Restrictions on realizable unitary operations imposed by symmetry and locality

feature-image

Play all audios:

Loading...

ABSTRACT According to a fundamental result in quantum computing, any unitary transformation on a composite system can be generated using so-called 2-local unitaries that act only on two


subsystems. Beyond its importance in quantum computing, this result can also be regarded as a statement about the dynamics of systems with local Hamiltonians: although locality puts various


constraints on the short-term dynamics, it does not restrict the possible unitary evolutions that a composite system with a general local Hamiltonian can experience after a sufficiently long


time. Here we show that this universality does not remain valid in the presence of conservation laws and global continuous symmetries such as U(1) and SU(2). In particular, we show that


generic symmetric unitaries cannot be implemented, even approximately, using local symmetric unitaries. Based on this no-go theorem, we propose a method for experimentally probing the


locality of interactions in nature. In the context of quantum thermodynamics, our results mean that generic energy-conserving unitary transformations on a composite system cannot be realized


solely by combining local energy-conserving unitaries on the components. We show how this can be circumvented via catalysis. Access through your institution Buy or subscribe This is a


preview of subscription content, access via your institution ACCESS OPTIONS Access through your institution Access Nature and 54 other Nature Portfolio journals Get Nature+, our best-value


online-access subscription $29.99 / 30 days cancel any time Learn more Subscribe to this journal Receive 12 print issues and online access $259.00 per year only $21.58 per issue Learn more


Buy this article * Purchase on SpringerLink * Instant access to full article PDF Buy now Prices may be subject to local taxes which are calculated during checkout ADDITIONAL ACCESS OPTIONS:


* Log in * Learn about institutional subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS NONCOMMUTING CHARGES CAN REMOVE NON-STATIONARY QUANTUM


MANY-BODY DYNAMICS Article Open access 20 September 2024 HOW TO BUILD HAMILTONIANS THAT TRANSPORT NONCOMMUTING CHARGES IN QUANTUM THERMODYNAMICS Article Open access 27 January 2022 NO SECOND


LAW OF ENTANGLEMENT MANIPULATION AFTER ALL Article Open access 23 January 2023 DATA AVAILABILITY Data sharing is not applicable to this article, as no datasets were generated or analysed


during the current study. REFERENCES * Noether, E. Nachrichten der koniglichen gesellschaft der wissenschaften, gottingen, mathematisch-physikalische klasse 2. _Invariante


Variationsprobleme_ 235–257 (1918). * Noether, E. Invariant variation problems. _Transp. Theory Stat. Phys._ 1, 186 (1971). Article  ADS  MathSciNet  MATH  Google Scholar  * Lieb, E. H.


& Robinson D. W. in _Statistical Mechanics_ (Springer, 1972). * DiVincenzo, D. P. Two-bit gates are universal for quantum computation. _Phys. Rev. A_ 51, 1015 (1995). Article  ADS 


Google Scholar  * Lloyd, S. Almost any quantum logic gate is universal. _Phys. Rev. Lett._ 75, 346 (1995). Article  ADS  Google Scholar  * Deutsch, D. E., Barenco, A. & Ekert, A.


Universality in quantum computation. _Proc. R. Soc. London A_ 449, 669 (1995). Article  ADS  MathSciNet  MATH  Google Scholar  * Khemani, V., Vishwanath, A. & Huse, D. A. Operator


spreading and the emergence of dissipative hydrodynamics under unitary evolution with conservation laws. _Phys. Rev. X_ 8, 031057 (2018). Google Scholar  * Horodecki, M. & Oppenheim, J.


Fundamental limitations for quantum and nanoscale thermodynamics. _Nat. Commun._ 4, 1 (2013). Article  Google Scholar  * Brandao, F. G., Horodecki, M., Oppenheim, J., Renes, J. M. &


Spekkens, R. W. Resource theory of quantum states out of thermal equilibrium. _Phys. Rev. Lett._ 111, 250404 (2013). Article  ADS  Google Scholar  * Janzing, D., Wocjan, P., Zeier, R.,


Geiss, R. & Beth, T. Thermodynamic cost of reliability and low temperatures: tightening Landauer’s principle and the Second Law. _Int. J. Theor. Phys._ 39, 2717 (2000). Article 


MathSciNet  MATH  Google Scholar  * Lostaglio, M., Korzekwa, K., Jennings, D. & Rudolph, T. Quantum coherence, time-translation symmetry, and thermodynamics. _Phys. Rev. X_ 5, 021001


(2015). Google Scholar  * Halpern, N. Y., Faist, P., Oppenheim, J. & Winter, A. Microcanonical and resource-theoretic derivations of the thermal state of a quantum system with


noncommuting charges. _Nat. Commun._ 7, 12051 (2016). Article  ADS  Google Scholar  * Halpern, N. Y. & Renes, J. M. Beyond heat baths: generalized resource theories for small-scale


thermodynamics. _Phys. Rev. E_ 93, 022126 (2016). Article  ADS  Google Scholar  * Guryanova, Y., Popescu, S., Short, A. J., Silva, R. & Skrzypczyk, P. Thermodynamics of quantum systems


with multiple conserved quantities. _Nat. Commun._ 7, ncomms12049 (2016). Article  ADS  Google Scholar  * Chitambar, E. & Gour, G. Quantum resource theories. _Rev. Mod. Phys_. 91, 025001


(2019). * Bartlett, S. D., Rudolph, T. & Spekkens, R. W. Reference frames, superselection rules, and quantum information. _Rev. Mod. Phys._ 79, 555 (2007). Article  ADS  MathSciNet 


MATH  Google Scholar  * d’Alessandro, D. _Introduction to Quantum Control and Dynamics_ (CRC, 2007). * Jurdjevic, V. & Sussmann, H. J. Control systems on Lie groups. _J. Differ. Equ._


12, 313 (1972). Article  ADS  MathSciNet  MATH  Google Scholar  * Brylinski J.-L. & Brylinski, R. in _Universal Quantum Gates_ (Chapman and Hall, 2002). * Childs, A. M., Leung, D.,


Mančinska, L., & Ozols, M. Characterization of universal two-qubit hamiltonians. Preprint at https://arxiv.org/abs/1004.1645 (2010). * Zanardi, P. & Lloyd, S. Universal control of


quantum subspaces and subsystems. _Phys. Rev. A_ 69, 022313 (2004). Article  ADS  Google Scholar  * Giorda, P., Zanardi, P. & Lloyd, S. Universal quantum control in irreducible


state-space sectors: application to bosonic and spin-boson systems. _Phys. Rev. A_ 68, 062320 (2003). Article  ADS  Google Scholar  * Bacon, D., Kempe, J., Lidar, D. A. & Whaley, K. B.


Universal fault-tolerant quantum computation on decoherence-free subspaces. _Phys. Rev. Lett._ 85, 1758 (2000). Article  ADS  Google Scholar  * Lidar, D. A., Chuang, I. L. & Whaley, K.


B. Decoherence-free subspaces for quantum computation. _Phys. Rev. Lett._ 81, 2594 (1998). Article  ADS  Google Scholar  * Nielsen M. A., & Chuang, I. L. _Quantum Computation and Quantum


Information_ (Cambridge University Press, 2010). * Jordan, P. & Wigner, E. P. About the Pauli exclusion principle. _Z. Phys._ 47, 14 (1928). Google Scholar  * Fradkin, E. Jordan–Wigner


transformation for quantum-spin systems in two dimensions and fractional statistics. _Phys. Rev. Lett._ 63, 322 (1989). Article  ADS  MathSciNet  Google Scholar  * Nielsen, M. A. et al. _The


Fermionic Canonical Commutation Relations and the Jordan–Wigner Transform_ (University of Queensland, 2005). * Jonathan, D. & Plenio, M. B. Entanglement-assisted local manipulation of


pure quantum states. _Phys. Rev. Lett._ 83, 3566 (1999). Article  ADS  MathSciNet  MATH  Google Scholar  * Ball, H., Oliver, W. D. & Biercuk, M. J. The role of master clock stability in


quantum information processing. _npj Quantum Inf._ 2, 1 (2016). Article  Google Scholar  * Bermudez, A. et al. Assessing the progress of trapped-ion processors towards fault-tolerant quantum


computation. _Phys. Rev. X_ 7, 041061 (2017). Google Scholar  * Zanardi, P. & Rasetti, M. Noiseless quantum codes. _Phys. Rev. Lett._ 79, 3306 (1997). Article  ADS  Google Scholar  *


Molmer, K. & Sorensen, A. Multiparticle entanglement of hot trapped ions. _Phys. Rev. Lett._ 82, 1835 (1999). Article  ADS  Google Scholar  * Lloyd, S., Mohseni, M. & Rebentrost, P.


Quantum principal component analysis. _Nat. Phys._ 10, 631 (2014). Article  Google Scholar  * Marvian, I. & Lloyd, S. Universal quantum emulator. Preprint at


https://arxiv.org/abs/1606.02734 (2016). * Kimmel, S., Y.-Y. Lin, C., Low, G. H., Ozols, M. & Yoder, T. J. Hamiltonian simulation with optimal sample complexity. _npj Quantum Inf._ 3, 1


(2017). Article  Google Scholar  * Pichler, H., Zhu, G., Seif, A., Zoller, P. & Hafezi, M. Measurement protocol for the entanglement spectrum of cold atoms. _Phys. Rev. X_ 6, 041033


(2016). Google Scholar  * Popescu, S., Sainz, A. B., Short, A. J. & Winter, A. Quantum reference frames and their applications to thermodynamics. _Phil. Trans. R. Soc. A_ 376, 20180111


(2018). Article  ADS  MathSciNet  MATH  Google Scholar  * Marvian, I. & Mann, R. Building all time evolutions with rotationally invariant hamiltonians. _Phys. Rev. A_ 78, 022304 (2008).


