
- Select a language for the TTS:
- UK English Female
- UK English Male
- US English Female
- US English Male
- Australian Female
- Australian Male
- Language selected: (auto detect) - EN
Play all audios:
The Shockley–Queisser model is a landmark in photovoltaic device analysis by defining an ideal situation as reference for actual solar cells. However, the model and its implications are
easily misunderstood. Thus, we present a guide to help understand and to avoid misinterpreting it. Access through your institution Buy or subscribe This is a preview of subscription content,
access via your institution ACCESS OPTIONS Access through your institution Access Nature and 54 other Nature Portfolio journals Get Nature+, our best-value online-access subscription $29.99
/ 30 days cancel any time Learn more Subscribe to this journal Receive 12 print issues and online access $209.00 per year only $17.42 per issue Learn more Buy this article * Purchase on
SpringerLink * Instant access to full article PDF Buy now Prices may be subject to local taxes which are calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in * Learn about
institutional subscriptions * Read our FAQs * Contact customer support REFERENCES * Shockley, W. & Queisser, H. J. _J. Appl. Phys._ 32, 510–519 (1961). Article ADS Google Scholar *
Prince, M. B. _J. Appl. Phys._ 26, 534–540 (1955). Article ADS Google Scholar * Loferski, J. J. _J. Appl. Phys._ 27, 777–784 (1956). Article ADS Google Scholar * Wolf, M. _Proc. IRE_
48, 1246–1263 (1960). Article Google Scholar * Nayak, P. K., Mahek, S., Snaith, H. J. & Cahen, D. _Nat. Rev. Mater._ 4, 269–285 (2019). Article ADS Google Scholar * Krogstrup, P. et
al. _Nat. Photon._ 7, 306–310 (2013). Article ADS Google Scholar * Stolterfoht, M. et al. _Energ. Environ. Sci._ 10, 1530–1539 (2017). Article Google Scholar * Würfel, P. _Physics of
Solar Cells: From Basic Principles to Advanced Concepts_ 2nd edn (Wiley-VCH, 2009). * Araujo, G. L. & Marti, A. _Sol. Energy Mater. Sol. Cells_ 33, 213–240 (1994). Article Google
Scholar * Hirst, L. C. & Ekins-Daukes, N. _J. Prog. Photovolt. Res. Appl._ 19, 286–293 (2011). Article Google Scholar * Würfel, U., Cuevas, A. & Würfel, P. _IEEE J. Photovolt._ 5,
461–469 (2015). Article Google Scholar * Asbeck, P. _J. Appl. Phys._ 48, 820–822 (1977). Article ADS Google Scholar * Bridgman, P. W. _Phys. Rev._ 31, 101–102 (1928). Article ADS
Google Scholar * Markvart, T. _Phys. Status Solidi A_ 205, 2752–2756 (2008). Article ADS Google Scholar * Green, M. A. _Prog. Photovolt. Res. Appl._ 9, 123–135 (2001). Article Google
Scholar * Green, M. A. _Solid State Electron._ 24, 788–789 (1981). Article ADS Google Scholar * Tiedje, T., Cebulka, J. M., Morel, D. L. & Abeles, B. _Phys. Rev. Lett._ 46, 1425–1428
(1981). Article ADS Google Scholar * Nayak, P. K. et al. _Energ. Environ. Sci._ 5, 6022–6039 (2012). Article Google Scholar * Vandewal, K. et al. _Nat. Mater._ 13, 63–68 (2014).
Article ADS Google Scholar * Rau, U., Blank, B., Müller, T. C. M. & Kirchartz, T. _Phys. Rev. Appl._ 7, 044016 (2017). Article ADS Google Scholar * Rau, U. _Phys. Rev. B_ 76,
085303 (2007). Article ADS Google Scholar * Xu, Y., Gong, T. & Munday, J. N. _Sci. Rep._ 5, 13536 (2015). Article ADS Google Scholar * Schweiger, M., Herrmann, W., Gerber, A. &
Rau, U. _IET Renewable Power Generation_ 11, 558–565 (2017). Article Google Scholar * Green, M. A. & Ho-Baillie, A. W. Y. _ACS Energy Lett._ 4, 1639−1644 (2019). * Liu, Z. et al. _ACS
Energy Lett._ 4, 110–117 (2019). * Green, M. A. _Prog. Photovolt. Res. Appl._ 26, 3–12 (2018). Article Google Scholar * Polman, A. et al. _Science_ 352, aad4424 (2016). Article Google
Scholar * Braly, I. L. et al. _Nat. Photon._ 12, 355–361 (2018). Article ADS Google Scholar * Marti, A., Balenzategui, J. L. & Reyna, R. F. _J. Appl. Phys._ 82, 4067–4075 (1997).
Article ADS Google Scholar Download references ACKNOWLEDGEMENTS J.-F.G. thanks the French programme of “investment for the future” (ANR-IEED-002-0). D.C. thanks the Inst. PV d’Ile de
France for a visiting professorship and the Ullmann family foundation (via the Weizmann Institute) for support. T.K. and U.R. acknowledge the Helmholtz Asssociation for funding via the
PEROSEED project. AUTHOR INFORMATION AUTHORS AND AFFILIATIONS * CNRS, UMR 9006, Institut Photovoltaique d’Ile de France (IPVF), Palaiseau, France Jean-Francois Guillemoles *
IEK5-Photovoltaik, Forschungszentrum Jülich, Jülich, Germany Thomas Kirchartz & Uwe Rau * Fac. of Engineering and CENIDE, Univ. of Duisburg-Essen, Duisburg, Germany Thomas Kirchartz *
Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot, Israel David Cahen Authors * Jean-Francois Guillemoles View author publications You can also search for this
author inPubMed Google Scholar * Thomas Kirchartz View author publications You can also search for this author inPubMed Google Scholar * David Cahen View author publications You can also
search for this author inPubMed Google Scholar * Uwe Rau View author publications You can also search for this author inPubMed Google Scholar CORRESPONDING AUTHORS Correspondence to
Jean-Francois Guillemoles, Thomas Kirchartz, David Cahen or Uwe Rau. SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION Supporting data for the application of the SQ model to actual
photovoltaic technologies. RIGHTS AND PERMISSIONS Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Guillemoles, JF., Kirchartz, T., Cahen, D. _et al._ Guide for the perplexed to
the Shockley–Queisser model for solar cells. _Nat. Photonics_ 13, 501–505 (2019). https://doi.org/10.1038/s41566-019-0479-2 Download citation * Published: 24 July 2019 * Issue Date: August
2019 * DOI: https://doi.org/10.1038/s41566-019-0479-2 SHARE THIS ARTICLE Anyone you share the following link with will be able to read this content: Get shareable link Sorry, a shareable
link is not currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative