Spatial complementarity in tree crowns explains overyielding in species mixtures

feature-image

Play all audios:

Loading...

ABSTRACT Deciphering the mechanisms that link biodiversity with ecosystem functions is critical to understanding the consequences of changes in biodiversity. The hypothesis that


complementarity and selection effects drive relationships between biodiversity and ecosystem functions is well accepted, and an approach to statistically untangle the relative importance of


these effects has been widely applied. In contrast, empirical demonstrations of the biological mechanisms that underlie these relationships remain rare. Here, on the basis of a field


experiment with young trees, we provide evidence that one form of complementarity in plant communities—complementarity among crowns in canopy space—is a mechanism, related to light


interception and use, that links biodiversity with ecosystem productivity. Stem biomass overyielding increased sharply in mixtures with greater crown complementarity. Inherent differences


among species in crown architecture led to greater crown complementarity in functionally diverse species mixtures. Intraspecific variation, specifically neighbourhood-driven plasticity in


crowns, further modified spatial complementarity and strengthened the positive relationship with overyielding—crown plasticity and inherent interspecific differences contributed near equally


in explaining patterns of overyielding. We posit that crown complementarity is an important mechanism that may contribute to diversity-enhanced productivity in forests. Access through your


institution Buy or subscribe This is a preview of subscription content, access via your institution ACCESS OPTIONS Access through your institution Access Nature and 54 other Nature Portfolio


journals Get Nature+, our best-value online-access subscription $32.99 / 30 days cancel any time Learn more Subscribe to this journal Receive 12 digital issues and online access to articles


$119.00 per year only $9.92 per issue Learn more Buy this article * Purchase on SpringerLink * Instant access to full article PDF Buy now Prices may be subject to local taxes which are


calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in * Learn about institutional subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS


CLIMATE REVERSES DIRECTIONALITY IN THE RICHNESS–ABUNDANCE RELATIONSHIP ACROSS THE WORLD’S MAIN FOREST BIOMES Article Open access 06 November 2020 EFFECTS OF PLANT DIVERSITY ON PRODUCTIVITY


STRENGTHEN OVER TIME DUE TO TRAIT-DEPENDENT SHIFTS IN SPECIES OVERYIELDING Article Open access 07 March 2024 BIODIVERSITY–STABILITY RELATIONSHIPS STRENGTHEN OVER TIME IN A LONG-TERM


GRASSLAND EXPERIMENT Article Open access 14 December 2022 REFERENCES * Tilman, D., Isbell, F. & Cowles, J. M. Biodiversity and ecosystem functioning. _Annu. Rev. Ecol. Evol. Syst._ 45,


471–493 (2014). Article  Google Scholar  * Liang, J. et al. Positive biodiversity–productivity relationship predominant in global forests. _Science_ 354, 196 (2016). Article  CAS  Google


Scholar  * Cardinale, B. J. et al. The functional role of producer diversity in ecosystems. _Am. J. Bot._ 98, 572–592 (2011). Article  PubMed  Google Scholar  * Ashton, I. W., Miller, A. E.,


Bowman, W. D. & Suding, K. N. Niche complementarity due to plasticity in resource use: plant partitioning of chemical N forms. _Ecology_ 91, 3252–3260 (2010). Article  PubMed  Google


Scholar  * Mueller, K. E., Tilman, D., Fornara, D. A. & Hobbie, S. E. Root depth distribution and the diversity–productivity relationship in a long-term grassland experiment. _Ecology_


94, 787–793 (2013). Article  Google Scholar  * Sapijanskas, J., Paquette, A., Potvin, C., Kunert, N. & Loreau, M. Tropical tree diversity enhances light capture through crown plasticity


and spatial and temporal niche differences. _Ecology_ 95, 2479–2492 (2014). Article  Google Scholar  * Vojtech, E., Loreau, M., Yachi, S., Spehn, E. M. & Hector, A. Light partitioning in


experimental grass communities. _Oikos_ 117, 1351–1361 (2008). Article  Google Scholar  * Horn, H. S. _The Adaptive Geometry of Trees_ VOL. 3 (Princeton Univ. Press, 1971). Google Scholar 


* Pretzsch, H. Canopy space filling and tree crown morphology in mixed-species stands compared with monocultures. _For. Ecol. Manage._ 327, 251–264 (2014). Article  Google Scholar  * Pacala,


S. W. et al. Forest models defined by field measurements: estimation, error analysis and dynamics. _Ecol. Monogr._ 66, 1–43 (1996). Article  Google Scholar  * Reich, P. B. Key canopy traits


drive forest productivity. _Proc. R. Soc. B_ 279, 2128–2134 (2012). Article  PubMed  Google Scholar  * Yachi, S. & Loreau, M. Does complementary resource use enhance ecosystem


functioning? A model of light competition in plant communities. _ Ecol. Lett. _ 10, 54–62 (2007). Article  PubMed  Google Scholar  * Paquette, A. & Messier, C. The effect of biodiversity


on tree productivity: from temperate to boreal forests. _Glob. Ecol. Biogeogr._ 20, 170–180 (2011). Article  Google Scholar  * Ewel, J. J., Celis, G. & Schreeg, L. Steeply increasing


growth differential between mixture and monocultures of tropical trees. _Biotropica_ 47, 162–171 (2015). Article  Google Scholar  * Tilman, D., Lehman, C. L. & Thomson, K. T. Plant


diversity and ecosystem productivity: theoretical considerations. _Proc. Natl Acad. Sci. USA_ 94, 1857–1861 (1997). Article  CAS  PubMed  Google Scholar  * Werner, E. E. Species packing and


niche complementarity in three sunfishes. _Am. Nat._ 111, 553–578 (1977). Article  Google Scholar  * Naeem, S., Thompson, L. J., Lawler, S. P., Lawton, J. H. & Woodfin, R. M. Declining


biodiversity can alter the performance of ecosystems. _Nature_ 368, 734–737 (1994). Article  Google Scholar  * Loreau, M. & Hector, A. Partitioning selection and complementarity in


biodiversity experiments. _Nature_ 412, 72–76 (2001). Article  CAS  PubMed  Google Scholar  * Tobner, C. M. et al. Functional identity is the main driver of diversity effects in young tree


communities. _ Ecol. Lett. _ 19, 638–647 (2016). Article  PubMed  Google Scholar  * Zuppinger-Dingley, D. et al. Selection for niche differentiation in plant communities increases


biodiversity effects. _Nature_ 515, 108–111 (2014). Article  CAS  PubMed  Google Scholar  * Reich, P. B. et al. Impacts of biodiversity loss escalate through time as redundancy fades.


_Science_ 336, 589–592 (2012). Article  CAS  PubMed  Google Scholar  * Bolnick, D. I. et al. Why intraspecific trait variation matters in community ecology. _Trends Ecol. Evol._ 26, 183–192


(2011). Article  PubMed  PubMed Central  Google Scholar  * Abakumova, M., Zobel, K., Lepik, A. & Semchenko, M. Plasticity in plant functional traits is shaped by variability in


neighbourhood species composition. _New Phytol._ 211, 455–463 (2016). Article  CAS  PubMed  Google Scholar  * Jucker, T., Bouriaud, O. & Coomes, D. A. Crown plasticity enables trees to


optimize canopy packing in mixed-species forests. _ Funct. Ecol. _ 29, 1078–1086 (2015). Article  Google Scholar  * Zhu, J., van der Werf, W., Anten, N. P. R., Vos, J. & Evers, J. B. The


contribution of phenotypic plasticity to complementary light capture in plant mixtures. _New Phytol._ 207, 1213–1222 (2015). Article  PubMed  Google Scholar  * Sorrensen-Cothern, K. A.,


Ford, E. D. & Sprugel, D. G. A model of competition incorporating plasticity through modular foliage and crown development. _Ecol. Monogr._ 63, 277–304 (1993). Article  Google Scholar  *


Paine, C. E. T. et al. Globally, functional traits are weak predictors of juvenile tree growth, and we do not know why. _ J. Ecol. _ 103, 978–989 (2015). Article  Google Scholar  * Marks,


C. & Lechowicz, M. Alternative designs and the evolution of functional diversity. _Am. Nat._ 167, 55–66 (2006). Article  PubMed  Google Scholar  * Kraft, N. J. B., Godoy, O. &


Levine, J. M. Plant functional traits and the multidimensional nature of species coexistence. _Proc. Natl Acad. Sci. USA_ 112, 797–802 (2015). Article  CAS  PubMed  Google Scholar  *


Laughlin, D. C. & Messier, J. Fitness of multidimensional phenotypes in dynamic adaptive landscapes. _Trends Ecol. Evol._ 30, 487–496 (2015). Article  PubMed  Google Scholar  * Violle,


C. et al. Let the concept of trait be functional! _Oikos_ 116, 882–892 (2007). Article  Google Scholar  * Reich, P. B. The world–wide ‘fast–slow’ plant economics spectrum: a traits


manifesto. _ J. Ecol. _ 102, 275–301 (2014). Article  Google Scholar  * Reich, P. B. et al. Species and functional group diversity independently influence biomass accumulation and its


response to CO2 and N. _Proc. Natl Acad. Sci. USA_ 101, 10101–10106 (2004). Article  CAS  PubMed  Google Scholar  * Cadotte, M. W., Carscadden, K. & Mirotchnick, N. Beyond species:


functional diversity and the maintenance of ecological processes and services. _ J. Appl. Ecol. _ 48, 1079–1087 (2011). Article  Google Scholar  * Hector, A. et al. Plant diversity and


productivity experiments in European grasslands. _Science_ 286, 1123–1127 (1999). Article  CAS  Google Scholar  * Tobner, C. M., Paquette, A., Reich, P. B., Gravel, D. & Messier, C.


Advancing biodiversity–ecosystem functioning science using high-density tree-based experiments over functional diversity gradients. _Oecologia_ 174, 609–621 (2014). Article  PubMed  Google


Scholar  * Parker, G. G. & Brown, M. J. Forest canopy stratification—Is it useful? _Am. Nat._ 155, 473–484 (2000). PubMed  Google Scholar  * Loreau, M. Biodiversity and ecosystem


functioning: a mechanistic model. _Proc. Natl Acad. Sci. USA_ 95, 5632–5636 (1998). Article  CAS  PubMed  Google Scholar  * Seidel, D. et al. The relationship between tree species richness,


canopy space exploration and productivity in a temperate broad-leaf mixed forest. _For. Ecol. Manage._ 310, 366–374 (2013). Article  Google Scholar  * Kelty, M. J. Productivity of New


England hemlock/hardwood stands as affected by species composition and canopy structure. _For. Ecol. Manage._ 28, 237–257 (1989). Article  Google Scholar  * Morin, X., Fahse, L.,


Scherer-Lorenzen, M. & Bugmann, H. Tree species richness promotes productivity in temperate forests through strong complementarity between species. _ Ecol. Lett. _ 14, 1211–1219 (2011).


Article  PubMed  Google Scholar  * Messier, C., Puettmann, K. J. & Coates, K. D. _Managing Forests as Complex Adaptive Systems: Building Resilience to the Challenge of Global Change_


(Routledge, 2013). Google Scholar  * Paquette, A. & Messier, C. The role of plantations in managing the world’s forests in the Anthropocene. _Front. Ecol. Environ._ 8, 27–34 (2010).


Article  Google Scholar  * Ewel, J. J. & Mazzarino, M. J. Competition from below for light and nutrients shifts productivity among tropical species. _Proc. Natl Acad. Sci. USA_ 105,


18836–18841 (2008). Article  CAS  PubMed  Google Scholar  * Wright, A., Schnitzer, S. A. & Reich, P. B. Living close to your neighbors: the importance of both competition and


facilitation in plant communities. _Ecology_ 95, 2213–2223 (2014). Article  PubMed  Google Scholar  * Eisenhauer, N. Aboveground–belowground interactions as a source of complementarity


effects in biodiversity experiments. _Plant Soil_ 351, 1–22 (2012). Article  CAS  Google Scholar  * Nguyen, N. H. et al. Ectomycorrhizal and saprotrophic fungal diversity are linked to


different tree community attributes in a field-based tree experiment. _ Mol. Ecol. _ 25, 4032–4046 (2016). Article  PubMed  Google Scholar  * Laliberté, E. & Legendre, P. A


distance-based framework for measuring functional diversity from multiple traits. _Ecology_ 91, 299–305 (2010). Article  PubMed  Google Scholar  * Chave, J. et al. Towards a worldwide wood


economics spectrum. _ Ecol. Lett. _ 12, 351–366 (2009). Article  PubMed  Google Scholar  * _R:_ _A Language and Environment for Statistical Computing_ (R Foundation for Statistical


Computing, 2015). * Bolker, B. M. _Ecological Models and Data in R_ (Princeton Univ. Press, 2008). Book  Google Scholar  * Valladares, F., Sanchez-Gomez, D. & Zavala, M. A. Quantitative


estimation of phenotypic plasticity: bridging the gap between the evolutionary concept and its ecological applications. _J. Ecol._ 94, 1103–1116 (2006). Article  Google Scholar  * Niinemets,


Ü. & Valladares, F. Tolerance to shade, drought, and waterlogging of temperate Northern Hemisphere trees and shrubs. _Ecol. Monogr._ 76, 521–547 (2006). Article  Google Scholar  *


Sendall, K. M., Lusk, C. H. & Reich, P. B. Trade-offs in juvenile growth potential vs. shade tolerance among subtropical rain forest trees on soils of contrasting fertility. _ Funct.


Ecol. _ 30, 845–855 (2016). Article  Google Scholar  * Walters, M. B. & Reich, P. B. Are shade tolerance, survival, and growth linked? Low light and nitrogen effects on hardwood


seedlings. _Ecology_ 77, 841–853 (1996). Article  Google Scholar  * Warton, D. I., Duursma, R. A., Falster, D. S. & Taskinen, S. smatr 3—an R package for estimation and inference about


allometric lines. _Methods Ecol. Evol._ 3, 257–259 (2012). Article  Google Scholar  * Quinn, G. P. & Keough, M. J. _Experimental Design And Data Analysis For Biologists_ (Cambridge Univ.


Press, 2002). Book  Google Scholar  * MacNally, R. & Walsh, C. J. Hierarchical partitioning public-domain software. _Biodivers. Conserv._ 13, 659–660 (2004). Article  Google Scholar 


Download references ACKNOWLEDGEMENTS C. Tobner, S. Despoja, L. Nikinmaa, C. Archambault and numerous interns assisted with data collection. J. Cowles, D. Donoso, S. Gleason, S. Hobbie, W.


Pearse, P. Wragg and A. Wright provided helpful comments. McGill University supported the project with land and facilities. The project was financially supported by the University of


Minnesota (College of Biological Sciences, College of Food and Natural Resources, Institute on the Environment, and Graduate School), the National Sciences and Engineering Research Council


of Canada, and an International Fulbright Science and Technology Award. AUTHOR INFORMATION AUTHORS AND AFFILIATIONS * Department of Ecology, Evolution and Behavior, University of Minnesota,


St Paul, Minnesota 55108, USA Laura J. Williams & Jeannine Cavender-Bares * Centre for Forest Research, Université du Québec à Montréal, PO Box 8888, Centre-Ville Station, Montréal Alain


Paquette & Christian Messier * Québec, H3C 3P8, Canada Alain Paquette & Christian Messier * Institut des sciences de la forêt tempérée (ISFORT), Université du Québec en Outaouais,


58 Rue Principale, Ripon Christian Messier * Québec, J0V 1V0, Canada Christian Messier * Department of Forest Resources, University of Minnesota, St Paul, Minnesota 55108, USA Peter B. Reich


* Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales 2753, Australia Peter B. Reich Authors * Laura J. Williams View author publications You can


also search for this author inPubMed Google Scholar * Alain Paquette View author publications You can also search for this author inPubMed Google Scholar * Jeannine Cavender-Bares View


author publications You can also search for this author inPubMed Google Scholar * Christian Messier View author publications You can also search for this author inPubMed Google Scholar *


Peter B. Reich View author publications You can also search for this author inPubMed Google Scholar CONTRIBUTIONS A.P., P.B.R. and C.M. designed the broader IDENT study. L.J.W. designed the


crown complementarity study and its link to overyielding, with help from all authors. L.J.W. and A.P. collected data. L.J.W. analysed the data with assistance from P.B.R. and J.C.B., and


wrote the first draft of the manuscript with editorial assistance from P.B.R. All authors contributed to further manuscript development. CORRESPONDING AUTHOR Correspondence to Laura J.


Williams. ETHICS DECLARATIONS COMPETING INTERESTS The authors declare no competing financial interests. SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION Supplementary Notes; Supplementary


Methods; Supplementary Figures; Supplementary Tables (PDF 888 kb) RIGHTS AND PERMISSIONS Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Williams, L., Paquette, A.,


Cavender-Bares, J. _et al._ Spatial complementarity in tree crowns explains overyielding in species mixtures. _Nat Ecol Evol_ 1, 0063 (2017). https://doi.org/10.1038/s41559-016-0063 Download


citation * Received: 08 November 2016 * Accepted: 20 December 2016 * Published: 01 March 2017 * DOI: https://doi.org/10.1038/s41559-016-0063 SHARE THIS ARTICLE Anyone you share the


following link with will be able to read this content: Get shareable link Sorry, a shareable link is not currently available for this article. Copy to clipboard Provided by the Springer


Nature SharedIt content-sharing initiative