Guide for the perplexed to the shockley–queisser model for solar cells

feature-image

Play all audios:

Loading...

The Shockley–Queisser model is a landmark in photovoltaic device analysis by defining an ideal situation as reference for actual solar cells. However, the model and its implications are


easily misunderstood. Thus, we present a guide to help understand and to avoid misinterpreting it. Access through your institution Buy or subscribe This is a preview of subscription content,


access via your institution ACCESS OPTIONS Access through your institution Access Nature and 54 other Nature Portfolio journals Get Nature+, our best-value online-access subscription $29.99


/ 30 days cancel any time Learn more Subscribe to this journal Receive 12 print issues and online access $209.00 per year only $17.42 per issue Learn more Buy this article * Purchase on


SpringerLink * Instant access to full article PDF Buy now Prices may be subject to local taxes which are calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in * Learn about


institutional subscriptions * Read our FAQs * Contact customer support REFERENCES * Shockley, W. & Queisser, H. J. _J. Appl. Phys._ 32, 510–519 (1961). Article  ADS  Google Scholar  *


Prince, M. B. _J. Appl. Phys._ 26, 534–540 (1955). Article  ADS  Google Scholar  * Loferski, J. J. _J. Appl. Phys._ 27, 777–784 (1956). Article  ADS  Google Scholar  * Wolf, M. _Proc. IRE_


48, 1246–1263 (1960). Article  Google Scholar  * Nayak, P. K., Mahek, S., Snaith, H. J. & Cahen, D. _Nat. Rev. Mater._ 4, 269–285 (2019). Article  ADS  Google Scholar  * Krogstrup, P. et


al. _Nat. Photon._ 7, 306–310 (2013). Article  ADS  Google Scholar  * Stolterfoht, M. et al. _Energ. Environ. Sci._ 10, 1530–1539 (2017). Article  Google Scholar  * Würfel, P. _Physics of


Solar Cells: From Basic Principles to Advanced Concepts_ 2nd edn (Wiley-VCH, 2009). * Araujo, G. L. & Marti, A. _Sol. Energy Mater. Sol. Cells_ 33, 213–240 (1994). Article  Google


Scholar  * Hirst, L. C. & Ekins-Daukes, N. _J. Prog. Photovolt. Res. Appl._ 19, 286–293 (2011). Article  Google Scholar  * Würfel, U., Cuevas, A. & Würfel, P. _IEEE J. Photovolt._ 5,


461–469 (2015). Article  Google Scholar  * Asbeck, P. _J. Appl. Phys._ 48, 820–822 (1977). Article  ADS  Google Scholar  * Bridgman, P. W. _Phys. Rev._ 31, 101–102 (1928). Article  ADS 


Google Scholar  * Markvart, T. _Phys. Status Solidi A_ 205, 2752–2756 (2008). Article  ADS  Google Scholar  * Green, M. A. _Prog. Photovolt. Res. Appl._ 9, 123–135 (2001). Article  Google


Scholar  * Green, M. A. _Solid State Electron._ 24, 788–789 (1981). Article  ADS  Google Scholar  * Tiedje, T., Cebulka, J. M., Morel, D. L. & Abeles, B. _Phys. Rev. Lett._ 46, 1425–1428


(1981). Article  ADS  Google Scholar  * Nayak, P. K. et al. _Energ. Environ. Sci._ 5, 6022–6039 (2012). Article  Google Scholar  * Vandewal, K. et al. _Nat. Mater._ 13, 63–68 (2014).


Article  ADS  Google Scholar  * Rau, U., Blank, B., Müller, T. C. M. & Kirchartz, T. _Phys. Rev. Appl._ 7, 044016 (2017). Article  ADS  Google Scholar  * Rau, U. _Phys. Rev. B_ 76,


085303 (2007). Article  ADS  Google Scholar  * Xu, Y., Gong, T. & Munday, J. N. _Sci. Rep._ 5, 13536 (2015). Article  ADS  Google Scholar  * Schweiger, M., Herrmann, W., Gerber, A. &


Rau, U. _IET Renewable Power Generation_ 11, 558–565 (2017). Article  Google Scholar  * Green, M. A. & Ho-Baillie, A. W. Y. _ACS Energy Lett._ 4, 1639−1644 (2019). * Liu, Z. et al. _ACS


Energy Lett._ 4, 110–117 (2019). * Green, M. A. _Prog. Photovolt. Res. Appl._ 26, 3–12 (2018). Article  Google Scholar  * Polman, A. et al. _Science_ 352, aad4424 (2016). Article  Google


Scholar  * Braly, I. L. et al. _Nat. Photon._ 12, 355–361 (2018). Article  ADS  Google Scholar  * Marti, A., Balenzategui, J. L. & Reyna, R. F. _J. Appl. Phys._ 82, 4067–4075 (1997).


Article  ADS  Google Scholar  Download references ACKNOWLEDGEMENTS J.-F.G. thanks the French programme of “investment for the future” (ANR-IEED-002-0). D.C. thanks the Inst. PV d’Ile de


France for a visiting professorship and the Ullmann family foundation (via the Weizmann Institute) for support. T.K. and U.R. acknowledge the Helmholtz Asssociation for funding via the


PEROSEED project. AUTHOR INFORMATION AUTHORS AND AFFILIATIONS * CNRS, UMR 9006, Institut Photovoltaique d’Ile de France (IPVF), Palaiseau, France Jean-Francois Guillemoles *


IEK5-Photovoltaik, Forschungszentrum Jülich, Jülich, Germany Thomas Kirchartz & Uwe Rau * Fac. of Engineering and CENIDE, Univ. of Duisburg-Essen, Duisburg, Germany Thomas Kirchartz *


Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot, Israel David Cahen Authors * Jean-Francois Guillemoles View author publications You can also search for this


author inPubMed Google Scholar * Thomas Kirchartz View author publications You can also search for this author inPubMed Google Scholar * David Cahen View author publications You can also


search for this author inPubMed Google Scholar * Uwe Rau View author publications You can also search for this author inPubMed Google Scholar CORRESPONDING AUTHORS Correspondence to


Jean-Francois Guillemoles, Thomas Kirchartz, David Cahen or Uwe Rau. SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION Supporting data for the application of the SQ model to actual


photovoltaic technologies. RIGHTS AND PERMISSIONS Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Guillemoles, JF., Kirchartz, T., Cahen, D. _et al._ Guide for the perplexed to


the Shockley–Queisser model for solar cells. _Nat. Photonics_ 13, 501–505 (2019). https://doi.org/10.1038/s41566-019-0479-2 Download citation * Published: 24 July 2019 * Issue Date: August


2019 * DOI: https://doi.org/10.1038/s41566-019-0479-2 SHARE THIS ARTICLE Anyone you share the following link with will be able to read this content: Get shareable link Sorry, a shareable


link is not currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative