Aharonov–bohm effect in graphene-based fabry–pérot quantum hall interferometers

feature-image

Play all audios:

Loading...

ABSTRACT Interferometers probe the wave-nature and exchange statistics of indistinguishable particles—for example, electrons in the chiral one-dimensional edge channels of the quantum Hall


effect (QHE). Quantum point contacts can split and recombine these channels, enabling interference of charged particles. Such quantum Hall interferometers (QHIs) can unveil the exchange


statistics of anyonic quasi-particles in the fractional quantum Hall effect (FQHE). Here, we present a fabrication technique for QHIs in van der Waals (vdW) materials and realize a tunable,


graphene-based Fabry–Pérot (FP) QHI. The graphite-encapsulated architecture allows observation of FQHE at a magnetic field of 3T and precise partitioning of integer and fractional edge


modes. We measure pure Aharonov–Bohm interference in the integer QHE, a major technical challenge in small FP interferometers, and find that edge modes exhibit high-visibility interference


due to large velocities. Our results establish vdW heterostructures as a versatile alternative to GaAs-based interferometers for future experiments targeting anyonic quasi-particles. Access


through your institution Buy or subscribe This is a preview of subscription content, access via your institution ACCESS OPTIONS Access through your institution Access Nature and 54 other


Nature Portfolio journals Get Nature+, our best-value online-access subscription $29.99 / 30 days cancel any time Learn more Subscribe to this journal Receive 12 print issues and online


access $259.00 per year only $21.58 per issue Learn more Buy this article * Purchase on SpringerLink * Instant access to full article PDF Buy now Prices may be subject to local taxes which


are calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in * Learn about institutional subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS


A TUNABLE FABRY–PÉROT QUANTUM HALL INTERFEROMETER IN GRAPHENE Article 25 February 2021 STRONGLY COUPLED EDGE STATES IN A GRAPHENE QUANTUM HALL INTERFEROMETER Article Open access 02 August


2024 EVIDENCE FOR CORRELATED ELECTRON PAIRS AND TRIPLETS IN QUANTUM HALL INTERFEROMETERS Article Open access 20 November 2024 DATA AVAILABILITY The data that support the findings of this


study are available at the online depository Zenodo: https://doi.org/10.5281/zenodo.4430703. Source data are provided with this paper. REFERENCES * Pérot, A. & Fabry, C. On the


application of interference phenomena to the solution of various problems of spectroscopy and metrology. _Astrophys. J._ 9, 87–155 (1899). Article  Google Scholar  * Bocquillon, E. et al.


Electron quantum optics in ballistic chiral conductors. _Ann. Phys. (Berl.)_ 526, 1–30 (2014). Article  CAS  Google Scholar  * van Wees, B. J. et al. Observation of zero-dimensional states


in a one-dimensional electron interferometer. _Phys. Rev. Lett._ 62, 2523–2526 (1989). Article  Google Scholar  * Willett, R. L., Pfeiffer, L. N. & West, K. W. Measurement of filling


factor 5/2 quasiparticle interference with observation of charge e/4 and e/2 period oscillations. _Proc. Natl Acad. Sci. USA_ 106, 8853–8858 (2009). Article  CAS  Google Scholar  * McClure,


D. T., Chang, W., Marcus, C. M., Pfeiffer, L. N. & West, K. W. Fabry–Perot interferometry with fractional charges. _Phys. Rev. Lett._ 108, 256804 (2012). Article  CAS  Google Scholar  *


Willett, R. L., Nayak, C., Shtengel, K., Pfeiffer, L. N. & West, K. W. Magnetic-field-tuned Aharonov–Bohm oscillations and evidence for non-abelian anyons at _v_ = 5/2. _Phys. Rev.


Lett._ 111, 186401 (2013). Article  CAS  Google Scholar  * Ofek, N. et al. Role of interactions in an electronic Fabry–Perot interferometer operating in the quantum Hall effect regime.


_Proc. Natl Acad. Sci. USA_ 107, 5276–5281 (2010). Article  CAS  Google Scholar  * Ji, Y. et al. An electronic Mach–Zehnder interferometer. _Nature_ 422, 415–418 (2003). Article  CAS  Google


Scholar  * Camino, F. E., Zhou, W. & Goldman, V. J. Realization of a Laughlin quasiparticle interferometer: observation of fractional statistics. _Phys. Rev. B_ 72, 075342 (2005). * de


C. Chamon, C., Freed, D. E., Kivelson, S. A., Sondhi, S. L. & Wen, X. G. Two point-contact interferometer for quantum Hall systems. _Phys. Rev. B_ 55, 2331–2343 (1997). Article  Google


Scholar  * Nayak, C., Simon, S. H., Stern, A., Freedman, M. & Das Sarma, S. Non-abelian anyons and topological quantum computation. _Rev. Mod. Phys._ 80, 1083–1159 (2008). Article  CAS 


Google Scholar  * Zhang, Y. et al. Distinct signatures for coulomb blockade and Aharonov–Bohm interference in electronic Fabry–Perot interferometers. _Phys. Rev. B_ 79, 241304 (2009).


Article  Google Scholar  * Halperin, B. I., Stern, A., Neder, I. & Rosenow, B. Theory of the Fabry–Pérot quantum Hall interferometer. _Phys. Rev. B_ 83, 155440 (2011). Article  Google


Scholar  * Sivan, I. et al. Observation of interaction-induced modulations of a quantum Hall liquid’s area. _Nat. Commun._ 7, 12184 (2016). Article  CAS  Google Scholar  * Röösli, M. P. et


al. Observation of quantum Hall interferometer phase jumps due to a change in the number of bulk quasiparticles. _Phys. Rev. B_ 101, 125302 (2020). Article  Google Scholar  * Nakamura, J. et


al. Aharonov–Bohm interference of fractional quantum Hall edge modes. _Nat. Phys._ 15, 563–569 (2019). Article  CAS  Google Scholar  * Nakamura, J., Liang, S., Gardner, G. C. & Manfra,


M. J. Direct observation of anyonic braiding statistics. _Nat. Phys._ 16, 931–936 (2020). Article  CAS  Google Scholar  * Bartolomei, H. et al. Fractional statistics in anyon collisions.


_Science_ 368, 173–177 (2020). Article  CAS  Google Scholar  * Zibrov, A. A. et al. Even-denominator fractional quantum Hall states at an isospin transition in monolayer graphene. _Nat.


Phys._ 14, 930–935 (2018). Article  CAS  Google Scholar  * Kim, Y. et al. Even denominator fractional quantum Hall states in higher Landau levels of graphene. _Nat. Phys._ 15, 154–158


(2019). Article  CAS  Google Scholar  * Li, J. et al. A valley valve and electron beam splitter. _Science_ 362, 1149–1152 (2018). Article  CAS  Google Scholar  * Young, A. F. & Kim, P.


Quantum interference and Klein tunnelling in graphene heterojunctions. _Nat. Phys._ 5, 222–226 (2009). Article  CAS  Google Scholar  * Rickhaus, P. et al. Ballistic interferences in


suspended graphene. _Nat. Commun._ 4, 2342 (2013). Article  Google Scholar  * Ahmad, N. F. et al. Fabry–Pérot resonances and a crossover to the quantum Hall regime in ballistic graphene


quantum point contacts. _Sci. Rep._ 9, 3031 (2019). Article  Google Scholar  * Veyrat, L. et al. Low-magnetic-field regime of a gate-defined constriction in high-mobility graphene. _Nano


Lett._ 19, 635–642 (2019). Article  Google Scholar  * Zhang, G.-Q. et al. Coulomb-dominated oscillations in a graphene quantum Hall Fabry–Pérot interferometer. _Chin. Phys. B_ 28, 127203


(2019). Article  CAS  Google Scholar  * Morikawa, S. et al. Edge-channel interferometer at the graphene quantum Hall pn junction. _Appl. Phys. Lett._ 106, 183101 (2015). Article  Google


Scholar  * Wei, D. S. et al. Mach–Zehnder interferometry using spin- and valley-polarized quantum Hall edge states in graphene. _Sci. Adv_. 3, e1700600 (2017). * Marguerite, A. et al.


Imaging work and dissipation in the quantum Hall state in graphene. _Nature_ 575, 628–633 (2019). Article  CAS  Google Scholar  * Chklovskii, D. B., Shklovskii, B. I. & Glazman, L. I.


Electrostatics of edge channels. _Phys. Rev. B_ 46, 4026–4034 (1992). Article  CAS  Google Scholar  * Nakaharai, S., Williams, J. R. & Marcus, C. M. Gate-defined graphene quantum point


contact in the quantum Hall regime. _Phys. Rev. Lett._ 107, 036602 (2011). Article  CAS  Google Scholar  * Zimmermann, K. et al. Tunable transmission of quantum Hall edge channels with full


degeneracy lifting in split-gated graphene devices. _Nat. Commun._ 8, 14983 (2017). Article  CAS  Google Scholar  * Baer, S. et al. Interplay of fractional quantum Hall states and


localization in quantum point contacts. _Phys. Rev. B_ 89, 085424 (2014). Article  Google Scholar  * Neder, I., Heiblum, M., Levinson, Y., Mahalu, D. & Umansky, V. Unexpected behavior in


a two-path electron interferometer. _Phys. Rev. Lett._ 96, 016804 (2006). Article  CAS  Google Scholar  * McClure, D. T. et al. Edge-state velocity and coherence in a quantum Hall


Fabry–Pérot interferometer. _Phys. Rev. Lett._ 103, 206806 (2009). Article  CAS  Google Scholar  * Déprez, C. et al. A tunable Fabry–Pérot quantum Hall interferometer in graphene. _Nat.


Nanotechnol._ https://doi.org/10.1038/s41565-021-00847-x (2020). * Zibrov, A. A. et al. Tunable interacting composite fermion phases in a half-filled bilayer-graphene Landau level. _Nature_


549, 360–364 (2017). Article  CAS  Google Scholar  * Li, J. I. A. et al. Even-denominator fractional quantum Hall states in bilayer graphene. _Science_ 358, 648–652 (2017). Article  CAS 


Google Scholar  * Shi, Q. et al. Odd- and even-denominator fractional quantum Hall states in monolayer WSe2. _Nat. Nanotechnol._ 15, 569–573 (2020). Article  CAS  Google Scholar  * Amet, F.


et al. Supercurrent in the quantum Hall regime. _Science_ 352, 966–969 (2016). Article  CAS  Google Scholar  * Lee, G.-H. et al. Inducing superconducting correlation in quantum Hall edge


states. _Nat. Phys._ 13, 693–698 (2017). Article  CAS  Google Scholar  * Zhao, L. et al. Interference of chiral Andreev edge states. _Nat. Phys._ 16, 862–867 (2020). Article  CAS  Google


Scholar  * Huang, X.-L. & Nazarov, Y. V. Interaction-induced supercurrent in quantum Hall setups. _Phys. Rev. B_ 100, 155411 (2019). Article  CAS  Google Scholar  * Clarke, D. J.,


Alicea, J. & Shtengel, K. Exotic non-Abelian anyons from conventional fractional quantum Hall states. _Nat. Commun._ 4, 1348 (2013). Article  Google Scholar  * Mong, R. S. K. et al.


Universal topological quantum computation from a superconductor-abelian quantum Hall heterostructure. _Phys. Rev. X_ 4, 011036 (2014). Google Scholar  * Purdie, D. G. et al. Cleaning


interfaces in layered materials heterostructures. _Nat. Commun._ 9, 5387 (2018). Article  CAS  Google Scholar  * Wang, L. et al. One-dimensional electrical contact to a two-dimensional


material. _Science_ 342, 614–617 (2013). Article  CAS  Google Scholar  * Ronen, Y. Aharonov–Bohm effect in graphene-based Fabry–Pérot quantum Hall interferometers. zenodo


https://doi.org/10.5281/zenodo.4430703 (2021). Download references ACKNOWLEDGEMENTS We thank B. I. Halperin, M. Heiblum, E. Zeldov, H. Shapourian and D. S. Wei for helpful discussions. P.K.,


Y.R., T.W. and L.E.A. acknowledge support from DOE (no. DE-SC0012260) in regard to measurement, characterization and analysis. P.K., D.H.N., and Y.J.S. acknowledge support from DOE (no.