Article  ADS  MathSciNet  Google Scholar  * Faist, P. et al. Continuous symmetries and approximate quantum error correction. _Phys. Rev. X_ 10, 041018 (2020). Google Scholar  * Hayden, P.,


Nezami, S., Popescu, S. & Salton, G. Error correction of quantum reference frame information. _PRX Quantum._ 2, 010326 (2021). Article  Google Scholar  * Kong, L. & Liu Z.-W.


Charge-conserving unitaries typically generate optimal covariant quantum error-correcting codes. Preprint at https://arxiv.org/abs/2102.11835 (2021). * Aaronson, S. The complexity of quantum


states and transformations: from quantum money to black holes. Preprint at https://arxiv.org/abs/1607.05256 (2016). * Chen, X., Gu, Z.-C. & Wen, X.-G. Local unitary transformation,


long-range quantum entanglement, wave function renormalization, and topological order. _Phys. Rev. B_ 82, 155138 (2010). Article  ADS  Google Scholar  * Chen, X., Gu, Z.-C. & Wen, X.-G.


Classification of gapped symmetric phases in one-dimensional spin systems. _Phys. Rev. B_ 83, 035107 (2011). Article  ADS  Google Scholar  * Susskind, L. Computational complexity and black


hole horizons. _Fortschr. Phys._ 64, 24 (2016). Article  MathSciNet  MATH  Google Scholar  * Brown, A. R., Roberts, D. A., Susskind, L., Swingle, B. & Zhao, Y. Holographic complexity


equals bulk action? _Phys. Rev. Lett._ 116, 191301 (2016). Article  ADS  Google Scholar  * Stanford, D. & Susskind, L. Complexity and shock wave geometries. _Phys. Rev. D_ 90, 126007


(2014). Article  ADS  Google Scholar  * Banuls, M. C. et al. Simulating lattice gauge theories within quantum technologies. _Eur. Phys. J. D_ 74, 1 (2020). Article  Google Scholar  * Altman,


E. et al. Quantum simulators: architectures and opportunities. _PRX Quantum_ 2, 017003 (2021). Article  Google Scholar  * Yang, B. et al. Observation of gauge invariance in a 71-site


Bose–Hubbard quantum simulator. _Nature_ 587, 392 (2020). Article  ADS  Google Scholar  Download references ACKNOWLEDGEMENTS I thank A. Hulse, D. Jennings, H. Liu, H. Salmasian and N.


Yunger-Halpern for reading the manuscript carefully and providing many useful comments. This work was supported by NSF FET-1910571, NSF Phy-2046195 and Army Research Office


(W911NF-21-1-0005). AUTHOR INFORMATION AUTHORS AND AFFILIATIONS * Departments of Physics and Electrical and Computer Engineering, Duke University, Durham, NC, USA Iman Marvian Authors * Iman


Marvian View author publications You can also search for this author inPubMed Google Scholar CONTRIBUTIONS I.M. was the sole contributor to all aspects of this work. CORRESPONDING AUTHOR


Correspondence to Iman Marvian. ETHICS DECLARATIONS COMPETING INTERESTS The author declares no competing interest. PEER REVIEW INFORMATION _Nature Physics_ thanks Álvaro Alhambra and the


other, anonymous, reviewer(s) for their contribution to the peer review of this work ADDITIONAL INFORMATION PUBLISHER’S NOTE Springer Nature remains neutral with regard to jurisdictional


claims in published maps and institutional affiliations. SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION Supplementary Notes 1–7 RIGHTS AND PERMISSIONS Reprints and permissions ABOUT


THIS ARTICLE CITE THIS ARTICLE Marvian, I. Restrictions on realizable unitary operations imposed by symmetry and locality. _Nat. Phys._ 18, 283–289 (2022).


https://doi.org/10.1038/s41567-021-01464-0 Download citation * Received: 17 January 2021 * Accepted: 12 November 2021 * Published: 10 January 2022 * Issue Date: March 2022 * DOI:


https://doi.org/10.1038/s41567-021-01464-0 SHARE THIS ARTICLE Anyone you share the following link with will be able to read this content: Get shareable link Sorry, a shareable link is not


currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative