A framework for designing delivery systems

feature-image

Play all audios:

Loading...

ABSTRACT The delivery of medical agents to a specific diseased tissue or cell is critical for diagnosing and treating patients. Nanomaterials are promising vehicles to transport agents that


include drugs, contrast agents, immunotherapies and gene editors. They can be engineered to have different physical and chemical properties that influence their interactions with their


biological environments and delivery destinations. In this Review Article, we discuss nanoparticle delivery systems and how the biology of disease should inform their design. We propose


developing a framework for building optimal delivery systems that uses nanoparticle–biological interaction data and computational analyses to guide future nanomaterial designs and delivery


strategies. Access through your institution Buy or subscribe This is a preview of subscription content, access via your institution ACCESS OPTIONS Access through your institution Access


Nature and 54 other Nature Portfolio journals Get Nature+, our best-value online-access subscription $29.99 / 30 days cancel any time Learn more Subscribe to this journal Receive 12 print


issues and online access $259.00 per year only $21.58 per issue Learn more Buy this article * Purchase on SpringerLink * Instant access to full article PDF Buy now Prices may be subject to


local taxes which are calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in * Learn about institutional subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT


BEING VIEWED BY OTHERS ENGINEERING PRECISION NANOPARTICLES FOR DRUG DELIVERY Article 04 December 2020 THE ANCILLARY EFFECTS OF NANOPARTICLES AND THEIR IMPLICATIONS FOR NANOMEDICINE Article


10 November 2021 IN SILICO MODELLING OF CANCER NANOMEDICINE, ACROSS SCALES AND TRANSPORT BARRIERS Article Open access 08 July 2020 REFERENCES * Walkey, C. D. et al. Protein corona


fingerprinting predicts the cellular interaction of gold and silver nanoparticles. _ACS Nano_ 8, 2439–2455 (2014). CAS  Google Scholar  * Tenzer, S. et al. Rapid formation of plasma protein


corona critically affects nanoparticle pathophysiology. _Nat. Nanotechnol._ 8, 772–781 (2013). CAS  Google Scholar  * Monopoli, M. P. et al. Physical−chemical aspects of protein corona:


relevance to in vitro and in vivo biological impacts of nanoparticles. _J. Am. Chem. Soc._ 133, 2525–2534 (2011). CAS  Google Scholar  * Walczyk, D., Bombelli, F. B., Monopoli, M. P., Lynch,


I. & Dawson, K. A. What the cell ‘sees’ in bionanoscience. _J. Am. Chem. Soc._ 132, 5761–5768 (2010). CAS  Google Scholar  * Monopoli, M. P., Åberg, C., Salvati, A. & Dawson, K. A.


Biomolecular coronas provide the biological identity of nanosized materials. _Nat. Nanotechnol._ 7, 779–786 (2012). CAS  Google Scholar  * Varnamkhasti, B. S. et al. Protein corona hampers


targeting potential of MUC1 aptamer functionalized SN-38 core–shell nanoparticles. _Int. J. Pharm._ 494, 430–444 (2015). CAS  Google Scholar  * Salvati, A. et al. Transferrin-functionalized


nanoparticles lose their targeting capabilities when a biomolecule corona adsorbs on the surface. _Nat. Nanotechnol._ 8, 137–143 (2013). CAS  Google Scholar  * Schipper, M. L. et al.


Particle size, surface coating, and PEGylation influence the biodistribution of quantum dots in living mice. _Small_ 5, 126–134 (2009). CAS  Google Scholar  * Fonge, H., Huang, H., Scollard,


D., Reilly, R. M. & Allen, C. Influence of formulation variables on the biodistribution of multifunctional block copolymer micelles. _J. Control. Release_ 157, 366–374 (2012). CAS 


Google Scholar  * De Jong, W. H. et al. Particle size-dependent organ distribution of gold nanoparticles after intravenous administration. _Biomaterials_ 29, 1912–1919 (2008). Google Scholar


  * Lee, J. S. et al. Circulation kinetics and biodistribution of dual-labeled polymersomes with modulated surface charge in tumor-bearing mice: comparison with stealth liposomes. _J.


Control. Release_ 155, 282–288 (2011). CAS  Google Scholar  * Shimada, K. et al. Biodistribution of liposomes containing synthetic galactose-terminated diacylglyceryl-poly(ethyleneglycol)s.


_Biochim. Biophys. Acta_ 1326, 329–341 (1997). CAS  Google Scholar  * Sadauskas, E. et al. Protracted elimination of gold nanoparticles from mouse liver. _Nanomedicine_ 5, 162–169 (2009).


CAS  Google Scholar  * Tsoi, K. M. et al. Mechanism of hard-nanomaterial clearance by the liver. _Nat. Mater._ 15, 1212–1221 (2016). CAS  Google Scholar  * Liliemark, E. et al. Targeting of


teniposide to the mononuclear phagocytic system (MPS) by incorporation in liposomes and submicron lipid particles; an autoradiographic study in mice. _Leuk. Lymphoma_ 18, 113–118 (1995). CAS


  Google Scholar  * Sun, X. et al. Improved tumor uptake by optimizing liposome based RES blockade strategy. _Theranostics_ 7, 319–328 (2017). CAS  Google Scholar  * Klibanov, A. L.,


Maruyama, K., Torchilin, V. P. & Huang, L. Amphipathic polyethyleneglycols effectively prolong the circulation time of liposomes. _FEBS Lett._ 268, 235–237 (1990). CAS  Google Scholar  *


Choi, H. S. et al. Renal clearance of quantum dots. _Nat. Biotechnol._ 25, 1165–1170 (2007). CAS  Google Scholar  * Kwon, Y. J., James, E., Shastri, N. & Frechet, J. M. J. _In vivo_


targeting of dendritic cells for activation of cellular immunity using vaccine carriers based on pH-responsive microparticles. _Proc. Natl Acad. Sci._ 102, 18264–18268 (2005). CAS  Google


Scholar  * Poon, W. et al. Elimination pathways of nanoparticles. _ACS Nano_ 13, 5785–5798 (2019). CAS  Google Scholar  * Lawrence, M. G. et al. Permeation of macromolecules into the renal


glomerular basement membrane and capture by the tubules. _Proc. Natl Acad. Sci. USA_ 114, 2958–2963 (2017). CAS  Google Scholar  * Choi, H. S. et al. Renal clearance of quantum dots. _Nat.


Biotechnol._ 25, 1165–1170 (2007). CAS  Google Scholar  * Satchell, S. C. & Braet, F. Glomerular endothelial cell fenestrations: an integral component of the glomerular filtration


barrier. _Am. J. Physiol. Ren. Physiol._ 296, F947–56 (2009). CAS  Google Scholar  * Satchell, S. C. The glomerular endothelium emerges as a key player in diabetic nephropathy. _Kidney Int._


82, 949–951 (2012). Google Scholar  * Du, B. et al. Glomerular barrier behaves as an atomically precise bandpass filter in a sub-nanometre regime. _Nat. Nanotechnol._ 12, 1096–1102 (2017).


CAS  Google Scholar  * Balogh, L. et al. Significant effect of size on the _in vivo_ biodistribution of gold composite nanodevices in mouse tumor models. _Nanomedicine_ 3, 281–296 (2007).


CAS  Google Scholar  * Du, B., Yu, M. & Zheng, J. Transport and interactions of nanoparticles in the kidneys. _Nat. Rev. Mater._ 3, 358–374 (2018). Google Scholar  * Ruggiero, A. et al.


Paradoxical glomerular filtration of carbon nanotubes. _Proc. Natl Acad. Sci. USA_ 107, 12369–12374 (2010). CAS  Google Scholar  * Jasim, D. A. et al. The effects of extensive glomerular


filtration of thin graphene oxide sheets on kidney physiology. _ACS Nano_ 10, 10753–10767 (2016). CAS  Google Scholar  * Saraiva, C. et al. Nanoparticle-mediated brain drug delivery:


Overcoming blood–brain barrier to treat neurodegenerative diseases. _J. Control. Release_ 235, 34–47 (2016). CAS  Google Scholar  * Sindhwani, S. et al. The entry of nanoparticles into solid


tumours. _Nat. Mater_. https://doi.org/10.1038/s41563-019-0566-2 (2020). * Wiley, D. T., Webster, P., Gale, A. & Davis, M. E. Transcytosis and brain uptake of transferrin-containing


nanoparticles by tuning avidity to transferrin receptor. _Proc. Natl Acad. Sci. USA._ 110, 8662–8667 (2013). CAS  Google Scholar  * Bonnans, C., Chou, J. & Werb, Z. Remodelling the


extracellular matrix in development and disease. _Nat. Rev. Mol. Cell Biol._ 15, 786–801 (2014). CAS  Google Scholar  * Karsdal, M. A. et al. Novel insights into the function and dynamics of


extracellular matrix in liver fibrosis. _Am. J. Physiol. Gastrointest. Liver Physiol._ 308, G807–30 (2015). Google Scholar  * Cox, T. R. & Erler, J. T. Remodeling and homeostasis of the


extracellular matrix: implications for fibrotic diseases and cancer. _Dis. Model. Mech._ 4, 165–178 (2011). CAS  Google Scholar  * Sykes, E. A. et al. Tailoring nanoparticle designs to


target cancer based on tumor pathophysiology. _Proc. Natl Acad. Sci. USA_ 113, E1142–E1151 (2016). CAS  Google Scholar  * Netti, P. A., Berk, D. A., Swartz, M. A., Grodzinsky, A. J. &


Jain, R. K. Role of extracellular matrix assembly in interstitial transport in solid tumors. _Cancer Res._ 60, 2497–2503 (2000). CAS  Google Scholar  * Dai, Q. et al. Quantifying the


ligand-coated nanoparticle delivery to cancer cells in solid tumors. _ACS Nano_ 12, 8423–8435 (2018). CAS  Google Scholar  * Miller, M. A. et al. Tumour-associated macrophages act as a


slow-release reservoir of nano-therapeutic Pt(IV) pro-drug. _Nat. Commun._ 6, 8692 (2015). CAS  Google Scholar  * Korangath, P. et al. Nanoparticle interactions with immune cells dominate


tumor retention and induce T cell-mediated tumor suppression in models of breast cancer. _Sci. Adv._ 6, eaay1601 (2020). Google Scholar  * Miller, M. A. et al. Predicting therapeutic


nanomedicine efficacy using a companion magnetic resonance imaging nanoparticle. _Sci. Transl. Med._ 7, 314ra183 (2015). Google Scholar  * Cuccarese, M. F. et al. Heterogeneity of macrophage


infiltration and therapeutic response in lung carcinoma revealed by 3D organ imaging. _Nat. Commun._ 8, 14293 (2017). CAS  Google Scholar  * Kim, H.-Y. et al. Quantitative imaging of


tumor-associated macrophages and their response to therapy using 64Cu-Labeled Macrin. _ACS Nano_ 12, 12015–12029 (2018). CAS  Google Scholar  * Düzgüneş, N. & Nir, S. Mechanisms and


kinetics of liposome–cell interactions. _Adv. Drug Deliv. Rev._ 40, 3–18 (1999). Google Scholar  * Sahay, G., Kim, J. O., Kabanov, A. V. & Bronich, T. K. The exploitation of differential


endocytic pathways in normal and tumor cells in the selective targeting of nanoparticulate chemotherapeutic agents. _Biomaterials_ 31, 923–933 (2010). CAS  Google Scholar  * Harush-Frenkel,


O., Debotton, N., Benita, S. & Altschuler, Y. Targeting of nanoparticles to the clathrin-mediated endocytic pathway. _Biochem. Biophys. Res. Commun._ 353, 26–32 (2007). CAS  Google


Scholar  * Meng, H. et al. Aspect ratio determines the quantity of mesoporous silica nanoparticle uptake by a small GTPase-dependent macropinocytosis mechanism. _ACS Nano_ 5, 4434–4447


(2011). CAS  Google Scholar  * Lunov, O. et al. Differential uptake of functionalized polystyrene nanoparticles by human macrophages and a monocytic cell line. _ACS Nano_ 5, 1657–1669


(2011). CAS  Google Scholar  * van de Water, B. & van de Water, B. Quantitative assessment of mitochondrial toxicity and downstream cellular perturbations in adverse outcome pathways.


_Toxicol. Lett._ 295, S32 (2018). Google Scholar  * dos Santos, T., Varela, J., Lynch, I., Salvati, A. & Dawson, K. A. Effects of transport inhibitors on the cellular uptake of


carboxylated polystyrene nanoparticles in different cell lines. _PLoS One_ 6, e24438 (2011). Google Scholar  * Hafez, I. M., Maurer, N. & Cullis, P. R. On the mechanism whereby cationic


lipids promote intracellular delivery of polynucleic acids. _Gene Ther._ 8, 1188–1196 (2001). CAS  Google Scholar  * Akinc, A., Thomas, M., Klibanov, A. M. & Langer, R. Exploring


polyethylenimine-mediated DNA transfection and the proton sponge hypothesis. _J. Gene Med._ 7, 657–663 (2005). CAS  Google Scholar  * Pack, D. W., Putnam, D. & Langer, R. Design of


imidazole-containing endosomolytic biopolymers for gene delivery. _Biotechnol. Bioeng._ 67, 217–223 (2000). CAS  Google Scholar  * Hu, Y. et al. Cytosolic delivery of membrane-impermeable


molecules in dendritic cells using pH-responsive core−shell nanoparticles. _Nano Lett._ 7, 3056–3064 (2007). CAS  Google Scholar  * Pan, L. et al. Nuclear-targeted drug delivery of TAT


peptide-conjugated monodisperse mesoporous silica nanoparticles. _J. Am. Chem. Soc._ 134, 5722–5725 (2012). CAS  Google Scholar  * Nakielny, S. & Dreyfuss, G. Transport of Proteins and


RNAs in and out of the Nucleus. _Cell_ 99, 677–690 (1999). CAS  Google Scholar  * Garbuzenko, O. B. et al. Inhibition of lung tumor growth by complex pulmonary delivery of drugs with


oligonucleotides as suppressors of cellular resistance. _Proc. Natl Acad. Sci. USA_ 107, 10737–10742 (2010). CAS  Google Scholar  * Griffin, J. I. et al. Revealing dynamics of accumulation


of systemically injected liposomes in the skin by intravital microscopy. _ACS Nano_ 11, 11584–11593 (2017). CAS  Google Scholar  * Moghimi, S. M., Hunter, A. C. & Murray, J. C.


Long-circulating and target-specific nanoparticles: theory to practice. _Pharmacol. Rev._ 53, 283–318 (2001). CAS  Google Scholar  * Lotem, M. et al. Skin toxic effects of polyethylene


glycol-coated liposomal doxorubicin. _Arch. Dermatol._ 136, 1475–1480 (2000). CAS  Google Scholar  * Lu, M., Cohen, M. H., Rieves, D. & Pazdur, R. FDA report: Ferumoxytol for intravenous


iron therapy in adult patients with chronic kidney disease. _Am. J. Hematol._ 85, 315–319 (2010). CAS  Google Scholar  * Lu, F., Wu, S.-H., Hung, Y. & Mou, C.-Y. Size effect on cell


uptake in well-suspended, uniform mesoporous silica nanoparticles. _Small_ 5, 1408–1413 (2009). CAS  Google Scholar  * Jin, H., Heller, D. A., Sharma, R. & Strano, M. S. Size-dependent


cellular uptake and expulsion of single-walled carbon nanotubes: single particle tracking and a generic uptake model for nanoparticles. _ACS Nano_ 3, 149–158 (2009). CAS  Google Scholar  *


Agarwal, R. et al. Mammalian cells preferentially internalize hydrogel nanodiscs over nanorods and use shape-specific uptake mechanisms. _Proc. Natl Acad. Sci. USA_ 110, 17247–17252 (2013).


CAS  Google Scholar  * Huang, X., Teng, X., Chen, D., Tang, F. & He, J. The effect of the shape of mesoporous silica nanoparticles on cellular uptake and cell function. _Biomaterials_


31, 438–448 (2010). CAS  Google Scholar  * Wang, Z., Zhang, J., Ekman, J. M., Kenis, P. J. A. & Lu, Y. DNA-mediated control of metal nanoparticle shape: one-pot synthesis and cellular


uptake of highly stable and functional gold nanoflowers. _Nano Lett._ 10, 1886–1891 (2010). CAS  Google Scholar  * Elias, D. R., Poloukhtine, A., Popik, V. & Tsourkas, A. Effect of


ligand density, receptor density, and nanoparticle size on cell targeting. _Nanomedicine_ 9, 194–201 (2013). CAS  Google Scholar  * Giljohann, D. A. et al. Oligonucleotide loading determines


cellular uptake of DNA-modified gold nanoparticles. _Nano Lett._ 7, 3818–3821 (2007). CAS  Google Scholar  * Bai, X. et al. Regulation of cell uptake and cytotoxicity by nanoparticle core


under the controlled shape, size, and surface chemistries. _ACS Nano_ 14, 289–302 (2020). CAS  Google Scholar  * Clift, M. J. D. et al. The impact of different nanoparticle surface chemistry


and size on uptake and toxicity in a murine macrophage cell line. _Toxicol. Appl. Pharmacol._ 232, 418–427 (2008). CAS  Google Scholar  * Oh, N. & Park, J.-H. Surface chemistry of gold


nanoparticles mediates their exocytosis in macrophages. _ACS Nano_ 8, 6232–6241 (2014). CAS  Google Scholar  * Wang, J., Min, J., Eghtesadi, S. A., Kane, R. S. & Chilkoti, A.


Quantitative study of the interaction of multivalent ligand-modified nanoparticles with breast cancer cells with tunable receptor density. _ACS Nano_ 14, 372–383 (2020). CAS  Google Scholar


  * Ekdawi, S. N. et al. Spatial and temporal mapping of heterogeneity in liposome uptake and microvascular distribution in an orthotopic tumor xenograft model. _J. Control. Release_ 207,


101–111 (2015). CAS  Google Scholar  * Kingston, B. R., Syed, A. M., Ngai, J., Sindhwani, S. & Chan, W. C. W. Assessing micrometastases as a target for nanoparticles using 3D microscopy


and machine learning. _Proc. Natl Acad. Sci. USA_ 116, 14937–14946 (2019). CAS  Google Scholar  * Stirland, D. L., Matsumoto, Y., Toh, K., Kataoka, K. & Bae, Y. H. Analyzing


spatiotemporal distribution of uniquely fluorescent nanoparticles in xenograft tumors. _J. Control. Release_ 227, 38–44 (2016). CAS  Google Scholar  * Kai, M. P. et al. Tumor Presence


Induces Global Immune Changes and Enhances Nanoparticle Clearance. _ACS Nano_ 10, 861–870 (2016). CAS  Google Scholar  * Wu, H. et al. Population pharmacokinetics of pegylated liposomal


CKD-602 (S-CKD602) in patients with advanced malignancies. _J. Clin. Pharmacol._ 52, 180–194 (2012). CAS  Google Scholar  * Lazarovits, J. et al. Supervised learning and mass spectrometry


predicts the fate of nanomaterials. _ACS Nano_ 13, 8023–8034 (2019). CAS  Google Scholar  * Liu, R., Jiang, W., Walkey, C. D., Chan, W. C. W. & Cohen, Y. Prediction of nanoparticles-cell


association based on corona proteins and physicochemical properties. _Nanoscale_ 7, 9664–9675 (2015). CAS  Google Scholar  * Ban, Z. et al. Machine learning predicts the functional


composition of the protein corona and the cellular recognition of nanoparticles. _Proc. Natl Acad. Sci. USA_ 117, 10492–10499 (2020). CAS  Google Scholar  * Fourches, D. et al. Quantitative


nanostructure−activity relationship modeling. _ACS Nano_ 4, 5703–5712 (2010). CAS  Google Scholar  * Puzyn, T. et al. Using nano-QSAR to predict the cytotoxicity of metal oxide


nanoparticles. _Nat. Nanotechnol._ 6, 175–178 (2011). CAS  Google Scholar  * Paunovska, K., Loughrey, D., Sago, C. D., Langer, R. & Dahlman, J. E. Using Large Datasets to Understand


Nanotechnology. _Adv. Mater._ 31, e1902798 (2019). Google Scholar  * Yamankurt, G. et al. Exploration of the nanomedicine-design space with high-throughput screening and machine learning.


_Nat. Biomed. Eng._ 3, 318–327 (2019). CAS  Google Scholar  * Ng, T. S. C., Garlin, M. A., Weissleder, R. & Miller, M. A. Improving nanotherapy delivery and action through image-guided


systems pharmacology. _Theranostics_ 10, 968–997 (2020). CAS  Google Scholar  * Lee, H. et al. Cu-MM-302 positron emission tomography quantifies variability of enhanced permeability and


retention of nanoparticles in relation to treatment response in patients with metastatic breast cancer. _Clin. Cancer Res._ 23, 4190–4202 (2017). CAS  Google Scholar  * Syed, A. M. et al.


Liposome imaging in optically cleared tissues. _Nano Lett._ 20, 1362–1369 (2020). CAS  Google Scholar  * Koo, D.-J. et al. Large-scale 3D optical mapping and quantitative analysis of


nanoparticle distribution in tumor vascular microenvironment. _Bioconjug. Chem_. https://doi.org/10.1021/acs.bioconjchem.0c00263 (2020). * Tavares, A. J. et al. Effect of removing Kupffer


cells on nanoparticle tumor delivery. _Proc. Natl Acad. Sci. USA_ 114, E10871–E10880 (2017). CAS  Google Scholar  * Souhami, R. L., Patel, H. M. & Ryman, B. E. The effect of


reticuloendothelial blockade on the blood clearance and tissue distribution of liposomes. _Biochim. Biophys. Acta_ 674, 354–371 (1981). CAS  Google Scholar  * Liu, D., Mori, A. & Huang,


L. Role of liposome size and RES blockade in controlling biodistribution and tumor uptake of GM1-containing liposomes. _Biochim. Biophys. Acta_ 1104, 95–101 (1992). CAS  Google Scholar  *


Proffitt, R. T. et al. Liposomal blockade of the reticuloendothelial system: improved tumor imaging with small unilamellar vesicles. _Science_ 220, 502–505 (1983). CAS  Google Scholar  *


Ouyang, B. et al. The dose threshold for nanoparticle tumour delivery. _Nat. Mater_. https://doi.org/10.1038/s41563-020-0755-z (2020). * Chauhan, V. P. et al. Normalization of tumour blood


vessels improves the delivery of nanomedicines in a size-dependent manner. _Nat. Nanotechnol._ 7, 383–388 (2012). CAS  Google Scholar  * Arjaans, M. et al. Bevacizumab-induced normalization


of blood vessels in tumors hampers antibody uptake. _Cancer Res._ 73, 3347–3355 (2013). CAS  Google Scholar  * Chen, Y. et al. Therapeutic remodeling of the tumor microenvironment enhances


nanoparticle delivery. _Adv. Sci._ 6, 1802070 (2019). Google Scholar  * Miller, M. A. et al. Radiation therapy primes tumors for nanotherapeutic delivery via macrophage-mediated vascular


bursts. _Sci. Transl. Med._ 9, eaal0225 (2017). Google Scholar  * Kunjachan, S. et al. Selective priming of tumor blood vessels by radiation therapy enhances nanodrug delivery. _Sci. Rep._


9, 15844 (2019). Google Scholar  * Herrera, J., Henke, C. A. & Bitterman, P. B. Extracellular matrix as a driver of progressive fibrosis. _J. Clin. Invest._ 128, 45–53 (2018). Google


Scholar  * McKee, T. D. et al. Degradation of fibrillar collagen in a human melanoma xenograft improves the efficacy of an oncolytic herpes simplex virus vector. _Cancer Res._ 66, 2509–2513


(2006). CAS  Google Scholar  * Gong, H. et al. Hyaluronidase to enhance nanoparticle-based photodynamic tumor therapy. _Nano Lett._ 16, 2512–2521 (2016). CAS  Google Scholar  * Li, X. et al.


Parallel accumulation of tumor hyaluronan, collagen, and other drivers of tumor progression. _Clin. Cancer Res._ 24, 4798–4807 (2018). CAS  Google Scholar  * Murty, S. et al. Nanoparticles


functionalized with collagenase exhibit improved tumor accumulation in a murine xenograft model. _Part. Part. Syst. Charact._ 31, 1307–1312 (2014). CAS  Google Scholar  * Eikenes, L., Tari,


M., Tufto, I., Bruland, Ø. S. & de Lange Davies, C. Hyaluronidase induces a transcapillary pressure gradient and improves the distribution and uptake of liposomal doxorubicin (CaelyxTM)


in human osteosarcoma xenografts. _Br. J. Cancer_ 93, 81–88 (2005). CAS  Google Scholar  * Enriquez-Navas, P. M. et al. Exploiting evolutionary principles to prolong tumor control in


preclinical models of breast cancer. _Sci. Transl. Med._ 8, 327ra24 (2016). Google Scholar  * Zarrinpar, A. et al. Individualizing liver transplant immunosuppression using a phenotypic


personalized medicine platform. _Sci. Transl. Med._ 8, 333ra49 (2016). Google Scholar  * Pantuck, A. J. et al. Modulating BET bromodomain inhibitor ZEN-3694 and enzalutamide combination


dosing in a metastatic prostate cancer patient using CURATE.AI, an artificial intelligence platform. _Adv. Ther._ 1, 1800104 (2018). Google Scholar  * Lou, B. et al. An image-based deep


learning framework for individualising radiotherapy dose: a retrospective analysis of outcome prediction. _Lancet Digit. Health_ 1, e136–e147 (2019). Google Scholar  * Tang, J. et al. Immune


cell screening of a nanoparticle library improves atherosclerosis therapy. _Proc. Natl Acad. Sci. USA_ 113, E6731–E6740 (2016). CAS  Google Scholar  * Dahlman, J. E. et al. Barcoded


nanoparticles for high throughput _in vivo_ discovery of targeted therapeutics. _Proc. Natl Acad. Sci. USA_ 114, 2060–2065 (2017). CAS  Google Scholar  * Sago, C. D. et al. High-throughput


_in vivo_ screen of functional mRNA delivery identifies nanoparticles for endothelial cell gene editing. _Proc. Natl Acad. Sci. USA_ 115, E9944–E9952 (2018). CAS  Google Scholar  * Mu, Q. et


al. Conjugate-SELEX: A high-throughput screening of thioaptamer-liposomal nanoparticle conjugates for targeted intracellular delivery of anticancer drugs. _Mol. Ther. Nucleic Acids_ 5, e382


(2016). CAS  Google Scholar  * Cheng, Q. et al. Selective organ targeting (SORT) nanoparticles for tissue-specific mRNA delivery and CRISPR-Cas gene editing. _Nat. Nanotechnol._ 15, 313–320


(2020). CAS  Google Scholar  * Topol, E. J. High-performance medicine: the convergence of human and artificial intelligence. _Nat. Med._ 25, 44–56 (2019). CAS  Google Scholar  *


Chamunyonga, C., Edwards, C., Caldwell, P., Rutledge, P. & Burbery, J. The impact of artificial intelligence and machine learning in radiation therapy: Considerations for future


curriculum enhancement. _J. Med. Imaging Radiat. Sci._ 51, 214–220 (2020). Google Scholar  * McNeil, S. E. Evaluation of nanomedicines: stick to the basics. _Nat. Rev. Mater._ 1, 16073


(2016). Google Scholar  Download references ACKNOWLEDGEMENTS W.C.W.C. acknowledges the Canadian Institute of Health Research (CIHR, FDN-159932; MOP-130143), Natural Sciences and Engineering


Research Council of Canada (NSERC, 2015–06397), Canadian Research Chairs program (950–223824), Collaborative Health Research Program (CPG-146468) and Canadian Cancer Society (705185–1) for


funding support. We also acknowledge CIHR (W.P., B.O.), Vanier Canada Graduate Scholarships (B.O.), Ontario Graduate Scholarship (W.P., B.O.), NSERC (B.R.K., W.N.), Barbara and Frank


Milligan (W. P.), Wildcat Foundation (B.R.K., W.N.), Jennifer Dorrington Award (B.R.K.), Royal Bank of Canada and Borealis AI (B.R.K.), Frank Fletcher Memorial Fund (B.O.), John J. Ruffo


(B.O.), Cecil Yip family (W.P., B.R.K., B.O., W.N.) and McLaughlin Centre for MD/PhD studentships (B.O.) for financial support. The authors thank S. Sindhwani, J. Ngai, J. L. Y. Wu, and Z.


Sepahi for manuscript revisions. AUTHOR INFORMATION Author notes * These authors contributed equally: Wilson Poon, Benjamin R. Kingston. AUTHORS AND AFFILIATIONS * Institute of Biomedical


Engineering, University of Toronto, Toronto, Ontario, Canada Wilson Poon, Benjamin R. Kingston, Ben Ouyang, Wayne Ngo & Warren C. W. Chan * Terrence Donnelly Centre for Cellular &


Biomolecular Research, University of Toronto, Toronto, Ontario, Canada Wilson Poon, Benjamin R. Kingston, Ben Ouyang, Wayne Ngo & Warren C. W. Chan * MD/PhD Program, University of


Toronto, Toronto, Ontario, Canada Ben Ouyang * Department of Chemical Engineering & Applied Chemistry, University of Toronto, Toronto, Ontario, Canada Warren C. W. Chan * Department of


Materials Science & Engineering, University of Toronto, Toronto, Ontaro, Canada Warren C. W. Chan * Department of Chemistry, University of Toronto, Toronto, Ontario, Canada Warren C. W.


Chan Authors * Wilson Poon View author publications You can also search for this author inPubMed Google Scholar * Benjamin R. Kingston View author publications You can also search for this


author inPubMed Google Scholar * Ben Ouyang View author publications You can also search for this author inPubMed Google Scholar * Wayne Ngo View author publications You can also search for


this author inPubMed Google Scholar * Warren C. W. Chan View author publications You can also search for this author inPubMed Google Scholar CORRESPONDING AUTHOR Correspondence to Warren C.


W. Chan. ETHICS DECLARATIONS COMPETING INTERESTS The authors declare no competing interests. ADDITIONAL INFORMATION PUBLISHER’S NOTE Springer Nature remains neutral with regard to


jurisdictional claims in published maps and institutional affiliations. RIGHTS AND PERMISSIONS Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Poon, W., Kingston, B.R., Ouyang,


B. _et al._ A framework for designing delivery systems. _Nat. Nanotechnol._ 15, 819–829 (2020). https://doi.org/10.1038/s41565-020-0759-5 Download citation * Received: 08 April 2020 *


Accepted: 30 July 2020 * Published: 07 September 2020 * Issue Date: October 2020 * DOI: https://doi.org/10.1038/s41565-020-0759-5 SHARE THIS ARTICLE Anyone you share the following link with


will be able to read this content: Get shareable link Sorry, a shareable link is not currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt


content-sharing initiative