A truly one-way lane for surface plasmon polaritons

feature-image

Play all audios:

Loading...

Unidirectional and topological surface plasmon polaritons are currently attracting substantial interest and intense debate. Realistic material models and energy conservation considerations


are essential to correctly understand extreme wave effects in non-reciprocal plasmonics, and to assess their potential for novel devices. Access through your institution Buy or subscribe


This is a preview of subscription content, access via your institution ACCESS OPTIONS Access through your institution Access Nature and 54 other Nature Portfolio journals Get Nature+, our


best-value online-access subscription $29.99 / 30 days cancel any time Learn more Subscribe to this journal Receive 12 print issues and online access $209.00 per year only $17.42 per issue


Learn more Buy this article * Purchase on SpringerLink * Instant access to full article PDF Buy now Prices may be subject to local taxes which are calculated during checkout ADDITIONAL


ACCESS OPTIONS: * Log in * Learn about institutional subscriptions * Read our FAQs * Contact customer support REFERENCES * Ishimaru, A. _Unidirectional Waves in Anisotropic Media and the


Resolution of the Thermodynamic Paradox_ Technical Report No. 69 (US Air Force, 1962). * Seshadri, S. R. & Pickard, W. F. _IEEE Trans. Microw. Theory Tech._ 12, 529–541 (1964). Article 


ADS  Google Scholar  * Brion, J. J., Wallis, R. F., Hartstein, A. & Burstein, E. _Phys. Rev. Lett._ 28, 1455–1458 (1972). Article  ADS  Google Scholar  * Yu, Z., Veronis, G., Wang, Z.


& Fan, S. _Phys. Rev. Lett._ 100, 023902 (2008). Article  ADS  Google Scholar  * Hu, B., Wang, Q. J. & Zhang, Y. _Opt. Lett._ 37, 1895–1897 (2012). Article  ADS  Google Scholar  *


Davoyan, A. R. & Engheta, N. _Phys. Rev. Lett._ 111, 257401 (2013). Article  ADS  Google Scholar  * Davoyan, A. R. & Engheta, N. _Phys. Rev. Lett._ 111, 047401 (2013). Article  ADS 


Google Scholar  * Chin, J. Y. et al. _Nat. Commun._ 4, 1599 (2013). Article  ADS  Google Scholar  * Silveirinha, M. G. _Phys. Rev. B_ 92, 125153 (2015). Article  ADS  Google Scholar  * Jin,


D. et al. _Nat. Commun._ 7, 13486 (2016). Article  ADS  Google Scholar  * Hassani Gangaraj, S. A., Silveirinha, M. G. & Hanson, G. W. _IEEE J. Multiscale Multiphys. Comput. Tech._ 2,


3–17 (2017). Article  ADS  Google Scholar  * Hassani Gangaraj, S. A. & Monticone, F. _Phys. Rev. Lett._ 121, 093901 (2018). Article  ADS  Google Scholar  * Hassani Gangaraj, S. A. et al.


_Phys. Rev. B_ 99, 245414 (2018). Article  ADS  Google Scholar  * Tsakmakidis, K. et al. _Science_ 356, 1260–1264 (2017). Article  ADS  MathSciNet  Google Scholar  * Tsang, M. _Opt. Lett._


43, 150–153 (2018). Article  ADS  Google Scholar  * Chettiar, U. K., Davoyan, A. R. & Engheta, N. _Opt. Lett._ 39, 1760–1763 (2014). Article  ADS  Google Scholar  * Mann, S. A., Sounas,


D. L. & Alu, A. _Optica_ 6, 104–110 (2019). Article  ADS  Google Scholar  * Buddhiraju, S. et al. _Nat. Commun._ 11, 674 (2020). Article  ADS  Google Scholar  * Horsley, S. A. R. _Phys.


Rev. A_ 98, 043837 (2018). Article  ADS  Google Scholar  * Van Mechelen, T. & Jacob, Z. _Nanophotonics_ 8, 1399–1416 (2019). Article  Google Scholar  * Hassani Gangaraj, S. A. &


Monticone, F. _Optica_ 6, 1158–1165 (2019). Article  ADS  Google Scholar  * Silveirinha, M. G. _Phys. Rev. X_ 9, 011037 (2019). Google Scholar  * Hassani Gangaraj, S. A. & Monticone, F.


_Phys. Rev. Lett._ 124, 153901 (2020). Article  ADS  Google Scholar  * Raza, S., Bozhevolnyi, S. I., Wubs, M. & Mortensen, N. A. _J. Phys. Condens. Matter_ 27, 183204 (2015). Article 


ADS  Google Scholar  * Gonçalves, P. A. D. et al. _Nat. Commun._ 11, 366 (2020). Article  ADS  Google Scholar  * Mortensen, N. A. _Photon. Nanostructures Fund. Appl._ 11, 303–309 (2013).


Article  ADS  Google Scholar  * Yan, W., Wubs, M. & Mortensen, N. A. _Phys. Rev. B_ 86, 205429 (2012). Article  ADS  Google Scholar  * Raza, S. et al. _Phys. Rev. B_ 88, 115401 (2013).


Article  ADS  Google Scholar  * Boardman, A. D. & Ruppin, R. _Surf. Sci._ 112, 153–167 (1981). Article  ADS  Google Scholar  * Barzilai, G. & Gerosa, G. _Proc. IEE_ 113, 285–288


(1966). Google Scholar  * Stockman, M. I. _Phys. Rev. Lett._ 93, 137404 (2004). Article  ADS  Google Scholar  * Yanik, M. F. & Fan, S. _Phys. Rev. Lett._ 92, 083901 (2004). Article  ADS


  Google Scholar  * Khurgin, J. B. _Faraday Discuss._ 214, 35–58 (2019). Article  ADS  Google Scholar  * Khurgin, J. B. et al. _ACS Photon._ 4, 2871–2880 (2017). Article  Google Scholar 


Download references ACKNOWLEDGEMENTS I acknowledge support from the National Science Foundation (NSF) with grant no. 1741694, and the Air Force Office of Scientific Research with grant no.


FA9550-19-1-0043. I would like to thank S. Ali Hassani Gangaraj from Cornell University and J. Khurgin from Johns Hopkins University for useful discussions during the preparation of this


manuscript. AUTHOR INFORMATION AUTHORS AND AFFILIATIONS * School of Electrical and Computer Engineering, Cornell University, Ithaca, NY, USA Francesco Monticone Authors * Francesco Monticone


View author publications You can also search for this author inPubMed Google Scholar CORRESPONDING AUTHOR Correspondence to Francesco Monticone. RIGHTS AND PERMISSIONS Reprints and


permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Monticone, F. A truly one-way lane for surface plasmon polaritons. _Nat. Photonics_ 14, 461–465 (2020).


https://doi.org/10.1038/s41566-020-0662-5 Download citation * Published: 27 July 2020 * Issue Date: August 2020 * DOI: https://doi.org/10.1038/s41566-020-0662-5 SHARE THIS ARTICLE Anyone you


share the following link with will be able to read this content: Get shareable link Sorry, a shareable link is not currently available for this article. Copy to clipboard Provided by the


Springer Nature SharedIt content-sharing initiative