DE-SC0019300) for sample preparation and characterization. K.W. and T.T. acknowledge support from the Elemental Strategy Initiative conducted by the MEXT, Japan, (grant no. JPMXP0112101001),


JSPS KAKENHI (grant no. JP20H00354) and CREST (no. JPMJCR15F3, JST). S.Y.L. and Y.H.L. acknowledge support from the Institute for Basic Science (no. IBS-R011-D1). T.W. and A.T.P. were


supported by the Department of Defense through the National Defense Science & Engineering Graduate Fellowship Program. Nanofabrication was performed at the Center for Nanoscale Systems


at Harvard, supported in part by an NSF NNIN award (no. ECS-00335765). This research used resources of the Center for Functional Nanomaterials, which is a US DOE Office of Science Facility,


at Brookhaven National Laboratory under contract no. DE-SC0012704. AUTHOR INFORMATION Author notes * These authors contributed equally: Yuval Ronen, Thomas Werkmeister. AUTHORS AND


AFFILIATIONS * Department of Physics, Harvard University, Cambridge, MA, USA Yuval Ronen, Danial Haie Najafabadi, Andrew T. Pierce, Laurel E. Anderson, Bobae Johnson, Amir Yacoby & 


Philip Kim * John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA Thomas Werkmeister, Amir Yacoby & Philip Kim * Center for Functional


Nanomaterials, Brookhaven National Laboratory, Upton, NY, USA Young Jae Shin * Center for Integrated Nanostructure Physics, Institute for Basic Science, Suwon, Republic of Korea Si Young Lee


 & Young Hee Lee * Research Center for Functional Materials, National Institute for Materials Science, Tsukuba, Japan Kenji Watanabe * International Center for Materials


Nanoarchitectonics, National Institute for Materials Science, Tsukuba, Japan Takashi Taniguchi Authors * Yuval Ronen View author publications You can also search for this author inPubMed 


Google Scholar * Thomas Werkmeister View author publications You can also search for this author inPubMed Google Scholar * Danial Haie Najafabadi View author publications You can also search


for this author inPubMed Google Scholar * Andrew T. Pierce View author publications You can also search for this author inPubMed Google Scholar * Laurel E. Anderson View author publications


You can also search for this author inPubMed Google Scholar * Young Jae Shin View author publications You can also search for this author inPubMed Google Scholar * Si Young Lee View author


publications You can also search for this author inPubMed Google Scholar * Young Hee Lee View author publications You can also search for this author inPubMed Google Scholar * Bobae Johnson


View author publications You can also search for this author inPubMed Google Scholar * Kenji Watanabe View author publications You can also search for this author inPubMed Google Scholar *


Takashi Taniguchi View author publications You can also search for this author inPubMed Google Scholar * Amir Yacoby View author publications You can also search for this author inPubMed 


Google Scholar * Philip Kim View author publications You can also search for this author inPubMed Google Scholar CONTRIBUTIONS Y.R., T.W. and P.K. conceived the idea and designed the


project. P.K. supervised the project. Y.R., T.W. and D.H.N. fabricated the devices. L.E.A., Y.J.S., B.J., S.Y.L., Y.H.L. and A.Y. helped and consulted at different stages of the fabrication


process and analysis. K.W. and T.T. provided the hBN crystals. Y.R., T.W. and A.T.P. performed the measurements. Y.R., T.W., A.Y. and P.K. wrote the paper with input from all authors.


CORRESPONDING AUTHOR Correspondence to Philip Kim. ETHICS DECLARATIONS COMPETING INTERESTS The authors declare no competing interests. ADDITIONAL INFORMATION PEER REVIEW INFORMATION _Nature


Nanotechnology_ thanks Gwendal Fève and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. PUBLISHER’S NOTE Springer Nature remains neutral with regard


to jurisdictional claims in published maps and institutional affiliations. SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION Supplementary Sections 1–6 and figures. SOURCE DATA SOURCE


DATA FIG. 2 Contains bare data for images. SOURCE DATA FIG. 3 Contains bare data for images. SOURCE DATA FIG. 4 Contains bare data for images. SOURCE DATA FIG. 5 Contains bare data for


images. SOURCE DATA FIG. 6 Contains bare data for images. RIGHTS AND PERMISSIONS Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Ronen, Y., Werkmeister, T., Haie Najafabadi, D.


_et al._ Aharonov–Bohm effect in graphene-based Fabry–Pérot quantum Hall interferometers. _Nat. Nanotechnol._ 16, 563–569 (2021). https://doi.org/10.1038/s41565-021-00861-z Download


citation * Received: 27 August 2020 * Accepted: 22 January 2021 * Published: 25 February 2021 * Issue Date: May 2021 * DOI: https://doi.org/10.1038/s41565-021-00861-z SHARE THIS ARTICLE


Anyone you share the following link with will be able to read this content: Get shareable link Sorry, a shareable link is not currently available for this article. Copy to clipboard Provided


by the Springer Nature SharedIt content-sharing initiative