Nat. Genet._ 26, 89–92
(2000). Article CAS PubMed Google Scholar * Bertherat, J. et al. Mutations in regulatory subunit type 1A of cyclic adenosine 5′-monophosphate-dependent protein kinase (PRKAR1A):
phenotype analysis in 353 patients and 80 different genotypes. _J. Clin. Endocrinol. Metab._ 94, 2085–2091 (2009). Article CAS PubMed PubMed Central Google Scholar * Sahut-Barnola, I.
et al. Cushing’s syndrome and fetal features resurgence in adrenal cortex-specific _Prkar1a_ knockout mice. _PLoS Genet._ 6, 1–16 (2010). Article Google Scholar * Ronchi, C. L. et al.
Genetic landscape of sporadic unilateral adrenocortical adenomas without _PRKACA_ p.Leu206Arg mutation. _J. Clin. Endocrinol. Metab._ 101, 3526–3538 (2016). Article CAS PubMed Google
Scholar * Åkerström, T. et al. Activating mutations in _CTNNB1_ in aldosterone producing adenomas. _Sci. Rep._ 6, 19546 (2016). Article PubMed PubMed Central Google Scholar * Bonnet, S.
et al. Wnt/β-catenin pathway activation in adrenocortical adenomas is frequently due to somatic _CTNNB1_-activating mutations, which are associated with larger and nonsecreting tumors: a
study in cortisol-secreting and -nonsecreting tumors. _J. Clin. Endocrinol. Metab._ 96, E419–E426 (2011). Article CAS PubMed Google Scholar * Berthon, A. et al. Age-dependent effects of
_Armc5_ haploinsufficiency on adrenocortical function. _Hum. Mol. Genet._ 26, 3495–3507 (2017). Article CAS PubMed PubMed Central Google Scholar * St-Jean, M., Ghorayeb, N. E. L.,
Bourdeau, I. & Lacroix, A. Aberrant G-protein coupled hormone receptor in adrenal diseases. _Best Pract. Res. Clin. Endocrinol. Metab._ 32, 165–187 (2018). Article CAS PubMed Google
Scholar * Lacroix, A., Hamet, P. & Boutin, J.-M. Leuprolide acetate therapy in luteinizing hormone–dependent Cushing’s syndrome. _N. Engl. J. Med._ 341, 1577–1581 (1999). Article CAS
PubMed Google Scholar * Rao, C. V., Zhou, X. L. & Lei, Z. M. Functional luteinizing hormone/chorionic gonadotropin receptors in human adrenal cortical H295R cells. _Biol. Reprod._ 71,
579–587 (2004). Article CAS PubMed Google Scholar * Pabon, J. E. et al. Novel presence of luteinizing hormone/chorionic gonadotropin receptors in human adrenal glands. _J. Clin.
Endocrinol. Metab._ 81, 2397–2400 (1996). CAS PubMed Google Scholar * Beuschlein, F. et al. Activin induces X-zone apoptosis that inhibits luteinizing hormone-dependent adrenocortical
tumor formation in inhibin-deficient mice. _Mol. Cell. Biol._ 23, 3951–3964 (2003). Article CAS PubMed PubMed Central Google Scholar * Johnsen, I. K. et al. Gonadectomy in mice of the
inbred strain CE/J induces proliferation of sub-capsular adrenal cells expressing gonadal marker genes. _J. Endocrinol._ 190, 47–57 (2006). Article CAS PubMed Google Scholar * Doroszko,
M. et al. Luteinizing hormone and GATA4 action in the adrenocortical tumorigenesis of gonadectomized female mice. _Cell. Physiol. Biochem._ 43, 1064–1076 (2017). Article CAS PubMed Google
Scholar * Chrusciel, M. et al. Transgenic GATA-4 expression induces adrenocortical tumorigenesis in C57BL/6 mice. _J. Cell Sci._ 126, 1845–1857 (2013). CAS PubMed PubMed Central Google
Scholar * Saner-Amigh, K. et al. Elevated expression of luteinizing hormone receptor in aldosterone- producing adenomas. _J. Clin. Endocrinol. Metab._ 91, 1136–1142 (2006). Article CAS
PubMed Google Scholar * Ye, P., Mariniello, B., Mantero, F., Shibata, H. & Rainey, W. E. G-protein-coupled receptors in aldosterone-producing adenomas: a potential cause of
hyperaldosteronism. _J. Endocrinol._ 195, 39–48 (2007). Article CAS PubMed Google Scholar * Zheng, S. et al. Comprehensive pan-genomic characterization of adrenocortical carcinoma.
_Cancer Cell_ 29, 723–736 (2016). Article CAS PubMed PubMed Central Google Scholar * Assié, G. et al. Integrated genomic characterization of adrenocortical carcinoma. _Nat. Genet._ 46,
607–612 (2014). Article PubMed Google Scholar * Juhlin, C. C. et al. Whole-exome sequencing characterizes the landscape of somatic mutations and copy number alterations in adrenocortical
carcinoma. _J. Clin. Endocrinol. Metab._ 100, E493–E502 (2015). Article CAS PubMed Google Scholar * Fiorentini, C. et al. Molecular drivers of potential immunotherapy failure in
adrenocortical carcinoma. _J. Oncol._ 2019, 6072863 (2019). Article PubMed PubMed Central Google Scholar * Habra, M. A. et al. Phase II clinical trial of pembrolizumab efficacy and
safety in advanced adrenocortical carcinoma. _J. Immunother. Cancer_ 7, 253 (2019). Article PubMed PubMed Central Google Scholar * Shang, S., Hua, F. & Hu, Z. W. The regulation of
β-catenin activity and function in cancer: therapeutic opportunities. _Oncotarget_ 8, 33972–33989 (2017). Article PubMed PubMed Central Google Scholar * Krishnamurthy, N. & Kurzrock,
R. Targeting the Wnt/β-catenin pathway in cancer: update on effectors and inhibitors. _Cancer Treat. Rev._ 62, 50–60 (2018). Article CAS PubMed Google Scholar * Madan, B. et al. Wnt
addiction of genetically defined cancers reversed by PORCN inhibition. _Oncogene_ 35, 2197–2207 (2016). Article CAS PubMed Google Scholar * Zhong, Z. et al. PORCN inhibition synergizes
with PI3K/mTOR inhibition in Wnt-addicted cancers. _Oncogene_ 38, 6662–6677 (2019). Article CAS PubMed Google Scholar * Koo, B. K., Van Es, J. H., Van Den Born, M. & Clevers, H.
Porcupine inhibitor suppresses paracrine Wnt-driven growth of Rnf43;Znrf3-mutant neoplasia. _Proc. Natl Acad. Sci. USA_ 112, 7548–7550 (2015). Article CAS PubMed Google Scholar * Gurney,
A. et al. Wnt pathway inhibition via the targeting of Frizzled receptors results in decreased growth and tumorigenicity of human tumors. _Proc. Natl Acad. Sci. USA_ 109, 11717–11722 (2012).
Article CAS PubMed Google Scholar * Fischer, M. M. et al. WNT antagonists exhibit unique combinatorial antitumor activity with taxanes by potentiating mitotic cell death. _Sci. Adv._ 3,
e1700090 (2017). Article PubMed PubMed Central Google Scholar * Hallett, R. M. et al. Small molecule antagonists of the Wnt/β-catenin signaling pathway target breast tumor-initiating
cells in a Her2/Neu mouse model of breast cancer. _PLoS ONE_ 7, e33976 (2012). Article CAS PubMed PubMed Central Google Scholar * Gandhirajan, R. K. et al. Small molecule inhibitors of
Wnt/β-Catenin/Lef-1 signaling induces apoptosis in chronic lymphocytic leukemia cells in vitro and in vivo. _Neoplasia_ 12, 326–335 (2010). Article CAS PubMed PubMed Central Google
Scholar * Trosset, J. Y. et al. Inhibition of protein-protein interactions: the discovery of druglike β-catenin inhibitors by combining virtual and biophysical screening. _Proteins Struct.
Funct. Genet._ 64, 60–67 (2006). Article CAS PubMed Google Scholar * Leal, L. F. et al. Inhibition of the Tcf/β-catenin complex increases apoptosis and impairs adrenocortical tumor cell
proliferation and adrenal steroidogenesis. _Oncotarget_ 6, 43016–43032 (2015). Article PubMed PubMed Central Google Scholar * Rimkus, T., Carpenter, R., Qasem, S., Chan, M. & Lo,
H.-W. Targeting the sonic hedgehog signaling pathway: review of smoothened and GLI inhibitors. _Cancers_ 8, 22 (2016). Article PubMed Central Google Scholar * Charmandari, E., Nicolaides,
N. C. & Chrousos, G. P. Adrenal insufficiency. _Lancet_ 383, 2152–2167 (2014). Article CAS PubMed Google Scholar * Achermann, J. C., Ito, M., Ito, M., Hindmarsh, P. C. &
Jameson, J. L. A mutation in the gene encoding steroidogenic factor-1 causes XY sex reversal and adrenal failure in humans. _Nat. Genet._ 22, 125–126 (1999). Article CAS PubMed Google
Scholar * Hughes, C. R. et al. MCM4 mutation causes adrenal failure, short stature, and natural killer cell deficiency in humans. _J. Clin. Invest._ 122, 814–820 (2012). Article CAS
PubMed PubMed Central Google Scholar * Prasad, R. et al. Thioredoxin reductase 2 (TXNRD2) mutation associated with familial glucocorticoid deficiency (FGD). _J. Clin. Endocrinol. Metab._
99, E1556–E1563 (2014). Article CAS PubMed PubMed Central Google Scholar * Meimaridou, E. et al. Mutations in _NNT_ encoding nicotinamide nucleotide transhydrogenase cause familial
glucocorticoid deficiency. _Nat. Genet._ 44, 740–742 (2012). Article CAS PubMed PubMed Central Google Scholar * Handschug, K. et al. Triple A syndrome is caused by mutations in _AAAS_,
a new WD-repeat protein gene. _Hum. Mol. Genet._ 10, 283–290 (2001). Article CAS PubMed Google Scholar * Bergthorsdottir, R., Leonsson-Zachrisson, M., Odén, A. & Johannsson, G.
Premature mortality in patients with Addison’s disease: a population-based study. _J. Clin. Endocrinol. Metab._ 91, 4849–4853 (2006). Article CAS PubMed Google Scholar * Gan, E. H. &
Pierce, S. H. Regenerative therapies in autoimmune Addison’s disease. _Eur. J. Endocrinol._ 3, R123–R135 (2017). Article Google Scholar * Ruiz-Babot, G., Hadjidemetriou, I., King, P. J.
& Guasti, L. New directions for the treatment of adrenal insufficiency. _Front. Endocrinol._ 6, 70 (2015). Article Google Scholar * Sonoyama, T. et al. Differentiation of human
embryonic stem cells and human induced pluripotent stem cells into steroid-producing cells. _Endocrinology_ 153, 4336–4345 (2012). Article CAS PubMed Google Scholar * Li, L. et al.
Directing differentiation of human induced pluripotent stem cells toward androgen-producing Leydig cells rather than adrenal cells. _Proc. Natl Acad. Sci. USA_ 116, 23274–23283 (2019).
Article CAS PubMed Google Scholar * Smans, L. C. C. J. & Zelissen, P. M. J. Partial recovery of adrenal function in a patient with autoimmune Addison’s disease. _J. Endocrinol.
Invest._ 31, 672–674 (2008). Article CAS PubMed Google Scholar * Baxter, M., Gorick, S. & Swords, F. M. Recovery of adrenal function in a patient with confirmed Addison’s disease.
_Endocrinol. Diabetes Metab. Case Rep._ 2013, 130070 (2013). CAS PubMed PubMed Central Google Scholar * Chakera, A. J. & Vaidya, B. Spontaneously resolving Addison’s disease. _QJM_
105, 1113–1115 (2012). Article CAS PubMed Google Scholar * Poirier, J. et al. Recovery of adrenal insufficiency is frequent after adjuvant mitotane therapy in patients with
adrenocortical carcinoma. _Cancers_ 12, 639 (2020). Article CAS PubMed Central Google Scholar * Baker, P. R. et al. Predicting the onset of Addison’s disease: ACTH, renin, cortisol and
21-hydroxylase autoantibodies. _Clin. Endocrinol._ 76, 617–624 (2012). Article CAS Google Scholar * Fassnacht, M., Libé, R., Kroiss, M. & Allolio, B. Adrenocortical carcinoma: a
clinician’s update. _Nat. Rev. Endocrinol._ 7, 323–335 (2011). Article CAS PubMed Google Scholar * Luton, J. P. et al. Clinical features of adrenocortical carcinoma, prognostic factors,
and the effect of mitotane therapy. _N. Engl. J. Med._ 322, 1195–1201 (1990). Article CAS PubMed Google Scholar * Lindholm, J. et al. Incidence and late prognosis of Cushing’s syndrome:
a population-based study 1. _J. Clin. Endocrinol. Metab._ 86, 117–123 (2001). CAS PubMed Google Scholar * Steffensen, C., Bak, A. M., Zøylner Rubeck, K. & Jørgensen, J. O. L.
Epidemiology of Cushing’s syndrome. _Neuroendocrinology_ 92, 1–5 (2010). Article CAS PubMed Google Scholar * Stratakis, C. Cushing syndrome caused by adrenocortical tumors and
hyperplasias (corticotropin-independent Cushing syndrome). _Endocr. Dev._ 13, 117–132 (2008). Article CAS PubMed PubMed Central Google Scholar * Kong, M.-F. & Jeffcoate, W.
Eighty-six cases of Addison’s disease. _Clin. Endocrinol._ 41, 757–761 (1994). Article CAS Google Scholar * Myhre, A. G. et al. Autoimmune adrenocortical failure in norway autoantibodies
and human leukocyte antigen class II associations related to clinical features. _J. Clin. Endocrinol. Metab._ 87, 618–623 (2002). Article CAS PubMed Google Scholar * Heaton, J. H. et al.
Progression to adrenocortical tumorigenesis in mice and humans through insulin-like growth factor 2 and β-catenin. _Am. J. Pathol._ 181, 1017–1033 (2012). Article CAS PubMed PubMed
Central Google Scholar * Engeland, W. C. et al. Sex differences in adrenal _Bmal1_ deletion-induced augmentation of glucocorticoid responses to stress and ACTH in mice. _Endocrinology_
160, 2215–2229 (2019). Article CAS PubMed PubMed Central Google Scholar * Lambert-Langlais, S. et al. A transgenic mouse line with specific Cre recombinase expression in the adrenal
cortex. _Mol. Cell. Endocrinol._ 300, 197–204 (2009). Article CAS PubMed Google Scholar * Mandel, H. et al. SERKAL syndrome: an autosomal-recessive disorder caused by a loss-of-function
mutation in _WNT4_. _Am. J. Hum. Genet._ 82, 39–47 (2008). Article CAS PubMed PubMed Central Google Scholar * Heikkilä, M. et al. Wnt-4 deficiency alters mouse adrenal cortex function,
reducing aldosterone production. _Endocrinology_ 143, 4358–4365 (2002). Article PubMed Google Scholar Download references ACKNOWLEDGEMENTS The authors thank C. Stratakis for his input and
for critically reading this manuscript. The authors’ research work is supported by La Ligue Contre le Cancer (Equipe Labellisée to A.S.), Agence Nationale de la Recherche
(ANR-11-LABX-0028-01 to A.S. and ANR-18-CE14-0012), World Wide Cancer Research (WWCR) (18-0437 to A.S.), International Fund for Congenital Adrenal Hyperpalsia (IFCAH 2017 to A.S.) and
Fondation pour la Recherche Médicale (FRM SPF201809007141 to R.L.). AUTHOR INFORMATION AUTHORS AND AFFILIATIONS * Université Côte d’Azur, INSERM, CNRS, Institut de Biologie Valrose, Nice,
France Rodanthi Lyraki & Andreas Schedl Authors * Rodanthi Lyraki View author publications You can also search for this author inPubMed Google Scholar * Andreas Schedl View author
publications You can also search for this author inPubMed Google Scholar CONTRIBUTIONS A.S. and R.L. researched data for the article, contributed to discussions of its content, wrote the
manuscript, and participated in review or editing of the manuscript before submission. CORRESPONDING AUTHOR Correspondence to Andreas Schedl. ETHICS DECLARATIONS COMPETING INTERESTS The
authors declare no competing interests. ADDITIONAL INFORMATION PEER REVIEW INFORMATION _Nature Reviews Endocrinology_ thanks J. Bertherat, who co-reviewed with I. Cavalcante, F. Beuschlein,
and S. Bornstein for their contribution to the peer review of this work. PUBLISHER’S NOTE Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations. RIGHTS AND PERMISSIONS Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Lyraki, R., Schedl, A. Adrenal cortex renewal in health and disease. _Nat Rev
Endocrinol_ 17, 421–434 (2021). https://doi.org/10.1038/s41574-021-00491-4 Download citation * Accepted: 30 March 2021 * Published: 19 May 2021 * Issue Date: July 2021 * DOI:
https://doi.org/10.1038/s41574-021-00491-4 SHARE THIS ARTICLE Anyone you share the following link with will be able to read this content: Get shareable link Sorry, a shareable link is not
currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative