Understanding the glucoregulatory mechanisms of metformin in type 2 diabetes mellitus

feature-image

Play all audios:

Loading...

ABSTRACT Despite its position as the first-line drug for treatment of type 2 diabetes mellitus, the mechanisms underlying the plasma glucose level-lowering effects of metformin


(1,1-dimethylbiguanide) still remain incompletely understood. Metformin is thought to exert its primary antidiabetic action through the suppression of hepatic glucose production. In


addition, the discovery that metformin inhibits the mitochondrial respiratory chain complex 1 has placed energy metabolism and activation of AMP-activated protein kinase (AMPK) at the centre


of its proposed mechanism of action. However, the role of AMPK has been challenged and might only account for indirect changes in hepatic insulin sensitivity. Various mechanisms involving


alterations in cellular energy charge, AMP-mediated inhibition of adenylate cyclase or fructose-1,6-bisphosphatase 1 and modulation of the cellular redox state through direct inhibition of 


mitochondrial glycerol-3-phosphate dehydrogenase have been proposed for the acute inhibition of gluconeogenesis by metformin. Emerging evidence suggests that metformin could improve


obesity-induced meta-inflammation via direct and indirect effects on tissue-resident immune cells in metabolic organs (that is, adipose tissue, the gastrointestinal tract and the liver).


Furthermore, the gastrointestinal tract also has a major role in metformin action through modulation of glucose-lowering hormone glucagon-like peptide 1 and the intestinal bile acid pool and


alterations in gut microbiota composition. KEY POINTS * Metformin is the first-line drug for treatment of type 2 diabetes mellitus, with an excellent safety profile, high efficacy in


glycaemic control and clear but incompletely understood cardioprotective benefits. * The pleiotropic properties of metformin suggest that the drug acts on multiple tissues through various


underlying mechanisms rather than on a single organ via a unifying mode of action. * Mitochondrial respiratory chain complex 1 is targeted by metformin and its inhibition is involved in


AMP-activated protein kinase-independent regulation of hepatic gluconeogenesis by triggering alterations in cellular energy charge and redox state. * Metformin might contribute to


improvements in obesity-associated meta-inflammation and tissue-specific insulin sensitivity through direct and indirect effects on various resident immune cells in metabolic organs. * The


gastrointestinal tract has an important role in the action of metformin, which modulates bile acid recirculation and enhances the secretion of the glucose-lowering gut incretin hormone


glucagon-like peptide 1. * The gut microbiota is a novel target in the mechanisms of metformin action and is involved in both the therapeutic and adverse effects of the drug. Access through


your institution Buy or subscribe This is a preview of subscription content, access via your institution ACCESS OPTIONS Access through your institution Access Nature and 54 other Nature


Portfolio journals Get Nature+, our best-value online-access subscription $29.99 / 30 days cancel any time Learn more Subscribe to this journal Receive 12 print issues and online access


$209.00 per year only $17.42 per issue Learn more Buy this article * Purchase on SpringerLink * Instant access to full article PDF Buy now Prices may be subject to local taxes which are


calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in * Learn about institutional subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS


METFORMIN: UPDATE ON MECHANISMS OF ACTION AND REPURPOSING POTENTIAL Article 02 May 2023 THE GASTROINTESTINAL TRACT IS A MAJOR SOURCE OF THE ACUTE METFORMIN-STIMULATED RISE IN GDF15 Article


Open access 22 January 2024 THE IMPORTANCE OF THE AMPK GAMMA 1 SUBUNIT IN METFORMIN SUPPRESSION OF LIVER GLUCOSE PRODUCTION Article Open access 26 June 2020 REFERENCES * Davies, M. J. et al.


Management of hyperglycemia in type 2 diabetes, 2018. A consensus report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). _Diabetes


Care_ 41, 2669–2701 (2018). PubMed  Google Scholar  * Davies, M. J. et al. Management of hyperglycaemia in type 2 diabetes, 2018. A consensus report by the American Diabetes Association


(ADA) and the European Association for the Study of Diabetes (EASD). _Diabetologia_ 61, 2461–2498 (2018). PubMed  Google Scholar  * United Kingdom Prospective Diabetes Study (UKPDS) Group.


Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). UK Prospective Diabetes Study (UKPDS) Group. _Lancet_ 352,


854–865 (1998). Google Scholar  * United Kingdom Prospective Diabetes Study (UKPDS) Group. United Kingdom prospective diabetes study 24: a 6-year, randomized, controlled trial comparing


sulfonylurea, insulin, and metformin therapy in patients with newly diagnosed type 2 diabetes that could not be controlled with diet therapy. United Kingdom Prospective Diabetes Study Group.


_Ann. Intern. Med._ 128, 165–175 (1998). Google Scholar  * Maruthur, N. M. et al. Diabetes medications as monotherapy or metformin-based combination therapy for type 2 diabetes: a


systematic review and meta-analysis. _Ann. Intern. Med._ 164, 740–751 (2016). PubMed  Google Scholar  * Palmer, S. C. et al. Comparison of clinical outcomes and adverse events associated


with glucose-lowering drugs in patients with type 2 diabetes: a meta-analysis. _JAMA_ 316, 313–324 (2016). CAS  PubMed  Google Scholar  * Sanchez-Rangel, E. & Inzucchi, S. E. Metformin:


clinical use in type 2 diabetes. _Diabetologia_ 60, 1586–1593 (2017). CAS  PubMed  Google Scholar  * Howlett, H. C. & Bailey, C. J. A risk-benefit assessment of metformin in type 2


diabetes mellitus. _Drug Saf._ 20, 489–503 (1999). CAS  PubMed  Google Scholar  * Bailey, C. J. Metformin: historical overview. _Diabetologia_ 60, 1566–1576 (2017). CAS  PubMed  Google


Scholar  * Werner, E. & Bell, J. The preparation of methylguanidine, and of ββ-dimethylguanidine by interaction of dicyanodiamide, and methylammonium and dimethylammonium chlorides


respectively. _J. Am. Chem. Soc._ 121, 1790–1794 (1922). CAS  Google Scholar  * Nattrass, M. et al. Hyperlactatemia in diabetics with retinopathy during combined sulphonylurea and phenformin


therapy. _Diabete Metab._ 4, 1–4 (1978). CAS  PubMed  Google Scholar  * Foretz, M., Guigas, B., Bertrand, L., Pollak, M. & Viollet, B. Metformin: from mechanisms of action to therapies.


_Cell Metab._ 20, 953–966 (2014). CAS  PubMed  Google Scholar  * Hundal, R. S. et al. Mechanism by which metformin reduces glucose production in type 2 diabetes. _Diabetes_ 49, 2063–2069


(2000). CAS  PubMed  PubMed Central  Google Scholar  * Cusi, K., Consoli, A. & DeFronzo, R. A. Metabolic effects of metformin on glucose and lactate metabolism in noninsulin-dependent


diabetes mellitus. _J. Clin. Endocrinol. Metab._ 81, 4059–4067 (1996). CAS  PubMed  Google Scholar  * Hother-Nielsen, O., Schmitz, O., Andersen, P. H., Beck-Nielsen, H. & Pedersen, O.


Metformin improves peripheral but not hepatic insulin action in obese patients with type II diabetes. _Acta Endocrinol._ 120, 257–265 (1989). CAS  PubMed  Google Scholar  * Stumvoll, M.,


Nurjhan, N., Perriello, G., Dailey, G. & Gerich, J. E. Metabolic effects of metformin in non-insulin-dependent diabetes mellitus. _N. Engl. J. Med._ 333, 550–554 (1995). CAS  PubMed 


Google Scholar  * DeFronzo, R. A., Barzilai, N. & Simonson, D. C. Mechanism of metformin action in obese and lean noninsulin-dependent diabetic subjects. _J. Clin. Endocrinol. Metab._


73, 1294–1301 (1991). CAS  PubMed  Google Scholar  * Inzucchi, S. E. et al. Efficacy and metabolic effects of metformin and troglitazone in type II diabetes mellitus. _N. Engl. J. Med._ 338,


867–872 (1998). CAS  PubMed  Google Scholar  * Bailey, C. J., Mynett, K. J. & Page, T. Importance of the intestine as a site of metformin-stimulated glucose utilization. _Br. J.


Pharmacol._ 112, 671–675 (1994). CAS  PubMed  PubMed Central  Google Scholar  * Buse, J. B. et al. The primary glucose-lowering effect of metformin resides in the gut, not the circulation:


results from short-term pharmacokinetic and 12-week dose-ranging studies. _Diabetes Care_ 39, 198–205 (2016). THIS HUMAN STUDY PROVIDES STRONG EVIDENCE FOR A GUT-MEDIATED MECHANISM IN THE


BLOOD GLUCOSE-LOWERING ACTION OF METFORMIN. CAS  PubMed  Google Scholar  * McCreight, L. J., Bailey, C. J. & Pearson, E. R. Metformin and the gastrointestinal tract. _Diabetologia_ 59,


426–435 (2016). CAS  PubMed  PubMed Central  Google Scholar  * Forslund, K. et al. Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota. _Nature_ 528,


262–266 (2015). CAS  PubMed  PubMed Central  Google Scholar  * Hardie, D. G. AMPK-sensing energy while talking to other signaling pathways. _Cell Metab._ 20, 939–952 (2014). CAS  PubMed 


PubMed Central  Google Scholar  * Cao, J. et al. Low concentrations of metformin suppress glucose production in hepatocytes through AMP-activated protein kinase (AMPK). _J. Biol. Chem._ 289,


20435–20446 (2014). CAS  PubMed  PubMed Central  Google Scholar  * Graham, G. G. et al. Clinical pharmacokinetics of metformin. _Clin. Pharmacokinet._ 50, 81–98 (2011). CAS  PubMed  Google


Scholar  * Tucker, G. T. et al. Metformin kinetics in healthy subjects and in patients with diabetes mellitus. _Br. J. Clin. Pharmacol._ 12, 235–246 (1981). CAS  PubMed  PubMed Central 


Google Scholar  * Wilcock, C. & Bailey, C. J. Accumulation of metformin by tissues of the normal and diabetic mouse. _Xenobiotica_ 24, 49–57 (1994). CAS  PubMed  Google Scholar  *


Jensen, J. B. et al. [11C]-Labeled metformin distribution in the liver and small intestine using dynamic positron emission tomography in mice demonstrates tissue-specific transporter


dependency. _Diabetes_ 65, 1724–1730 (2016). CAS  PubMed  Google Scholar  * Gormsen, L. C. et al. In vivo imaging of human 11C-metformin in peripheral organs: dosimetry, biodistribution, and


kinetic analyses. _J. Nucl. Med._ 57, 1920–1926 (2016). CAS  PubMed  Google Scholar  * Liang, X. & Giacomini, K. M. Transporters involved in metformin pharmacokinetics and treatment


response. _J. Pharm. Sci._ 106, 2245–2250 (2017). CAS  PubMed  Google Scholar  * Todd, J. N. & Florez, J. C. An update on the pharmacogenomics of metformin: progress, problems and


potential. _Pharmacogenomics_ 15, 529–539 (2014). CAS  PubMed  PubMed Central  Google Scholar  * Dujic, T. et al. Variants in pharmacokinetic transporters and glycemic response to metformin:


a Metgen meta-analysis. _Clin. Pharmacol. Ther._ 101, 763–772 (2017). CAS  PubMed  PubMed Central  Google Scholar  * Zhou, K. et al. Variation in the glucose transporter gene SLC2A2 is


associated with glycemic response to metformin. _Nat. Genet._ 48, 1055–1059 (2016). CAS  PubMed  PubMed Central  Google Scholar  * Ait-Omar, A. et al. GLUT2 accumulation in enterocyte apical


and intracellular membranes: a study in morbidly obese human subjects and ob/ob and high fat-fed mice. _Diabetes_ 60, 2598–2607 (2011). CAS  PubMed  PubMed Central  Google Scholar  *


Jablonski, K. A. et al. Common variants in 40 genes assessed for diabetes incidence and response to metformin and lifestyle intervention in the diabetes prevention program. _Diabetes_ 59,


2672–2681 (2010). CAS  PubMed  PubMed Central  Google Scholar  * Hollunger, G. Guanidines and oxidative phosphorylations. _Acta Pharmacol. Toxicol._ 11, 1–84 (1955). CAS  Google Scholar  *


Schafer, G. Site-specific uncoupling and inhibition of oxidative phosphorylation by biguanides. II. _Biochim. Biophys. Acta_ 172, 334–337 (1969). CAS  PubMed  Google Scholar  * El-Mir, M. Y.


et al. Dimethylbiguanide inhibits cell respiration via an indirect effect targeted on the respiratory chain complex I. _J. Biol. Chem._ 275, 223–228 (2000). CAS  PubMed  Google Scholar  *


Owen, M. R., Doran, E. & Halestrap, A. P. Evidence that metformin exerts its anti-diabetic effects through inhibition of complex 1 of the mitochondrial respiratory chain. _Biochem. J._


348, 607–614 (2000). THIS STUDY TOGETHER WITH EL-MIR ET AL. (2000) WERE THE FIRST TO REPORT SPECIFIC INHIBITION OF METFORMIN ON THE MITOCHONDRIAL RESPIRATORY CHAIN COMPLEX 1. CAS  PubMed 


PubMed Central  Google Scholar  * Degli Esposti, M. Inhibitors of NADH-ubiquinone reductase: an overview. _Biochim. Biophys. Acta_ 1364, 222–235 (1998). CAS  PubMed  Google Scholar  *


Fontaine, E. Metformin-induced mitochondrial complex I inhibition: facts, uncertainties, and consequences. _Front. Endocrinol._ 9, 753 (2018). Google Scholar  * Vial, G., Detaille, D. &


Guigas, B. Role of mitochondria in the mechanism(s) of action of metformin. _Front. Endocrinol._ 10, 294 (2019). Google Scholar  * Stephenne, X. et al. Metformin activates AMP-activated


protein kinase in primary human hepatocytes by decreasing cellular energy status. _Diabetologia_ 54, 3101–3110 (2011). THE IS THE FIRST STUDY TO SHOW THAT METFORMIN INHIBITS MITOCHONDRIAL


RESPIRATORY CHAIN COMPLEX 1 AND ACTIVATES AMPK IN PRIMARY HUMAN HEPATOCYTES. CAS  PubMed  PubMed Central  Google Scholar  * Andrzejewski, S., Gravel, S. P., Pollak, M. & St-Pierre, J.


Metformin directly acts on mitochondria to alter cellular bioenergetics. _Cancer Metab._ 2, 12 (2014). PubMed  PubMed Central  Google Scholar  * Bridges, H. R., Jones, A. J., Pollak, M. N.


& Hirst, J. Effects of metformin and other biguanides on oxidative phosphorylation in mitochondria. _Biochem. J._ 462, 475–487 (2014). THIS ELEGANT STUDY DISSECTS THE MECHANISM BY WHICH


METFORMIN INHIBITS THE MITOCHONDRIAL RESPIRATORY CHAIN COMPLEX 1. CAS  PubMed  PubMed Central  Google Scholar  * Guigas, B. et al. Metformin inhibits mitochondrial permeability transition


and cell death: a pharmacological in vitro study. _Biochem. J._ 382, 877–884 (2004). CAS  PubMed  PubMed Central  Google Scholar  * Wheaton, W. W. et al. Metformin inhibits mitochondrial


complex I of cancer cells to reduce tumorigenesis. _eLife_ 3, e02242 (2014). PubMed  PubMed Central  Google Scholar  * Zannella, V. E. et al. Reprogramming metabolism with metformin improves


tumor oxygenation and radiotherapy response. _Clin. Cancer Res._ 19, 6741–6750 (2013). CAS  PubMed  Google Scholar  * Gui, D. Y. et al. Environment dictates dependence on mitochondrial


complex I for NAD+ and aspartate production and determines cancer cell sensitivity to metformin. _Cell Metab._ 24, 716–727 (2016). CAS  PubMed  PubMed Central  Google Scholar  * Cheng, G. et


al. Mitochondria-targeted analogues of metformin exhibit enhanced antiproliferative and radiosensitizing effects in pancreatic cancer cells. _Cancer Res._ 76, 3904–3915 (2016). CAS  PubMed


  PubMed Central  Google Scholar  * Boukalova, S. et al. Mitochondrial targeting of metformin enhances its activity against pancreatic cancer. _Mol. Cancer Ther._ 15, 2875–2886 (2016). CAS 


PubMed  Google Scholar  * Guo, Z. et al. Heme binding biguanides target cytochrome P450-dependent cancer cell mitochondria. _Cell Chem. Biol._ 24, 1314–1275.e6 (2017). CAS  PubMed  Google


Scholar  * Thakur, S. et al. Metformin targets mitochondrial glycerophosphate dehydrogenase to control rate of oxidative phosphorylation and growth of thyroid cancer in vitro and in vivo.


_Clin. Cancer Res._ 24, 4030–4043 (2018). CAS  PubMed  PubMed Central  Google Scholar  * Fontaine, E. Metformin and respiratory chain complex I: the last piece of the puzzle? _Biochem. J._


463, e3–e5 (2014). CAS  PubMed  Google Scholar  * Wilcock, C., Wyre, N. D. & Bailey, C. J. Subcellular distribution of metformin in rat liver. _J. Pharm. Pharmacol._ 43, 442–444 (1991).


CAS  PubMed  Google Scholar  * Detaille, D. et al. Metformin prevents high-glucose-induced endothelial cell death through a mitochondrial permeability transition-dependent process.


_Diabetes_ 54, 2179–2187 (2005). THIS IS THE FIRST STUDY DEMONSTRATING THAT METFORMIN CAN REDUCE OXIDATIVE STRESS THROUGH ITS MITOCHONDRIAL ACTION. CAS  PubMed  Google Scholar  * Detaille,


D., Guigas, B., Leverve, X., Wiernsperger, N. & Devos, P. Obligatory role of membrane events in the regulatory effect of metformin on the respiratory chain function. _Biochem.


Pharmacol._ 63, 1259–1272 (2002). CAS  PubMed  Google Scholar  * El-Mir, M. Y. et al. Neuroprotective role of antidiabetic drug metformin against apoptotic cell death in primary cortical


neurons. _J. Mol. Neurosci._ 34, 77–87 (2008). CAS  PubMed  Google Scholar  * Bridges, H. R., Sirvio, V. A., Agip, A. N. & Hirst, J. Molecular features of biguanides required for


targeting of mitochondrial respiratory complex I and activation of AMP-kinase. _BMC Biol._ 14, 65 (2016). PubMed  PubMed Central  Google Scholar  * Logie, L. et al. Cellular responses to the


metal-binding properties of metformin. _Diabetes_ 61, 1423–1433 (2012). CAS  PubMed  PubMed Central  Google Scholar  * Hirst, J. Mitochondrial complex I. _Annu. Rev. Biochem._ 82, 551–575


(2013). CAS  PubMed  Google Scholar  * Zickermann, V. et al. Structural biology. Mechanistic insight from the crystal structure of mitochondrial complex I. _Science_ 347, 44–49 (2015). CAS 


PubMed  Google Scholar  * Saheki, T. et al. Citrin/mitochondrial glycerol-3-phosphate dehydrogenase double knock-out mice recapitulate features of human citrin deficiency. _J. Biol. Chem._


282, 25041–25052 (2007). CAS  PubMed  Google Scholar  * Shu, Y. et al. Effect of genetic variation in the organic cation transporter 1 (OCT1) on metformin action. _J. Clin. Invest._ 117,


1422–1431 (2007). CAS  PubMed  PubMed Central  Google Scholar  * He, L. & Wondisford, F. E. Metformin action: concentrations matter. _Cell Metab._ 21, 159–162 (2015). CAS  PubMed  Google


Scholar  * Christensen, M. M. et al. The pharmacogenetics of metformin and its impact on plasma metformin steady-state levels and glycosylated hemoglobin A1c. _Pharmacogenet. Genomics_ 21,


837–850 (2011). CAS  PubMed  Google Scholar  * Lalau, J. D., Lemaire-Hurtel, A. S. & Lacroix, C. Establishment of a database of metformin plasma concentrations and erythrocyte levels in


normal and emergency situations. _Clin. Drug Investig._ 31, 435–438 (2011). CAS  PubMed  Google Scholar  * Foretz, M. et al. Metformin inhibits hepatic gluconeogenesis in mice independently


of the LKB1/AMPK pathway via a decrease in hepatic energy state. _J. Clin. Invest._ 120, 2355–2369 (2010). THIS PAPER PROVIDES GENETIC EVIDENCE OF AMPK-INDEPENDENT ACTION OF METFORMIN IN THE


INHIBITION OF HEPATIC GLUCOSE PRODUCTION. CAS  PubMed  PubMed Central  Google Scholar  * Fullerton, M. D. et al. Single phosphorylation sites in Acc1 and Acc2 regulate lipid homeostasis and


the insulin-sensitizing effects of metformin. _Nat. Med._ 19, 1649–1654 (2013). THIS PAPER PROVIDES GENETIC EVIDENCE OF AMPK-MEDIATED PHOSPHORYLATION OF BOTH ACC1 AND ACC2 IN METFORMIN


REGULATION OF LIPID METABOLISM AND INSULIN SENSITIVITY. CAS  PubMed  PubMed Central  Google Scholar  * Hunter, R. W. et al. Metformin reduces liver glucose production by inhibition of


fructose-1-6-bisphosphatase. _Nat. Med._ 24, 1395–1406 (2018). THIS STUDY PROVIDES GENETIC EVIDENCE OF METFORMIN INHIBITION OF HEPATIC GLUCOSE PRODUCTION THROUGH ALLOSTERIC INHIBITION OF


FRUCTOSE-1-6-BISPHOSPHATASE VIA METFORMIN-INDUCED INCREASES OF INTRACELLULAR AMP LEVELS. CAS  PubMed  PubMed Central  Google Scholar  * Miller, R. A. et al. Biguanides suppress hepatic


glucagon signalling by decreasing production of cyclic AMP. _Nature_ 494, 256–260 (2013). THIS PAPER DESCRIBES THE SUPPRESSION OF HEPATIC GLUCAGON SIGNALLING IN RESPONSE TO METFORMIN BY


INHIBITION OF ADENYLATE CYCLASE VIA METFORMIN-INDUCED INCREASES OF INTRACELLULAR AMP LEVELS. CAS  PubMed  PubMed Central  Google Scholar  * Clarke, J. D. et al. Mechanism of altered


metformin distribution in nonalcoholic steatohepatitis. _Diabetes_ 64, 3305–3313 (2015). CAS  PubMed  PubMed Central  Google Scholar  * Scheen, A. J. Clinical pharmacokinetics of metformin.


_Clin. Pharmacokinet._ 30, 359–371 (1996). CAS  PubMed  Google Scholar  * Alshawi, A. & Agius, L. Low metformin causes a more oxidized mitochondrial NADH/NAD redox state in hepatocytes


and inhibits gluconeogenesis by a redox-independent mechanism. _J. Biol. Chem._ 294, 2839–2853 (2019). CAS  PubMed  Google Scholar  * Madiraju, A. K. et al. Metformin suppresses


gluconeogenesis by inhibiting mitochondrial glycerophosphate dehydrogenase. _Nature_ 510, 542–546 (2014). THIS PAPER DESCRIBES A REDOX-DEPENDENT MECHANISM TO ACCOUNT FOR THE INHIBITION OF


HEPATIC GLUCONEOGENESIS BY METFORMIN. CAS  PubMed  PubMed Central  Google Scholar  * Al-Oanzi, Z. H. et al. Opposite effects of a glucokinase activator and metformin on glucose-regulated


gene expression in hepatocytes. _Diabetes Obes. Metab._ 19, 1078–1087 (2017). CAS  PubMed  Google Scholar  * Zhou, G. et al. Role of AMP-activated protein kinase in mechanism of metformin


action. _J. Clin. Invest._ 108, 1167–1174 (2001). THIS IS THE FIRST PAPER SHOWING AMPK ACTIVATION BY METFORMIN. CAS  PubMed  PubMed Central  Google Scholar  * Hawley, S. A. et al. Use of


cells expressing gamma subunit variants to identify diverse mechanisms of AMPK activation. _Cell Metab._ 11, 554–565 (2010). CAS  PubMed  PubMed Central  Google Scholar  * Zhang, C. S. et


al. The lysosomal v-ATPase-ragulator complex is a common activator for AMPK and mTORC1, acting as a switch between catabolism and anabolism. _Cell Metab._ 20, 526–540 (2014). THIS STUDY


REPORTS AN AMP-INDEPENDENT MECHANISM FOR GLUCOSE SENSING BY AMPK THROUGH THE LYSOSOMAL PATHWAY. CAS  PubMed  Google Scholar  * Li, M. et al. Transient receptor potential V channels are


essential for glucose sensing by aldolase and AMPK. _Cell Metab._ https://doi.org/10.1016/j.cmet.2019.05.018 (2019). PubMed  PubMed Central  Google Scholar  * Zhang, C. S. et al. Metformin


activates AMPK through the lysosomal pathway. _Cell Metab._ 24, 521–522 (2016). PubMed  Google Scholar  * Shaw, R. J. et al. The kinase LKB1 mediates glucose homeostasis in liver and


therapeutic effects of metformin. _Science_ 310, 1642–1646 (2005). CAS  PubMed  PubMed Central  Google Scholar  * He, L. et al. Metformin and insulin suppress hepatic gluconeogenesis through


phosphorylation of CREB binding protein. _Cell_ 137, 635–646 (2009). CAS  PubMed  PubMed Central  Google Scholar  * Lee, J. M. et al. AMPK-dependent repression of hepatic gluconeogenesis


via disruption of CREB.CRTC2 complex by orphan nuclear receptor small heterodimer partner. _J. Biol. Chem._ 285, 32182–32191 (2010). CAS  PubMed  PubMed Central  Google Scholar  * Caton, P.


W. et al. Metformin suppresses hepatic gluconeogenesis through induction of SIRT1 and GCN5. _J. Endocrinol._ 205, 97–106 (2010). CAS  PubMed  Google Scholar  * Boudaba, N. et al. AMPK


re-activation suppresses hepatic steatosis but its downregulation does not promote fatty liver development. _EBioMedicine_ 28, 194–209 (2018). THIS PAPER PROVIDES GENETIC EVIDENCE OF


AMPK-DEPENDENT EFFECTS OF METFORMIN ON LIPOGENESIS INHIBITION AND FATTY ACID OXIDATION STIMULATION. PubMed  PubMed Central  Google Scholar  * Cokorinos, E. C. et al. Activation of skeletal


muscle AMPK promotes glucose disposal and glucose lowering in non-human primates and mice. _Cell Metab._ 25, 1147–1159.e10 (2017). THIS STUDY PROVIDES PHARMACOLOGICAL AND GENETIC EVIDENCE OF


THE BLOOD GLUCOSE-LOWERING EFFECT OF AMPK ACTIVATION IN SKELETAL MUSCLE. CAS  PubMed  Google Scholar  * Madiraju, A. K. et al. Metformin inhibits gluconeogenesis via a redox-dependent


mechanism in vivo. _Nat. Med._ 24, 1384–1394 (2018). CAS  PubMed  PubMed Central  Google Scholar  * Ringler, R. L. & Singer, T. P. Studies on the mitochondrial alpha-glycerophosphate


dehydrogenase. I. Reaction of the dehydrogenase with electron acceptors and the respiratory chain. _J. Biol. Chem._ 234, 2211–2217 (1959). CAS  PubMed  Google Scholar  * Lee, Y. P. &


Lardy, H. A. Influence of thyroid hormones on L-α-glycerophosphate dehydrogenases and other dehydrogenases in various organs of the rat. _J. Biol. Chem._ 240, 1427–1436 (1965). CAS  PubMed 


Google Scholar  * Lin, E. C. Glycerol utilization and its regulation in mammals. _Annu. Rev. Biochem._ 46, 765–795 (1977). CAS  PubMed  Google Scholar  * Brisson, D., Vohl, M. C., St-Pierre,


J., Hudson, T. J. & Gaudet, D. Glycerol: a neglected variable in metabolic processes? _Bioessays_ 23, 534–542 (2001). CAS  PubMed  Google Scholar  * Baur, J. A. & Birnbaum, M. J.


Control of gluconeogenesis by metformin: does redox trump energy charge? _Cell Metab._ 20, 197–199 (2014). CAS  PubMed  PubMed Central  Google Scholar  * Cool, B. et al. Identification and


characterization of a small molecule AMPK activator that treats key components of type 2 diabetes and the metabolic syndrome. _Cell Metab._ 3, 403–416 (2006). THIS IS THE FIRST PAPER


DESCRIBING A SMALL-MOLECULE DIRECT AMPK ACTIVATOR. CAS  PubMed  Google Scholar  * Esquejo, R. M. et al. Activation of liver AMPK with PF-06409577 corrects NAFLD and lowers cholesterol in


rodent and primate preclinical models. _EBioMedicine_ 31, 122–132 (2018). PubMed  PubMed Central  Google Scholar  * Mazza, A. et al. The role of metformin in the management of NAFLD. _Exp.


Diabetes Res._ 2012, 716404 (2012). PubMed  Google Scholar  * Hotamisligil, G. S. Inflammation, metaflammation and immunometabolic disorders. _Nature_ 542, 177–185 (2017). CAS  PubMed 


Google Scholar  * Brestoff, J. R. & Artis, D. Immune regulation of metabolic homeostasis in health and disease. _Cell_ 161, 146–160 (2015). CAS  PubMed  PubMed Central  Google Scholar  *


Lackey, D. E. & Olefsky, J. M. Regulation of metabolism by the innate immune system. _Nat. Rev. Endocrinol._ 12, 15–28 (2016). CAS  PubMed  Google Scholar  * McNelis, J. C. &


Olefsky, J. M. Macrophages, immunity, and metabolic disease. _Immunity_ 41, 36–48 (2014). CAS  PubMed  Google Scholar  * Lumeng, C. N., Bodzin, J. L. & Saltiel, A. R. Obesity induces a


phenotypic switch in adipose tissue macrophage polarization. _J. Clin. Invest._ 117, 175–184 (2007). CAS  PubMed  PubMed Central  Google Scholar  * Huang, W. et al. Depletion of liver


Kupffer cells prevents the development of diet-induced hepatic steatosis and insulin resistance. _Diabetes_ 59, 347–357 (2010). CAS  PubMed  Google Scholar  * Lanthier, N. et al. Kupffer


cell activation is a causal factor for hepatic insulin resistance. _Am. J. Physiol. Gastrointest. Liver Physiol._ 298, G107–G116 (2010). CAS  PubMed  Google Scholar  * Talukdar, S. et al.


Neutrophils mediate insulin resistance in mice fed a high-fat diet through secreted elastase. _Nat. Med._ 18, 1407–1412 (2012). CAS  PubMed  PubMed Central  Google Scholar  * Cai, D. et al.


Local and systemic insulin resistance resulting from hepatic activation of IKK-β and NF-κB. _Nat. Med._ 11, 183–190 (2005). CAS  PubMed  PubMed Central  Google Scholar  * Kang, K. et al.


Adipocyte-derived Th2 cytokines and myeloid PPARδ regulate macrophage polarization and insulin sensitivity. _Cell Metab._ 7, 485–495 (2008). CAS  PubMed  PubMed Central  Google Scholar  *


Odegaard, J. I. et al. Alternative M2 activation of Kupffer cells by PPARδ ameliorates obesity-induced insulin resistance. _Cell Metab._ 7, 496–507 (2008). CAS  PubMed  PubMed Central 


Google Scholar  * Ricardo-Gonzalez, R. R. et al. IL-4/STAT6 immune axis regulates peripheral nutrient metabolism and insulin sensitivity. _Proc. Natl Acad. Sci. USA_ 107, 22617–22622 (2010).


CAS  PubMed  Google Scholar  * Stanya, K. J. et al. Direct control of hepatic glucose production by interleukin-13 in mice. _J. Clin. Invest._ 123, 261–271 (2013). CAS  PubMed  Google


Scholar  * Odegaard, J. I. et al. Macrophage-specific PPARγ controls alternative activation and improves insulin resistance. _Nature_ 447, 1116–1120 (2007). CAS  PubMed  PubMed Central 


Google Scholar  * Ilan, Y. et al. Induction of regulatory T cells decreases adipose inflammation and alleviates insulin resistance in ob/ob mice. _Proc. Natl Acad. Sci. USA_ 107, 9765–9770


(2010). CAS  PubMed  Google Scholar  * Feuerer, M. et al. Lean, but not obese, fat is enriched for a unique population of regulatory T cells that affect metabolic parameters. _Nat. Med._ 15,


930–939 (2009). CAS  PubMed  PubMed Central  Google Scholar  * Evia-Viscarra, M. L. et al. The effects of metformin on inflammatory mediators in obese adolescents with insulin resistance:


controlled randomized clinical trial. _J. Pediatr. Endocrinol. Metab._ 25, 41–49 (2012). CAS  PubMed  Google Scholar  * Fidan, E. et al. The effects of rosiglitazone and metformin on


inflammation and endothelial dysfunction in patients with type 2 diabetes mellitus. _Acta Diabetol._ 48, 297–302 (2011). CAS  PubMed  Google Scholar  * Cameron, A. R. et al.


Anti-inflammatory effects of metformin irrespective of diabetes status. _Circ. Res._ 119, 652–665 (2016). THIS STUDY SHOWS SOME BENEFICIAL ANTI-INFLAMMATORY EFFECTS OF METFORMIN IN HUMANS,


IRRESPECTIVE OF THEIR DIABETIC STATUS. CAS  PubMed  PubMed Central  Google Scholar  * Lu, C. H., Hung, Y. J. & Hsieh, P. S. Additional effect of metformin and celecoxib against lipid


dysregulation and adipose tissue inflammation in high-fat fed rats with insulin resistance and fatty liver. _Eur. J. Pharmacol._ 789, 60–67 (2016). CAS  PubMed  Google Scholar  * Xue, W. et


al. Alkannin inhibited hepatic inflammation in diabetic Db/Db mice. _Cell. Physiol. Biochem._ 45, 2461–2470 (2018). CAS  PubMed  Google Scholar  * Shen, C. L. et al. Annatto-extracted


tocotrienols improve glucose homeostasis and bone properties in high-fat diet-induced type 2 diabetic mice by decreasing the inflammatory response. _Sci. Rep._ 8, 11377 (2018). PubMed 


PubMed Central  Google Scholar  * Jing, Y. et al. Metformin improves obesity-associated inflammation by altering macrophages polarization. _Mol. Cell. Endocrinol._ 461, 256–264 (2018). CAS 


PubMed  Google Scholar  * de Oliveira, S. _et al_. Metformin modulates innate immune-mediated inflammation and early progression of NAFLD-associated hepatocellular carcinoma in zebrafish.


_J. Hepatol_. 70, 710-721(2018). * Kim, J. et al. Metformin suppresses lipopolysaccharide (LPS)-induced inflammatory response in murine macrophages via activating transcription factor-3


(ATF-3) induction. _J. Biol. Chem._ 289, 23246–23255 (2014). CAS  PubMed  PubMed Central  Google Scholar  * Kelly, B., Tannahill, G. M., Murphy, M. P. & O’Neill, L. A. Metformin inhibits


the production of reactive oxygen species from NADH:ubiquinone oxidoreductase to limit induction of interleukin-1β (IL-1β) and boosts interleukin-10 (IL-10) in lipopolysaccharide


(LPS)-activated macrophages. _J. Biol. Chem._ 290, 20348–20359 (2015). CAS  PubMed  PubMed Central  Google Scholar  * Moiseeva, O. et al. Metformin inhibits the senescence-associated


secretory phenotype by interfering with IKK/NF-κB activation. _Aging Cell_ 12, 489–498 (2013). CAS  PubMed  Google Scholar  * Vasamsetti, S. B. et al. Metformin inhibits


monocyte-to-macrophage differentiation via AMPK-mediated inhibition of STAT3 activation: potential role in atherosclerosis. _Diabetes_ 64, 2028–2041 (2015). THIS STUDY SHOWS THE INHIBITION


OF MONOCYTE-TO-MACROPHAGE DIFFERENTIATION AND ATHEROMATOUS PLAQUE FORMATION BY METFORMIN IN _APOE_ −/− MICE THROUGH AN AMPK–STAT3-DEPENDENT MECHANISM. CAS  PubMed  Google Scholar  * Yan, Z.


et al. Metformin suppresses UHMWPE particle-induced osteolysis in the mouse calvaria by promoting polarization of macrophages to an anti-inflammatory phenotype. _Mol. Med._ 24, 20 (2018).


CAS  PubMed  PubMed Central  Google Scholar  * Buldak, L. et al. Metformin affects macrophages’ phenotype and improves the activity of glutathione peroxidase, superoxide dismutase, catalase


and decreases malondialdehyde concentration in a partially AMPK-independent manner in LPS-stimulated human monocytes/macrophages. _Pharmacol. Rep._ 66, 418–429 (2014). CAS  PubMed  Google


Scholar  * Arai, M. et al. Metformin, an antidiabetic agent, suppresses the production of tumor necrosis factor and tissue factor by inhibiting early growth response factor-1 expression in


human monocytes in vitro. _J. Pharmacol. Exp. Ther._ 334, 206–213 (2010). CAS  PubMed  Google Scholar  * Stienstra, R., Netea-Maier, R. T., Riksen, N. P., Joosten, L. A. B. & Netea, M.


G. Specific and complex reprogramming of cellular metabolism in myeloid cells during innate immune responses. _Cell Metab._ 26, 142–156 (2017). CAS  PubMed  Google Scholar  * Geltink, R. I.


K., Kyle, R. L. & Pearce, E. L. Unraveling the complex interplay between T cell metabolism and function. _Annu. Rev. Immunol._ 36, 461–488 (2018). CAS  PubMed  Google Scholar  * Buck, M.


D., Sowell, R. T., Kaech, S. M. & Pearce, E. L. Metabolic instruction of immunity. _Cell_ 169, 570–586 (2017). CAS  PubMed  PubMed Central  Google Scholar  * Negrotto, L., Farez, M. F.


& Correale, J. Immunologic effects of metformin and pioglitazone treatment on metabolic syndrome and multiple sclerosis. _JAMA Neurol._ 73, 520–528 (2016). PubMed  Google Scholar  * Lee,


S. Y. et al. Metformin suppresses systemic autoimmunity in Roquin(san/san) mice through inhibiting B cell differentiation into plasma cells via regulation of AMPK/mTOR/STAT3. _J. Immunol._


198, 2661–2670 (2017). CAS  PubMed  PubMed Central  Google Scholar  * Son, H. J. et al. Metformin attenuates experimental autoimmune arthritis through reciprocal regulation of Th17/Treg


balance and osteoclastogenesis. _Mediators Inflamm._ 2014, 973986 (2014). PubMed  PubMed Central  Google Scholar  * Lee, S. Y. et al. Metformin ameliorates inflammatory bowel disease by


suppression of the STAT3 signaling pathway and regulation of the between Th17/treg balance. _PLOS ONE_ 10, e0135858 (2015). PubMed  PubMed Central  Google Scholar  * Eikawa, S. et al.


Immune-mediated antitumor effect by type 2 diabetes drug, metformin. _Proc. Natl Acad. Sci. USA_ 112, 1809–1814 (2015). CAS  PubMed  Google Scholar  * Kunisada, Y. et al. Attenuation of


CD4+CD25+ regulatory T cells in the tumor microenvironment by metformin, a type 2 diabetes drug. _EBioMedicine_ 25, 154–164 (2017). PubMed  PubMed Central  Google Scholar  * Li, L. et al.


Metformin-induced reduction of CD39 and CD73 blocks myeloid-derived suppressor cell activity in patients with ovarian cancer. _Cancer Res._ 78, 1779–1791 (2018). CAS  PubMed  PubMed Central


  Google Scholar  * Pereira, F. V. et al. Metformin exerts antitumor activity via induction of multiple death pathways in tumor cells and activation of a protective immune response.


_Oncotarget_ 9, 25808–25825 (2018). PubMed  PubMed Central  Google Scholar  * Natali, A. & Ferrannini, E. Effects of metformin and thiazolidinediones on suppression of hepatic glucose


production and stimulation of glucose uptake in type 2 diabetes: a systematic review. _Diabetologia_ 49, 434–441 (2006). CAS  PubMed  Google Scholar  * Wu, T., Horowitz, M. & Rayner, C.


K. New insights into the anti-diabetic actions of metformin: from the liver to the gut. _Expert Rev. Gastroenterol. Hepatol._ 11, 157–166 (2017). CAS  PubMed  Google Scholar  * Bonora, E. et


al. Lack of effect of intravenous metformin on plasma concentrations of glucose, insulin, C-peptide, glucagon and growth hormone in non-diabetic subjects. _Curr. Med. Res. Opin._ 9, 47–51


(1984). CAS  PubMed  Google Scholar  * Stepensky, D., Friedman, M., Raz, I. & Hoffman, A. Pharmacokinetic-pharmacodynamic analysis of the glucose-lowering effect of metformin in diabetic


rats reveals first-pass pharmacodynamic effect. _Drug Metab. Dispos._ 30, 861–868 (2002). CAS  PubMed  Google Scholar  * Sum, C. F. et al. The effect of intravenous metformin on glucose


metabolism during hyperglycaemia in type 2 diabetes. _Diabet. Med._ 9, 61–65 (1992). CAS  PubMed  Google Scholar  * Koffert, J. P. et al. Metformin treatment significantly enhances


intestinal glucose uptake in patients with type 2 diabetes: results from a randomized clinical trial. _Diabetes Res. Clin. Pract._ 131, 208–216 (2017). CAS  PubMed  Google Scholar  * Wu, T.


et al. Metformin reduces the rate of small intestinal glucose absorption in type 2 diabetes. _Diabetes Obes. Metab._ 19, 290–293 (2017). CAS  PubMed  Google Scholar  * Bailey, C. J.,


Wilcock, C. & Day, C. Effect of metformin on glucose metabolism in the splanchnic bed. _Br. J. Pharmacol._ 105, 1009–1013 (1992). CAS  PubMed  PubMed Central  Google Scholar  * Penicaud,


L., Hitier, Y., Ferre, P. & Girard, J. Hypoglycaemic effect of metformin in genetically obese (fa/fa) rats results from an increased utilization of blood glucose by intestine. _Biochem.


J._ 262, 881–885 (1989). CAS  PubMed  PubMed Central  Google Scholar  * Gontier, E. et al. High and typical 18F-FDG bowel uptake in patients treated with metformin. _Eur. J. Nucl. Med. Mol.


Imaging_ 35, 95–99 (2008). CAS  PubMed  Google Scholar  * Ikeda, T., Iwata, K. & Murakami, H. Inhibitory effect of metformin on intestinal glucose absorption in the perfused rat


intestine. _Biochem. Pharmacol._ 59, 887–890 (2000). CAS  PubMed  Google Scholar  * Sakar, Y. et al. Metformin-induced regulation of the intestinal D-glucose transporters. _J. Physiol.


Pharmacol._ 61, 301–307 (2010). CAS  PubMed  Google Scholar  * Walker, J. et al. 5-Aminoimidazole-4-carboxamide riboside (AICAR) enhances GLUT2-dependent jejunal glucose transport: a


possible role for AMPK. _Biochem. J._ 385, 485–491 (2005). CAS  PubMed  PubMed Central  Google Scholar  * Lenzen, S., Lortz, S. & Tiedge, M. Effect of metformin on SGLT1, GLUT2, and


GLUT5 hexose transporter gene expression in small intestine from rats. _Biochem. Pharmacol._ 51, 893–896 (1996). CAS  PubMed  Google Scholar  * Bauer, P. V. et al. Metformin alters upper


small intestinal microbiota that impact a glucose-SGLT1-sensing glucoregulatory pathway. _Cell Metab._ 27, 101–117.e5 (2018). THIS STUDY IN RODENTS SHOWS THE EFFECT OF METFORMIN ON UPPER


SMALL INTESTINAL MICROBIOTA AND GLUCOSE SENSING. CAS  PubMed  Google Scholar  * Bailey, C. J., Wilcock, C. & Scarpello, J. H. Metformin and the intestine. _Diabetologia_ 51, 1552–1553


(2008). CAS  PubMed  Google Scholar  * Duca, F. A. et al. Metformin activates a duodenal Ampk-dependent pathway to lower hepatic glucose production in rats. _Nat. Med._ 21, 506–511 (2015).


THIS PAPER PRESENTS STUDIES IN RODENT MODELS THAT SHOW THAT METFORMIN LOWERS BLOOD LEVELS OF GLUCOSE BY INHIBITING HEPATIC GLUCOSE PRODUCTION THROUGH A NEURON-MEDIATED GUT–BRAIN–LIVER AXIS.


CAS  PubMed  PubMed Central  Google Scholar  * Borg, M. J. et al. Comparative effects of proximal and distal small intestinal administration of metformin on plasma glucose and glucagon-like


peptide-1, and gastric emptying after oral glucose, in type 2 diabetes. _Diabetes Obes. Metab._ 21, 640–647 (2019). CAS  PubMed  Google Scholar  * Henry, R. R. et al. Improved glycemic


control with minimal systemic metformin exposure: effects of metformin delayed-release (metformin DR) targeting the lower bowel over 16 weeks in a randomized trial in subjects with type 2


diabetes. _PLOS ONE_ 13, e0203946 (2018). PubMed  PubMed Central  Google Scholar  * Oh, J. et al. Inhibition of the multidrug and toxin extrusion (MATE) transporter by pyrimethamine


increases the plasma concentration of metformin but does not increase antihyperglycaemic activity in humans. _Diabetes Obes. Metab._ 18, 104–108 (2016). CAS  PubMed  Google Scholar  *


Mannucci, E. et al. Effects of metformin on glucagon-like peptide-1 levels in obese patients with and without type 2 diabetes. _Diabetes Nutr. Metab._ 17, 336–342 (2004). CAS  PubMed  Google


Scholar  * Napolitano, A. et al. Novel gut-based pharmacology of metformin in patients with type 2 diabetes mellitus. _PLOS ONE_ 9, e100778 (2014). PubMed  PubMed Central  Google Scholar  *


Maida, A., Lamont, B. J., Cao, X. & Drucker, D. J. Metformin regulates the incretin receptor axis via a pathway dependent on peroxisome proliferator-activated receptor-α in mice.


_Diabetologia_ 54, 339–349 (2011). CAS  PubMed  Google Scholar  * DeFronzo, R. A. et al. Once-daily delayed-release metformin lowers plasma glucose and enhances fasting and postprandial


GLP-1 and PYY: results from two randomised trials. _Diabetologia_ 59, 1645–1654 (2016). CAS  PubMed  PubMed Central  Google Scholar  * Bahne, E. et al. Metformin-induced glucagon-like


peptide-1 secretion contributes to the actions of metformin in type 2 diabetes. _JCI Insight_ 3, 93936 (2018). THIS PAPER PRESENTS HUMAN STUDIES THAT ANALYSE THE ROLE OF GLP1 RELEASE IN THE


GLUCOSE-LOWERING EFFECT OF METFORMIN. PubMed  Google Scholar  * Li, M. et al. Efficacy and safety of liraglutide versus sitagliptin both in combination with metformin in patients with type 2


diabetes: a systematic review and meta-analysis. _Medicine_ 96, e8161 (2017). CAS  PubMed  PubMed Central  Google Scholar  * Bahne, E. et al. Involvement of glucagon-like peptide-1 in the


glucose-lowering effect of metformin. _Diabetes Obes. Metab._ 18, 955–961 (2016). CAS  PubMed  Google Scholar  * Mulherin, A. J. et al. Mechanisms underlying metformin-induced secretion of


glucagon-like peptide-1 from the intestinal L cell. _Endocrinology_ 152, 4610–4619 (2011). CAS  PubMed  Google Scholar  * Kim, M. H. et al. Metformin enhances glucagon-like peptide 1 via


cooperation between insulin and Wnt signaling. _J. Endocrinol._ 220, 117–128 (2014). CAS  PubMed  Google Scholar  * Kappe, C., Patrone, C., Holst, J. J., Zhang, Q. & Sjoholm, A.


Metformin protects against lipoapoptosis and enhances GLP-1 secretion from GLP-1-producing cells. _J. Gastroenterol._ 48, 322–332 (2013). CAS  PubMed  Google Scholar  * Bronden, A. et al.


Single-dose metformin enhances bile acid-induced glucagon-like peptide-1 secretion in patients with type 2 diabetes. _J. Clin. Endocrinol. Metab._ 102, 4153–4162 (2017). PubMed  Google


Scholar  * Carter, D., Howlett, H. C., Wiernsperger, N. F. & Bailey, C. J. Differential effects of metformin on bile salt absorption from the jejunum and ileum. _Diabetes Obes. Metab._


5, 120–125 (2003). CAS  PubMed  Google Scholar  * Lien, F. et al. Metformin interferes with bile acid homeostasis through AMPK-FXR crosstalk. _J. Clin. Invest._ 124, 1037–1051 (2014). CAS 


PubMed  PubMed Central  Google Scholar  * Hansen, M. et al. Effect of chenodeoxycholic acid and the bile acid sequestrant colesevelam on glucagon-like peptide-1 secretion. _Diabetes Obes.


Metab._ 18, 571–580 (2016). CAS  PubMed  Google Scholar  * Wu, T. et al. Effects of rectal administration of taurocholic acid on glucagon-like peptide-1 and peptide YY secretion in healthy


humans. _Diabetes Obes. Metab._ 15, 474–477 (2013). CAS  PubMed  Google Scholar  * Thomas, C. et al. TGR5-mediated bile acid sensing controls glucose homeostasis. _Cell Metab._ 10, 167–177


(2009). CAS  PubMed  PubMed Central  Google Scholar  * Trabelsi, M. S. et al. Farnesoid X receptor inhibits glucagon-like peptide-1 production by enteroendocrine L cells. _Nat. Commun._ 6,


7629 (2015). PubMed  PubMed Central  Google Scholar  * Duca, F. A., Bauer, P. V., Hamr, S. C. & Lam, T. K. Glucoregulatory relevance of small intestinal nutrient sensing in physiology,


bariatric surgery, and pharmacology. _Cell Metab._ 22, 367–380 (2015). CAS  PubMed  Google Scholar  * Waise, T. M. Z., Dranse, H. J. & Lam, T. K. T. The metabolic role of vagal afferent


innervation. _Nat. Rev. Gastroenterol. Hepatol._ 15, 625–636 (2018). PubMed  Google Scholar  * Kuhre, R. E., Frost, C. R., Svendsen, B. & Holst, J. J. Molecular mechanisms of


glucose-stimulated GLP-1 secretion from perfused rat small intestine. _Diabetes_ 64, 370–382 (2015). CAS  PubMed  Google Scholar  * Parker, H. E. et al. Predominant role of active versus


facilitative glucose transport for glucagon-like peptide-1 secretion. _Diabetologia_ 55, 2445–2455 (2012). CAS  PubMed  PubMed Central  Google Scholar  * Sun, L. et al. Gut microbiota and


intestinal FXR mediate the clinical benefits of metformin. _Nat. Med._ 24, 1919–1929 (2018). CAS  PubMed  PubMed Central  Google Scholar  * Cote, C. D. et al. Resveratrol activates duodenal


Sirt1 to reverse insulin resistance in rats through a neuronal network. _Nat. Med._ 21, 498–505 (2015). CAS  PubMed  Google Scholar  * Waise, T. M. Z. et al. Inhibition of upper small


intestinal mTOR lowers plasma glucose levels by inhibiting glucose production. _Nat. Commun._ 10, 714 (2019). PubMed  PubMed Central  Google Scholar  * Karlsson, F. H. et al. Gut metagenome


in European women with normal, impaired and diabetic glucose control. _Nature_ 498, 99–103 (2013). CAS  PubMed  Google Scholar  * Qin, J. et al. A metagenome-wide association study of gut


microbiota in type 2 diabetes. _Nature_ 490, 55–60 (2012). CAS  PubMed  Google Scholar  * Lee, H. & Ko, G. Effect of metformin on metabolic improvement and gut microbiota. _Appl.


Environ. Microbiol._ 80, 5935–5943 (2014). PubMed  PubMed Central  Google Scholar  * Shin, N. R. et al. An increase in the _Akkermansia_ spp. population induced by metformin treatment


improves glucose homeostasis in diet-induced obese mice. _Gut_ 63, 727–735 (2014). THESE RODENT STUDIES SHOW THAT METFORMIN INDUCES A PROFOUND SHIFT IN THE FAECAL MICROBIAL COMMUNITY PROFILE


IN HFD-FED MICE, WITH HIGHER ABUNDANCE OF THE MUCIN-DEGRADING BACTERIUM _AKKERMANSIA_ ACCOMPANIED BY AN INCREASE IN THE NUMBER OF MUCIN-PRODUCING GOBLET CELLS AND ADIPOSE TISSUE-RESIDENT


REGULATORY T CELLS. CAS  PubMed  Google Scholar  * Zhang, X. et al. Modulation of gut microbiota by berberine and metformin during the treatment of high-fat diet-induced obesity in rats.


_Sci. Rep._ 5, 14405 (2015). CAS  PubMed  PubMed Central  Google Scholar  * de la Cuesta-Zuluaga, J. et al. Metformin is associated with higher relative abundance of mucin-degrading


_Akkermansia muciniphila_ and several short-chain fatty acid-producing microbiota in the gut. _Diabetes Care_ 40, 54–62 (2017). THESE STUDIES IN HUMANS SHOW THAT METFORMIN SHIFTS GUT


MICROBIOTA COMPOSITION THROUGH ENRICHMENT OF SCFA-PRODUCING AND MUCIN-DEGRADING BACTERIA. PubMed  Google Scholar  * Wu, H. et al. Metformin alters the gut microbiome of individuals with


treatment-naive type 2 diabetes, contributing to the therapeutic effects of the drug. _Nat. Med._ 23, 850–858 (2017). THIS STUDY IN HUMANS SHOWS THAT ALTERED GUT MICROBIOTA MEDIATES SOME OF


METFORMIN’S ANTIDIABETIC EFFECTS IN TREATMENT-NAIVE PATIENTS WITH TYPE 2 DIABETES MELLITUS. CAS  PubMed  Google Scholar  * Tong, X. et al. Structural alteration of gut microbiota during the


amelioration of human type 2 diabetes with hyperlipidemia by metformin and a traditional chinese herbal formula: a multicenter, randomized, open label clinical trial. _mBio._ 9, e02392-17


(2018). PubMed  PubMed Central  Google Scholar  * Rosario, D. et al. Understanding the representative gut microbiota dysbiosis in metformin-treated type 2 diabetes patients using


genome-scale metabolic modeling. _Front. Physiol._ 9, 775 (2018). PubMed  PubMed Central  Google Scholar  * De Vadder, F. et al. Microbiota-generated metabolites promote metabolic benefits


via gut-brain neural circuits. _Cell_ 156, 84–96 (2014). PubMed  Google Scholar  * Gibson, G. R. & Roberfroid, M. B. Dietary modulation of the human colonic microbiota: introducing the


concept of prebiotics. _J. Nutr._ 125, 1401–1412 (1995). CAS  PubMed  Google Scholar  * Cani, P. D. et al. Gut microbiota fermentation of prebiotics increases satietogenic and incretin gut


peptide production with consequences for appetite sensation and glucose response after a meal. _Am. J. Clin. Nutr._ 90, 1236–1243 (2009). CAS  PubMed  Google Scholar  * Chambers, E. S. et


al. Effects of targeted delivery of propionate to the human colon on appetite regulation, body weight maintenance and adiposity in overweight adults. _Gut_ 64, 1744–1754 (2015). CAS  PubMed


  Google Scholar  * Ridlon, J. M., Kang, D. J. & Hylemon, P. B. Bile salt biotransformations by human intestinal bacteria. _J. Lipid Res._ 47, 241–259 (2006). CAS  PubMed  Google Scholar


  * Everard, A. et al. Cross-talk between _Akkermansia muciniphila_ and intestinal epithelium controls diet-induced obesity. _Proc. Natl Acad. Sci. USA_ 110, 9066–9071 (2013). CAS  PubMed 


Google Scholar  * Plovier, H. et al. A purified membrane protein from _Akkermansia muciniphila_ or the pasteurized bacterium improves metabolism in obese and diabetic mice. _Nat. Med._ 23,


107–113 (2017). CAS  PubMed  Google Scholar  * Depommier, C. et al. Supplementation with _Akkermansia muciniphila_ in overweight and obese human volunteers: a proof-of-concept exploratory


study. _Nat. Med._ 25, 1096–1103 (2019). CAS  PubMed  Google Scholar  * Maier, L. et al. Extensive impact of non-antibiotic drugs on human gut bacteria. _Nature_ 555, 623–628 (2018). CAS 


PubMed  PubMed Central  Google Scholar  * Vashisht, R. & Brahmachari, S. K. Metformin as a potential combination therapy with existing front-line antibiotics for tuberculosis. _J.


Transl. Med._ 13, 83 (2015). PubMed  PubMed Central  Google Scholar  * Cabreiro, F. et al. Metformin retards aging in _C. elegans_ by altering microbial folate and methionine metabolism.


_Cell_ 153, 228–239 (2013). CAS  PubMed  PubMed Central  Google Scholar  * Belkaid, Y. & Harrison, O. J. Homeostatic immunity and the microbiota. _Immunity_ 46, 562–576 (2017). CAS 


PubMed  PubMed Central  Google Scholar  * Postler, T. S. & Ghosh, S. Understanding the holobiont: how microbial metabolites affect human health and shape the immune system. _Cell Metab._


26, 110–130 (2017). CAS  PubMed  PubMed Central  Google Scholar  * McDole, J. R. et al. Goblet cells deliver luminal antigen to CD103+ dendritic cells in the small intestine. _Nature_ 483,


345–349 (2012). CAS  PubMed  PubMed Central  Google Scholar  * Weisman, A., Bai, J. W., Cardinez, M., Kramer, C. K. & Perkins, B. A. Effect of artificial pancreas systems on glycaemic


control in patients with type 1 diabetes: a systematic review and meta-analysis of outpatient randomised controlled trials. _Lancet Diabetes Endocrinol._ 5, 501–512 (2017). CAS  PubMed 


Google Scholar  * Wood, J. R. et al. Most youth with type 1 diabetes in the T1D Exchange Clinic Registry do not meet American Diabetes Association or International Society for Pediatric and


Adolescent Diabetes clinical guidelines. _Diabetes Care_ 36, 2035–2037 (2013). PubMed  PubMed Central  Google Scholar  * Petrie, J. R. et al. Cardiovascular and metabolic effects of


metformin in patients with type 1 diabetes (REMOVAL): a double-blind, randomised, placebo-controlled trial. _Lancet Diabetes Endocrinol._ 5, 597–609 (2017). CAS  PubMed  PubMed Central 


Google Scholar  * Meng, H. et al. Effect of metformin on glycaemic control in patients with type 1 diabetes: a meta-analysis of randomized controlled trials. _Diabetes Metab. Res. Rev._ 34,


e2983 (2018). PubMed  Google Scholar  * Lund, S. S. et al. Effect of adjunct metformin treatment in patients with type-1 diabetes and persistent inadequate glycaemic control. A randomized


study. _PLOS ONE_ 3, e3363 (2008). PubMed  PubMed Central  Google Scholar  * Scheen, A. J. Will delayed release metformin provide better management of diabetes type 2? _Expert Opin.


Pharmacother._ 17, 627–630 (2016). PubMed  Google Scholar  * Fujita, Y. & Inagaki, N. Metformin: new preparations and nonglycemic benefits. _Curr. Diab. Rep._ 17, 5 (2017). PubMed 


Google Scholar  * Berstein, L. M. Metformin: not only per os. _Expert Rev. Endocrinol. Metab._ 13, 63–65 (2018). CAS  PubMed  Google Scholar  * Cetin, M. & Sahin, S. Microparticulate and


nanoparticulate drug delivery systems for metformin hydrochloride. _Drug Deliv._ 23, 2796–2805 (2016). CAS  PubMed  Google Scholar  * Zhao, Y. et al. Polymetformin combines carrier and


anticancer activities for in vivo siRNA delivery. _Nat. Commun._ 7, 11822 (2016). PubMed  PubMed Central  Google Scholar  * Bouchoucha, M., Uzzan, B. & Cohen, R. Metformin and digestive


disorders. _Diabetes Metab._ 37, 90–96 (2011). CAS  PubMed  Google Scholar  * Bonnet, F. & Scheen, A. Understanding and overcoming metformin gastrointestinal intolerance. _Diabetes Obes.


Metab._ 19, 473–481 (2017). CAS  PubMed  Google Scholar  * McCreight, L. J. et al. Pharmacokinetics of metformin in patients with gastrointestinal intolerance. _Diabetes Obes. Metab._ 20,


1593–1601 (2018). CAS  PubMed  PubMed Central  Google Scholar  * Dujic, T. et al. Association of organic cation transporter 1 with intolerance to metformin in type 2 diabetes: a GoDARTS


study. _Diabetes_ 64, 1786–1793 (2015). CAS  PubMed  Google Scholar  * Dujic, T., Zhou, K., Tavendale, R., Palmer, C. N. & Pearson, E. R. Effect of serotonin transporter 5-HTTLPR


polymorphism on gastrointestinal intolerance to metformin: a GoDARTS study. _Diabetes Care_ 39, 1896–1901 (2016). CAS  PubMed  PubMed Central  Google Scholar  * Hoffmann, I. S., Roa, M.,


Torrico, F. & Cubeddu, L. X. Ondansetron and metformin-induced gastrointestinal side effects. _Am. J. Ther._ 10, 447–451 (2003). PubMed  Google Scholar  * Scarpello, J. H., Hodgson, E.


& Howlett, H. C. Effect of metformin on bile salt circulation and intestinal motility in type 2 diabetes mellitus. _Diabet. Med._ 15, 651–656 (1998). CAS  PubMed  Google Scholar  *


Elbere, I. et al. Association of metformin administration with gut microbiome dysbiosis in healthy volunteers. _PLOS ONE_ 13, e0204317 (2018). PubMed  PubMed Central  Google Scholar  *


Greenway, F., Wang, S. & Heiman, M. A novel cobiotic containing a prebiotic and an antioxidant augments the glucose control and gastrointestinal tolerability of metformin: a case report.


_Benef. Microbes_ 5, 29–32 (2014). CAS  PubMed  Google Scholar  * Burton, J. H. et al. Addition of a gastrointestinal microbiome modulator to metformin improves metformin tolerance and


fasting glucose levels. _J. Diabetes Sci. Technol._ 9, 808–814 (2015). CAS  PubMed  PubMed Central  Google Scholar  * Escobar-Morreale, H. F. Polycystic ovary syndrome: definition,


aetiology, diagnosis and treatment. _Nat. Rev. Endocrinol._ 14, 270–284 (2018). PubMed  Google Scholar  * Burt Solorzano, C. M. et al. Neuroendocrine dysfunction in polycystic ovary


syndrome. _Steroids_ 77, 332–337 (2012). CAS  PubMed  Google Scholar  * Ovalle, F. & Azziz, R. Insulin resistance, polycystic ovary syndrome, and type 2 diabetes mellitus. _Fertil. 


Steril._ 77, 1095–1105 (2002). PubMed  Google Scholar  * Carmina, E. & Lobo, R. A. Use of fasting blood to assess the prevalence of insulin resistance in women with polycystic ovary


syndrome. _Fertil. Steril._ 82, 661–665 (2004). PubMed  Google Scholar  * Adashi, E. Y., Hsueh, A. J. & Yen, S. S. Insulin enhancement of luteinizing hormone and follicle-stimulating


hormone release by cultured pituitary cells. _Endocrinology_ 108, 1441–1449 (1981). CAS  PubMed  Google Scholar  * Nestler, J. E. et al. Insulin stimulates testosterone biosynthesis by human


thecal cells from women with polycystic ovary syndrome by activating its own receptor and using inositolglycan mediators as the signal transduction system. _J. Clin. Endocrinol. Metab._ 83,


2001–2005 (1998). CAS  PubMed  Google Scholar  * Carmina, E. et al. The contributions of oestrogen and growth factors to increased adrenal androgen secretion in polycystic ovary syndrome.


_Hum. Reprod._ 14, 307–311 (1999). CAS  PubMed  Google Scholar  * Tosi, F. et al. Insulin enhances ACTH-stimulated androgen and glucocorticoid metabolism in hyperandrogenic women. _Eur. J.


Endocrinol._ 164, 197–203 (2011). CAS  PubMed  Google Scholar  * Wild, R. A. et al. Assessment of cardiovascular risk and prevention of cardiovascular disease in women with the polycystic


ovary syndrome: a consensus statement by the Androgen Excess and Polycystic Ovary Syndrome (AE-PCOS) Society. _J. Clin. Endocrinol. Metab._ 95, 2038–2049 (2010). CAS  PubMed  Google Scholar


  * Morin-Papunen, L. et al. Metformin reduces serum C-reactive protein levels in women with polycystic ovary syndrome. _J. Clin. Endocrinol. Metab._ 88, 4649–4654 (2003). CAS  PubMed 


Google Scholar  * Tang, T. et al. Combined lifestyle modification and metformin in obese patients with polycystic ovary syndrome. A randomized, placebo-controlled, double-blind multicentre


study. _Hum. Reprod._ 21, 80–89 (2006). PubMed  Google Scholar  * Naderpoor, N. et al. Metformin and lifestyle modification in polycystic ovary syndrome: systematic review and meta-analysis.


_Hum. Reprod. Update_ 21, 560–574 (2015). CAS  PubMed  Google Scholar  * Orio, F. Jr. et al. Improvement in endothelial structure and function after metformin treatment in young


normal-weight women with polycystic ovary syndrome: results of a 6-month study. _J. Clin. Endocrinol. Metab._ 90, 6072–6076 (2005). CAS  PubMed  Google Scholar  * Nestler, J. E., Jakubowicz,


D. J., Evans, W. S. & Pasquali, R. Effects of metformin on spontaneous and clomiphene-induced ovulation in the polycystic ovary syndrome. _N. Engl. J. Med._ 338, 1876–1880 (1998). CAS 


PubMed  Google Scholar  * Lord, J. M., Flight, I. H. & Norman, R. J. Insulin-sensitising drugs (metformin, troglitazone, rosiglitazone, pioglitazone, D-chiro-inositol) for polycystic


ovary syndrome. _Cochrane Database Syst. Rev_. 3, CD003053 (2003). * Kashyap, S., Wells, G. A. & Rosenwaks, Z. Insulin-sensitizing agents as primary therapy for patients with polycystic


ovarian syndrome. _Hum. Reprod._ 19, 2474–2483 (2004). CAS  PubMed  Google Scholar  * Legro, R. S. et al. Clomiphene, metformin, or both for infertility in the polycystic ovary syndrome. _N.


Engl. J. Med._ 356, 551–566 (2007). CAS  PubMed  Google Scholar  * Morley, L. C., Tang, T., Yasmin, E., Norman, R. J. & Balen, A. H. Insulin-sensitising drugs (metformin, rosiglitazone,


pioglitazone, D-chiro-inositol) for women with polycystic ovary syndrome, oligo amenorrhoea and subfertility. _Cochrane Database Syst. Rev._ 11, CD003053 (2017). PubMed  Google Scholar  *


Balen, A. H. et al. The management of anovulatory infertility in women with polycystic ovary syndrome: an analysis of the evidence to support the development of global WHO guidance. _Hum.


Reprod. Update_ 22, 687–708 (2016). PubMed  Google Scholar  * Heckman-Stoddard, B. M., DeCensi, A., Sahasrabuddhe, V. V. & Ford, L. G. Repurposing metformin for the prevention of cancer


and cancer recurrence. _Diabetologia_ 60, 1639–1647 (2017). CAS  PubMed  PubMed Central  Google Scholar  * Kurelac, I. et al. Inducing cancer indolence by targeting mitochondrial complex I


is potentiated by blocking macrophage-mediated adaptive responses. _Nat. Commun._ 10, 903 (2019). PubMed  PubMed Central  Google Scholar  * Rotermund, C., Machetanz, G. & Fitzgerald, J.


C. The therapeutic potential of metformin in neurodegenerative diseases. _Front. Endocrinol._ 9, 400 (2018). Google Scholar  * Anisimov, V. N. et al. Metformin slows down aging and extends


life span of female SHR mice. _Cell Cycle_ 7, 2769–2773 (2008). CAS  PubMed  Google Scholar  * Barzilai, N., Crandall, J. P., Kritchevsky, S. B. & Espeland, M. A. Metformin as a tool to


target aging. _Cell Metab._ 23, 1060–1065 (2016). CAS  PubMed  PubMed Central  Google Scholar  * Justice, J. N. et al. A framework for selection of blood-based biomarkers for


geroscience-guided clinical trials: report from the TAME Biomarkers Workgroup. _Geroscience_ 40, 419–436 (2018). CAS  PubMed  PubMed Central  Google Scholar  * Degner, N. R., Wang, J. Y.,


Golub, J. E. & Karakousis, P. C. Metformin use reverses the increased mortality associated with diabetes mellitus during tuberculosis treatment. _Clin. Infect. Dis._ 66, 198–205 (2018).


CAS  PubMed  Google Scholar  * Singhal, A. et al. Metformin as adjunct antituberculosis therapy. _Sci. Transl. Med._ 6, 263ra159 (2014). THIS STUDY PROVIDES EVIDENCE FOR THE BENEFITS OF


METFORMIN TREATMENT AS HOST-ADJUNCTIVE THERAPY FOR IMPROVING THE EFFECTIVE TREATMENT OF TUBERCULOSIS. PubMed  Google Scholar  * Rangarajan, S. et al. Metformin reverses established lung


fibrosis in a bleomycin model. _Nat. Med._ 24, 1121–1127 (2018). CAS  PubMed  PubMed Central  Google Scholar  * Sato, N. et al. Metformin attenuates lung fibrosis development via NOX4


suppression. _Respir. Res._ 17, 107 (2016). PubMed  PubMed Central  Google Scholar  Download references ACKNOWLEDGEMENTS The authors acknowledge the support of grants from Inserm, CNRS,


Université Paris Descartes, Agence Nationale de la Recherche (ANR), Société Francophone du Diabète (SFD), Fondation pour la Recherche Médicale (FRM), the Dutch Organization for Scientific


Research (ZonMW) and DiabetesFonds. AUTHOR INFORMATION AUTHORS AND AFFILIATIONS * INSERM, U1016, Institut Cochin, Paris, France Marc Foretz & Benoit Viollet * CNRS, UMR8104, Paris,


France Marc Foretz & Benoit Viollet * Université Paris Descartes, Sorbonne Paris Cité, Paris, France Marc Foretz & Benoit Viollet * Department of Parasitology, Leiden University


Medical Centre, Leiden, Netherlands Bruno Guigas Authors * Marc Foretz View author publications You can also search for this author inPubMed Google Scholar * Bruno Guigas View author


publications You can also search for this author inPubMed Google Scholar * Benoit Viollet View author publications You can also search for this author inPubMed Google Scholar CONTRIBUTIONS


The authors contributed equally to all aspects of the article. CORRESPONDING AUTHOR Correspondence to Benoit Viollet. ETHICS DECLARATIONS COMPETING INTERESTS The authors declare no competing


interests. ADDITIONAL INFORMATION PUBLISHER’S NOTE Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. GLOSSARY * Lactic


acidosis A medical condition characterized by excessively low pH in the bloodstream due to excess lactate production by glycolytic tissues, inadequate lactate utilization by gluconeogenic


tissues, or varying combinations of these two processes. * Pharmacokinetics The study of the transit of a dosed drug in body fluids and tissues over time, as defined by its rate of


absorption, distribution, metabolism and excretion. * Pharmacodynamics The study of the action of a drug in the body, and its biochemical and physiological effects. * Half-maximal inhibitory


concentration (IC50). The concentration of an inhibitor required to decrease the response of the target by 50%. * Pyruvate tolerance A measure of glycaemic excursion in response to an


intraperitoneal or intravenous injection of pyruvate, used to assess hepatic gluconeogenesis. * Cytosolic redox potential Cytoplasmic oxidation state of the cell, which is assessed by the


ratio of reduced to oxidized intracellular metabolite redox couples (for example, lactate/pyruvate ratio). * Type 2 immune cells Cells involved in type 2 immune responses, such as type 2


innate lymphoid cells, eosinophils, T helper 2 cells, mast cells, basophils and alternatively-activated macrophages. * Reverse electron transport (RET). The transport of electrons from


ubiquinol back to respiratory complex 1, generating a substantial amount of reactive oxygen species. * Incretins Incretins are gut hormones that are secreted after nutrient intake and


stimulate glucose-stimulated insulin secretion. * Lipoapoptosis A non-canonical form of programmed cell death, which is the result of fatty acid over-accumulation that occurs in diseases


associated with over-nutrition and ageing. * Short-chain fatty acid (SCFA). A fatty acid with fewer than six carbon atoms (for example, acetate, propionate and butyrate) that is the


end-product of fermentation of dietary fibres by the anaerobic intestinal microbiota and acts as a signal molecule in the control of mammalian energy metabolism. RIGHTS AND PERMISSIONS


Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Foretz, M., Guigas, B. & Viollet, B. Understanding the glucoregulatory mechanisms of metformin in type 2 diabetes mellitus.


_Nat Rev Endocrinol_ 15, 569–589 (2019). https://doi.org/10.1038/s41574-019-0242-2 Download citation * Accepted: 11 July 2019 * Published: 22 August 2019 * Issue Date: October 2019 * DOI:


https://doi.org/10.1038/s41574-019-0242-2 SHARE THIS ARTICLE Anyone you share the following link with will be able to read this content: Get shareable link Sorry, a shareable link is not


currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative