Experimental signature of the parity anomaly in a semi-magnetic topological insulator

feature-image

Play all audios:

Loading...

ABSTRACT A three-dimensional (3D) topological insulator features a 2D surface state consisting of a single linearly dispersive Dirac cone1,2,3. Under broken time-reversal symmetry, the


single Dirac cone is predicted to cause half-integer quantization of Hall conductance, which is a manifestation of the parity anomaly in quantum field theory1,2,3,4,5,6,7,8,9. However,


despite various observations of quantization phenomena10,11,12,13,14,15, the half-integer quantization has not been observed because most experiments simultaneously measure a pair of


equivalent Dirac cones16 on two opposing surfaces. Here we demonstrate the half-integer quantization of Hall conductance in a synthetic heterostructure termed a semi-magnetic topological


insulator, where only one surface state is gapped by magnetic doping and the opposite one is non-magnetic and gapless. We observe half-quantized Faraday and Kerr rotations with terahertz


magneto-optical spectroscopy and half-quantized Hall conductance in transport at zero magnetic field. Our results suggest a condensed-matter realization of the parity anomaly4,5,6,7,8,9 and


open a way for studying the physics enabled by a single Dirac fermion. Access through your institution Buy or subscribe This is a preview of subscription content, access via your institution


ACCESS OPTIONS Access through your institution Access Nature and 54 other Nature Portfolio journals Get Nature+, our best-value online-access subscription $29.99 / 30 days cancel any time


Learn more Subscribe to this journal Receive 12 print issues and online access $259.00 per year only $21.58 per issue Learn more Buy this article * Purchase on SpringerLink * Instant access


to full article PDF Buy now Prices may be subject to local taxes which are calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in * Learn about institutional subscriptions * Read our


FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS SPECTRAL SIGNATURES OF THE SURFACE ANOMALOUS HALL EFFECT IN MAGNETIC AXION INSULATORS Article Open access 10 June 2021


\({\MATHBB{Z}}/2\) TOPOLOGICAL INVARIANTS AND THE HALF QUANTIZED HALL EFFECT Article Open access 02 January 2025 QUANTIZED SPIN HALL CONDUCTANCE IN A MAGNETICALLY DOPED TWO DIMENSIONAL


TOPOLOGICAL INSULATOR Article Open access 27 May 2021 DATA AVAILABILITY All relevant data within this paper are available from the authors upon reasonable request. Source data are provided


with this paper. REFERENCES * Fu, L., Kane, C. L. & Mele, E. J. Topological insulators in three dimensions. _Phys. Rev. Lett._ 98, 106803 (2007). Article  ADS  Google Scholar  * Fu, L.


& Kane, C. L. Topological insulators with inversion symmetry. _Phys. Rev. B_ 76, 045302 (2007). Article  ADS  Google Scholar  * Qi, X.-L., Hughes, T. L. & Zhang, S.-C. Topological


field theory of time-reversal invariant insulators. _Phys. Rev. B_ 78, 195424 (2008). Article  ADS  Google Scholar  * Niemi, A. J. & Semenoff, G. W. Axial-anomaly-induced fermion


fractionization and effective gauge-theory actions in odd-dimensional space-times. _Phys. Rev. Lett._ 51, 2077–2080 (1983). Article  MathSciNet  ADS  Google Scholar  * Redlich, A. N. Gauge


noninvariance and parity nonconservation of three-dimensional fermions. _Phys. Rev. Lett._ 52, 18–21 (1984). Article  MathSciNet  ADS  Google Scholar  * Jackiw, R. Fractional charge and zero


modes for planer systems in a magnetic field. _Phys. Rev. D_ 29, 2375–2377 (1984). Article  MathSciNet  ADS  Google Scholar  * Semenoff, G. Condensed-matter simulation of a


three-dimensional anomaly. _Phys. Rev. Lett._ 53, 2449–2452 (1984). Article  ADS  Google Scholar  * Fradkin, E., Dagotto, E. & Boyanovsky, D. Physical realization of the parity anomaly


in condensed matter physics. _Phys. Rev. Lett._ 57, 2967–2970 (1986). Article  ADS  Google Scholar  * Haldane, F. D. M. Model for a quantum Hall effect without Landau levels:


condensed-matter realization of the ‘parity anomaly’. _Phys. Rev. Lett._ 61, 2015–2018 (1988). Article  ADS  Google Scholar  * Chang, C.-Z. et al. Experimental observation of the quantum


anomalous Hall effect in a magnetic topological insulator. _Science_ 340, 167–170 (2013). Article  ADS  Google Scholar  * Xu, Y. et al. Observation of topological surface state quantum Hall


effect in an intrinsic three-dimensional topological insulator. _Nat. Phys._ 10, 956–963 (2014). Article  Google Scholar  * Yoshimi, R. et al. Quantum Hall states stabilized in semi-magnetic


bilayers of topological insulators. _Nat. Commun._ 6, 8530 (2015). Article  ADS  Google Scholar  * Wu, L. et al. Quantized Faraday and Kerr rotation and axion electrodynamics of a 3D


topological insulator. _Science_ 354, 1124–1127 (2016). Article  MathSciNet  MATH  ADS  Google Scholar  * Dziom, V. et al. Observation of the universal magnetoelectric effect in a 3D


topological insulator. _Nat. Commun._ 8, 15197 (2017). Article  ADS  Google Scholar  * Okada, K. N. et al. Terahertz spectroscopy on Faraday and Kerr rotations in a quantum anomalous Hall


state. _Nat. Commun._ 7, 12245 (2016). Article  ADS  Google Scholar  * Nielsen, N. B. & Ninomiya, M. Absence of neutrinos on a lattice: (I). Proof by homotopy theory. _Nucl. Phys._ B185,


20–40 (1981). Article  MathSciNet  ADS  Google Scholar  * Novoselov, K. S. et al. Two-dimensional gas of massless Dirac fermions in graphene. _Nature_ 438, 197–200 (2005). Article  ADS 


Google Scholar  * Morimoto, T., Hatsugai, Y. & Aoki, H. Optical Hall conductivity in ordinary and graphene quantum Hall systems. _Phys. Rev. Lett._ 103, 116803 (2009). Article  ADS 


Google Scholar  * Shimano, R. et al. Quantum Faraday and Kerr rotations in graphene. _Nat. Commun._ 4, 1841 (2013). Article  ADS  Google Scholar  * Thouless, D. J., Kohmoto, M., Nightingale,


M. P. & den Nijs, M. Quantized Hall conductance in a two-dimensional periodic potential. _Phys. Rev. Lett._ 49, 405–408 (1982). Article  ADS  Google Scholar  * Jotzu, G. et al.


Experimental realization of the topological Haldane model with ultracold fermions. _Nature_ 515, 237–240 (2014). Article  ADS  Google Scholar  * Essin, A. M., Moore, J. E. & Vanderbilt,


D. Magnetoelectric polarizability and axion electrodynamics in crystalline insulators. _Phys. Rev. Lett._ 102, 146805 (2009). Article  ADS  Google Scholar  * Chu, R.-L., Shi, J. & Shen,


S.-Q. Surface edge state and half-quantized Hall conductance in topological insulators. _Phys. Rev. B_ 84, 085312 (2011). Article  ADS  Google Scholar  * König, E. J. et al. Half-integer


quantum Hall effect of disordered Dirac fermions at a topological insulator surface. _Phys. Rev. B_ 90, 165435 (2014). Article  ADS  Google Scholar  * Gu, M. et al. Spectral signatures of


the surface anomalous Hall effect in magnetic axion insulators. _Nat. Commun._ 12, 3524 (2021). Article  ADS  Google Scholar  * Chen, R. et al. Using nonlocal surface transport to identify


the axion insulator. _Phys. Rev. B_ 103, L241409 (2021). Article  ADS  Google Scholar  * Lu, R. et al. Half-magnetic topological insulator with magnetization-induced Dirac gap at a selected


surface. _Phys. Rev. X_ 11, 011039 (2021). Google Scholar  * Chen, Y. L. et al. Massive Dirac fermion on the surface of a magnetically doped topological insulator. _Science_ 329, 659–662


(2010). Article  ADS  Google Scholar  * Maciejko, J., Qi, X.-L., Drew, H. D. & Zhang, S.-C. Topological quantization in units of the fine structure constant. _Phys. Rev. Lett._ 105,


166803 (2010). Article  ADS  Google Scholar  * Tse, W.-K. & MacDonald, A. H. Magneto-optical Faraday and Kerr effects in topological insulator films and in other layered quantized Hall


systems. _Phys. Rev. B_ 84, 205327 (2011). Article  ADS  Google Scholar  * Hancock, J. N. et al. Surface state charge dynamics of a high-mobility three-dimensional topological insulator.


_Phys. Rev. Lett._ 107, 136803 (2011). Article  ADS  Google Scholar  * Aguilar, R. V. et al. Terahertz response and colossal Kerr rotation from the surface states of the topological


insulator Bi2Se3. _Phys. Rev. Lett._ 108, 087403 (2012). Article  ADS  Google Scholar  * Zhang, S. et al. Anomalous quantization trajectory and parity anomaly in Co cluster decorated


BiSbTeSe2 nanodevices. _Nat. Commun._ 8, 977 (2017). Article  ADS  Google Scholar  * Chong, S. K. et al. Topological insulator-based van der Waals heterostructures for effective control of


massless and massive Dirac fermions. _Nano Lett._ 18, 8047–8053 (2018). Article  ADS  Google Scholar  * Gluschke, J. G. et al. Impact of invasive metal probes on Hall measurements in


semiconductor nanostructures. _Nanoscale_ 12, 20317–20325 (2020). Article  Google Scholar  * Huckestein, B. Scaling theory of the integer quantum Hall effect. _Rev. Mod. Phys._ 67, 357–396


(1995). Article  ADS  Google Scholar  * Nomura, K. & Nagaosa, N. Surface-quantized anomalous Hall current and the magnetoelectric effect in magnetically disordered topological


insulators. _Phys. Rev. Lett._ 106, 166802 (2011). Article  ADS  Google Scholar  * Qi, X.-L., Li, R., Zang, J. & Zhang, S.-C. Inducing a magnetic monopole with topological surface


states. _Science_ 323, 1184–1187 (2009). Article  MathSciNet  MATH  ADS  Google Scholar  * Lian, B. et al. Topological quantum computation based on chiral Majorana fermions. _Proc. Natl


Acad. Sci. USA_ 115, 10938–10942 (2018). Article  MathSciNet  MATH  ADS  Google Scholar  * He, Q. L. et al. Chiral Majorana fermion modes in a quantum anomalous Hall insulator-superconductor


structure. _Science_ 357, 294–299 (2017). Article  MathSciNet  MATH  ADS  Google Scholar  * Kayyalha, M. et al. Absence of evidence for chiral Majorana modes in quantum anomalous


Hall-superconductor devices. _Science_ 367, 64–67 (2020). Article  ADS  Google Scholar  * He, J. J., Liang, T., Tanaka, Y. & Nagaosa, N. Platform of chiral Majorana edge modes and its


quantum transport phenomena. _Commun. Phys._ 2, 149 (2019). Article  Google Scholar  * Alyabyeva, L. N., Zhukova, E. S., Belkin & Gorshunov, B. P. Dielectric properties of


semi-insulating Fe-doped InP in the terahertz spectral region. _Sci. Rep._ 7, 7360 (2017). Article  ADS  Google Scholar  * Büttiker, M. Absence of backscattering in the quantum Hall effect


in multiprobe conductors. _Phys. Rev. B_ 38, 9375–9389 (1988). Google Scholar  * Seeger, K. _Semiconductor Physics_: _An Introduction_ (Springer, 2004). Download references ACKNOWLEDGEMENTS


We thank J. G. Checkelsky for enlightening discussions, and K. N. Okada, S. Iguchi, M. Ogino, Y. Hayashi, H. Shishikura, D. Murata and Y. D. Kato for support of the terahertz measurements.


This research project was partly supported by the JSPS/MEXT Grant-in-Aid for Scientific Research (nos. 15H05853, 15H05867, 17J03179, 18H04229 and 18H01155) and JST CREST (nos. JPMJCR16F1 and


JPMJCR1874). AUTHOR INFORMATION Author notes * M. Mogi Present address: Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA AUTHORS AND AFFILIATIONS *


Department of Applied Physics and Quantum Phase Electronics Center (QPEC), University of Tokyo, Bunkyo-ku, Tokyo, Japan M. Mogi, Y. Okamura, K. Yasuda, T. Morimoto, N. Nagaosa, M. Kawasaki, 


Y. Takahashi & Y. Tokura * RIKEN Center for Emergent Matter Science (CEMS), Wako, Saitama, Japan M. Kawamura, R. Yoshimi, K. S. Takahashi, N. Nagaosa, M. Kawasaki, Y. Takahashi & Y.


Tokura * Institute for Materials Research, Tohoku University, Sendai, Miyagi, Japan A. Tsukazaki * Tokyo College, University of Tokyo, Bunkyo-ku, Tokyo, Japan Y. Tokura * Department of


Physics, Massachusetts Institute of Technology, Cambridge, MA, USA K. Yasuda Authors * M. Mogi View author publications You can also search for this author inPubMed Google Scholar * Y.


Okamura View author publications You can also search for this author inPubMed Google Scholar * M. Kawamura View author publications You can also search for this author inPubMed Google


Scholar * R. Yoshimi View author publications You can also search for this author inPubMed Google Scholar * K. Yasuda View author publications You can also search for this author inPubMed 


Google Scholar * A. Tsukazaki View author publications You can also search for this author inPubMed Google Scholar * K. S. Takahashi View author publications You can also search for this


author inPubMed Google Scholar * T. Morimoto View author publications You can also search for this author inPubMed Google Scholar * N. Nagaosa View author publications You can also search


for this author inPubMed Google Scholar * M. Kawasaki View author publications You can also search for this author inPubMed Google Scholar * Y. Takahashi View author publications You can


also search for this author inPubMed Google Scholar * Y. Tokura View author publications You can also search for this author inPubMed Google Scholar CONTRIBUTIONS Y. Tokura conceived and


supervised the project. M.M., R.Y. and K.Y. fabricated the samples with help from A.T., K.S.T. and M. Kawasaki. M.M., Y.O. and Y. Takahashi performed the terahertz spectroscopy measurements


and analysed the data. M.M. and M. Kawamura performed the transport measurements and analysed the data. T.M. and N.N. contributed to the theoretical discussions. M.M., M. Kawamura, T.M.,


N.N. and Y. Tokura wrote the manuscript, with input from all the other authors. CORRESPONDING AUTHORS Correspondence to M. Mogi or Y. Tokura. ETHICS DECLARATIONS COMPETING INTERESTS The


authors declare no competing interests. PEER REVIEW PEER REVIEW INFORMATION _Nature Physics_ thanks Liuyan Zhao and the other, anonymous, reviewer(s) for their contribution to the peer


review of this work. ADDITIONAL INFORMATION PUBLISHER’S NOTE Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. EXTENDED


DATA EXTENDED DATA FIG. 1 QUANTIZED FARADAY AND KERR ROTATIONS IN A QAH STATE. A,B, _θ_F and _η_F (A) and _θ_K and _η_K (B) spectra at _T_ = 1 K for the QAH insulator film, which is partly


the same as Fig. 2c and d in the main text, with a slight variation of external magnetic fields (_μ_0_H_ = 0, 0.01, and 1 T). C, Measured fine-structure constant _α_meas which is calculated


from (A) and (B) by using a relation of \(\alpha _{{{{\mathrm{meas}}}}} = ({{{\mathrm{tan}}}}\theta _{{{\mathrm{F}}}}{{{\mathrm{tan}}}}\theta _{{{\mathrm{K}}}} - {{{\mathrm{tan}}}}^2\theta


_{{{\mathrm{F}}}})/({{{\mathrm{tan}}}}\theta _{{{\mathrm{K}}}} - 2{{{\mathrm{tan}}}}\theta _{{{\mathrm{F}}}})\) (refs. 29,30). D, E, _θ_F, _η_F (D) and _θ_K, _η_K (E) spectra at _μ_0_H_ = 0 


T and at various temperatures (_T_ = 1, 1.6, 4.2, 15.6, 32.6, and 56.7 K). F, _T_ dependence of _θ_F and _θ_K taken at _ħω_ = 2 meV, suggesting that the Curie temperature is about 50 K and


that the integer quantization subsists possibly up to 4.2 K. The inset is the magnified view of F. The error bars in a-f represent the standard error of the mean. EXTENDED DATA FIG. 2


OPTICAL MICROSCOPE IMAGE OF A TYPICAL HALL BAR DEVICE USED IN THE TRANSPORT MEASUREMENTS. The black broken lines indicate the shape of the TI film below the gate electrode, formed into the


Hall bar structure. EXTENDED DATA FIG. 3 KERR ROTATION IN THE SEMI-MAGNETIC TI UNDER MAGNETIC FIELDS. A, Representative complex Kerr rotation spectra for the semi-magnetic TI film used for


Fig. 4a in the main text. The open circles at _ħω_ = 0 meV indicate the values anticipated from the measured dc conductivity values. B, Background Kerr spectra of the InP substrate without


any TI films at 7 T. The inset shows the Faraday rotation spectra at 7 T, where an observable polarization rotation occurs at _ħω_ > 2 meV, possibly due to the magnetic resonance of


magnetic impurities involved in InP substrates. The error bars in A and B represent the standard error of the mean. SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION Supplementary Sections


I–XII and Figs. 1–14. SOURCE DATA SOURCE DATA FIG. 2 Source data for Fig. 2. SOURCE DATA FIG. 3 Source data for Fig. 3. SOURCE DATA FIG. 4 Source data for Fig. 4. RIGHTS AND PERMISSIONS


Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Mogi, M., Okamura, Y., Kawamura, M. _et al._ Experimental signature of the parity anomaly in a semi-magnetic topological


insulator. _Nat. Phys._ 18, 390–394 (2022). https://doi.org/10.1038/s41567-021-01490-y Download citation * Received: 10 May 2021 * Accepted: 08 December 2021 * Published: 27 January 2022 *


Issue Date: April 2022 * DOI: https://doi.org/10.1038/s41567-021-01490-y SHARE THIS ARTICLE Anyone you share the following link with will be able to read this content: Get shareable link


Sorry, a shareable link is not currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative