Phase-specific rna accumulation and duplex thermodynamics in multiphase coacervate models for membraneless organelles

feature-image

Play all audios:

Loading...

ABSTRACT Liquid–liquid phase separation has emerged as an important means of intracellular RNA compartmentalization. Some membraneless organelles host two or more compartments serving


different putative biochemical roles. The mechanisms for, and functional consequences of, this subcompartmentalization are not yet well understood. Here we show that adjacent phases of


decapeptide-based multiphase model membraneless organelles differ markedly in their interactions with RNA. Single- and double-stranded RNAs preferentially accumulate in different phases


within the same droplet, and one phase is more destabilizing for RNA duplexes than the other. Single-phase peptide droplets did not capture this behaviour. Phase coexistence introduces new


thermodynamic equilibria that alter RNA duplex stability and RNA sorting by hybridization state. These effects require neither biospecific RNA-binding sites nor full-length proteins. As


such, they are more general and point to primitive versions of mechanisms operating in extant biology that could aid understanding and enable the design of functional artificial membraneless


organelles. Access through your institution Buy or subscribe This is a preview of subscription content, access via your institution ACCESS OPTIONS Access through your institution Access


Nature and 54 other Nature Portfolio journals Get Nature+, our best-value online-access subscription $29.99 / 30 days cancel any time Learn more Subscribe to this journal Receive 12 print


issues and online access $259.00 per year only $21.58 per issue Learn more Buy this article * Purchase on SpringerLink * Instant access to full article PDF Buy now Prices may be subject to


local taxes which are calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in * Learn about institutional subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT


BEING VIEWED BY OTHERS DETERMINANTS THAT ENABLE DISORDERED PROTEIN ASSEMBLY INTO DISCRETE CONDENSED PHASES Article 05 February 2024 ACTIVE COACERVATE DROPLETS AS A MODEL FOR MEMBRANELESS


ORGANELLES AND PROTOCELLS Article Open access 14 October 2020 ANXA11 BIOMOLECULAR CONDENSATES FACILITATE PROTEIN-LIPID PHASE COUPLING ON LYSOSOMAL MEMBRANES Article Open access 21 March 2025


DATA AVAILABILITY All data supporting the findings of this study are available within the Article and its Supplementary Information, and also from the corresponding authors upon request.


Source data are provided with this Paper. REFERENCES * Yewdall, N. A., André, A. A. M., Lu, T. & Spruijt, E. Coacervates as models of membraneless organelles. _Curr. Opin. Colloid


Interface Sci._ 52, 101416 (2021). Article  CAS  Google Scholar  * Roden, C. & Gladfelter, A. S. RNA contributions to the form and function of biomolecular condensates. _Nat. Rev. Mol.


Cell Biol._ 22, 183–195 (2021). Article  CAS  PubMed  Google Scholar  * Zhang, H. et al. RNA controls polyQ protein phase transitions. _Mol. Cell_ 60, 220–230 (2015). Article  CAS  PubMed 


PubMed Central  Google Scholar  * Shin, Y. & Brangwynne, C. P. Liquid phase condensation in cell physiology and disease. _Science_ 357, eaaf4382 (2017). Article  PubMed  Google Scholar 


* Cakmak, F. P., Choi, S., Meyer, M. O., Bevilacqua, P. C. & Keating, C. D. Prebiotically-relevant low polyion multivalency can improve functionality of membraneless compartments. _Nat.


Commun._ 11, 5949 (2020). Article  CAS  PubMed  PubMed Central  Google Scholar  * Poudyal, R. R. et al. Template-directed RNA polymerization and enhanced ribozyme catalysis inside


membraneless compartments formed by coacervates. _Nat. Commun_. https://doi.org/10.1038/s41467-019-08353-4 (2019). * Poudyal, R. R., Keating, C. D. & Bevilacqua, P. C. Polyanion-assisted


ribozyme catalysis inside complex coacervates. _ACS Chem. Biol._ 14, 1243–1248 (2019). Article  CAS  PubMed  PubMed Central  Google Scholar  * Poudyal, R. R., Pir Cakmak, F., Keating, C. D.


& Bevilacqua, P. C. Physical principles and extant biology reveal roles for RNA-containing membraneless compartments in origins of life chemistry. _Biochemistry_ 57, 2509–2519 (2018).


Article  CAS  PubMed  Google Scholar  * Drobot, B. et al. Compartmentalised RNA catalysis in membrane-free coacervate protocells. _Nat. Commun._ 9, 3643 (2018). Article  PubMed  PubMed


Central  Google Scholar  * Lafontaine, D. L., Riback, J. A., Bascetin, R. & Brangwynne, C. P. The nucleolus as a multiphase liquid condensate. _Nat. Rev. Mol. Cell Biol._ 22, 165–182


(2020). Article  PubMed  Google Scholar  * Nott, T. J., Craggs, T. D. & Baldwin, A. J. Membraneless organelles can melt nucleic acid duplexes and act as biomolecular filters. _Nat.


Chem._ 8, 569–575 (2016). Article  CAS  PubMed  Google Scholar  * Nott, T. J. et al. Phase transition of a disordered nuage protein generates environmentally responsive membraneless


organelles. _Mol. Cell_ 57, 936–947 (2015). Article  CAS  PubMed  PubMed Central  Google Scholar  * Sun, L. et al. RNA structure maps across mammalian cellular compartments. _Nat. Struct.


Mol. Biol._ 26, 322–330 (2019). Article  CAS  PubMed  PubMed Central  Google Scholar  * Rouskin, S., Zubradt, M., Washietl, S., Kellis, M. & Weissman, J. S. Genome-wide probing of RNA


structure reveals active unfolding of mRNA structures in vivo. _Nature_ 505, 701–705 (2014). Article  CAS  PubMed  Google Scholar  * Guillén-Boixet, J. et al. RNA-induced conformational


switching and clustering of G3BP drive stress granule assembly by condensation. _Cell_ 181, 346–361 (2020). Article  PubMed  PubMed Central  Google Scholar  * Saldi, T. K. et al. TDP‐1, the


_Caenorhabditis elegans_ ortholog of TDP‐43, limits the accumulation of double‐stranded RNA. _EMBO J._ 33, 2947–2966 (2014). Article  CAS  PubMed  PubMed Central  Google Scholar  * Feric, M.


et al. Coexisting liquid phases underlie nucleolar subcompartments. _Cell_ 165, 1686–1697 (2016). Article  CAS  PubMed  PubMed Central  Google Scholar  * Yao, R.-W. et al. Nascent pre-rRNA


sorting via phase separation drives the assembly of dense fibrillar components in the human nucleolus. _Mol. Cell_ 76, 767–783 (2019). Article  CAS  PubMed  Google Scholar  * Jain, S. et al.


ATPase-modulated stress granules contain a diverse proteome and substructure. _Cell_ 164, 487–498 (2016). Article  CAS  PubMed  PubMed Central  Google Scholar  * Sanders, D. W. et al.


Competing protein-RNA interaction networks control multiphase intracellular organization. _Cell_ 181, 306–324 (2020). Article  CAS  PubMed  PubMed Central  Google Scholar  * Youn, J.-Y. et


al. Properties of stress granule and P-body proteomes. _Mol. Cell_ 76, 286–294 (2019). Article  CAS  PubMed  Google Scholar  * Riback, J. A. et al. Composition-dependent thermodynamics of


intracellular phase separation. _Nature_ 581, 209–214 (2020). Article  CAS  PubMed  PubMed Central  Google Scholar  * Mitrea, D. M. et al. Self-interaction of NPM1 modulates multiple


mechanisms of liquid–liquid phase separation. _Nat. Commun._ 9, 842 (2018). Article  PubMed  PubMed Central  Google Scholar  * Fisher, R. S. & Elbaum-Garfinkle, S. Tunable multiphase


dynamics of arginine and lysine liquid condensates. _Nat. Commun._ 11, 4628 (2020). Article  CAS  PubMed  PubMed Central  Google Scholar  * Mountain, G. A. & Keating, C. D. Formation of


multiphase complex coacervates and partitioning of biomolecules within them. _Biomacromolecules_ 21, 630–640 (2020). Article  CAS  PubMed  Google Scholar  * Lu, T. & Spruijt, E.


Multiphase complex coacervate droplets. _J. Am. Chem. Soc._ 142, 2905–2914 (2020). Article  CAS  PubMed  PubMed Central  Google Scholar  * Simon, J. R., Carroll, N. J., Rubinstein, M.,


Chilkoti, A. & López, G. P. Programming molecular self-assembly of intrinsically disordered proteins containing sequences of low complexity. _Nat. Chem._ 9, 509–515 (2017). Article  CAS


  PubMed  PubMed Central  Google Scholar  * Moreau, N. G., Martin, N., Gobbo, P., Tang, T. Y. D. & Mann, S. Spontaneous membrane-less multi-compartmentalization via aqueous two-phase


separation in complex coacervate micro-droplets. _Chem. Commun._ 56, 12717–12720 (2020). Article  CAS  Google Scholar  * Boeynaems, S. et al. Spontaneous driving forces give rise to


protein-RNA condensates with coexisting phases and complex material properties. _Proc. Natl Acad. Sci. USA_ 116, 7889–7898 (2019). Article  CAS  PubMed  PubMed Central  Google Scholar  *


Kaur, T. et al. Sequence-encoded and composition-dependent protein-RNA interactions control multiphasic condensate morphologies. _Nat. Commun._ 12, 872 (2021). Article  CAS  PubMed  PubMed


Central  Google Scholar  * Schuster, B. S. et al. Controllable protein phase separation and modular recruitment to form responsive membraneless organelles. _Nat. Commun._ 9, 2985 (2018).


Article  PubMed  PubMed Central  Google Scholar  * Alshareedah, I. et al. Interplay between short-range attraction and long-range repulsion controls reentrant liquid condensation of


ribonucleoprotein-RNA complexes. _J. Am. Chem. Soc._ 141, 14593–14602 (2019). Article  CAS  PubMed  PubMed Central  Google Scholar  * Chong, P. A., Vernon, R. M. & Forman-Kay, J. D.


RGG/RG motif regions in RNA binding and phase separation. _J. Mol. Biol._ 430, 4650–4665 (2018). Article  CAS  PubMed  Google Scholar  * Torza, S. & Mason, S. G. Three-phase interactions


in shear and electrical fields. _J. Colloid Interface Sci._ 33, 67–83 (1970). Article  CAS  Google Scholar  * Li, L. et al. Phase behavior and salt partitioning in polyelectrolyte complex


coacervates. _Macromolecules_ 51, 2988–2995 (2018). Article  CAS  Google Scholar  * Chen, Y., Yang, M., Shaheen, S. A. & Schlenoff, J. B. Influence of nonstoichiometry on the


viscoelastic properties of a polyelectrolyte complex. _Macromolecules_ 54, 7890–7899 (2021). Article  CAS  Google Scholar  * Friedowitz, S. et al. Looping-in complexation and ion


partitioning in nonstoichiometric polyelectrolyte mixtures. _Sci. Adv._ 7, eabg8654 (2021). Article  CAS  PubMed  PubMed Central  Google Scholar  * Schneider, C. P., Shukla, D. & Trout,


B. L. Arginine and the Hofmeister series: the role of ion-ion interactions in protein aggregation suppression. _J. Phys. Chem. B_ 115, 7447–7458 (2011). Article  CAS  PubMed  PubMed Central


  Google Scholar  * Luscombe, N. M., Laskowski, R. A. & Thornton, J. M. Amino acid-base interactions: a three-dimensional analysis of protein-DNA interactions at an atomic level.


_Nucleic Acids Res._ 29, 2860–2874 (2001). Article  CAS  PubMed  PubMed Central  Google Scholar  * Chin, K., Sharp, K. A., Honig, B. & Pyle, A. M. Calculating the electrostatic


properties of RNA provides new insights into molecular interactions and function. _Nat. Struct. Biol._ 6, 1055–1061 (1999). Article  CAS  PubMed  Google Scholar  * Frenkel-Pinter, M. et al.


Mutually stabilizing interactions between proto-peptides and RNA. _Nat. Commun._ 11, 3137 (2020). Article  CAS  PubMed  PubMed Central  Google Scholar  * Raman, B. et al. _N_ω-arginine


dimethylation modulates the interaction between a Gly/Arg-rich peptide from human nucleolin and nucleic acids. _Nucleic Acids Res._ 29, 3377–3384 (2001). Article  CAS  PubMed  PubMed Central


  Google Scholar  * Arakawa, T., Hirano, A., Shiraki, K., Kita, Y. & Koyama, A. H. Stabilizing and destabilizing effects of arginine on deoxyribonucleic acid. _Int. J. Biol. Macromol._


46, 217–222 (2010). Article  CAS  PubMed  Google Scholar  * Maeda, Y., Iwata, R. & Wada, T. Synthesis and properties of cationic oligopeptides with different side chain lengths that bind


to RNA duplexes. _Biorg. Med. Chem._ 21, 1717–1723 (2013). Article  CAS  Google Scholar  * Mountain, G. A. & Keating, C. D. in _Methods Enzymol_. Vol. 646 (ed. Keating, C. D.) 115–142


(Academic Press, 2021). * Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. _Nat. Methods_ 9, 676–682 (2012). Article  CAS  PubMed  Google Scholar  * Ota, N.


et al. Determination of interactions between structured nucleic acids by fluorescence resonance energy transfer (FRET): selection of target sites for functional nucleic acids. _Nucleic


Acids Res._ 26, 735–743 (1998). Article  CAS  PubMed  PubMed Central  Google Scholar  * Tsuji, A. et al. Direct observation of specific messenger RNA in a single living cell under a


fluorescence microscope. _Biophys. J._ 78, 3260–3274 (2000). Article  CAS  PubMed  PubMed Central  Google Scholar  Download references ACKNOWLEDGEMENTS This work was supported by the NASA


Exobiology programme grant no. 80NSSC17K0034 (S.C., M.O.M., P.C.B. and C.D.K.). S.C. was also supported by Future Investigators in NASA Earth and Space Science and Technology (FINESST) under


grant no. 80NSSC19K1531 and no. 80NSSC22K0553. We thank F. Pir Cakmak and H. Fares for helpful discussions, and T. Mal for help with NMR analysis. AUTHOR INFORMATION AUTHORS AND


AFFILIATIONS * Department of Chemistry, The Pennsylvania State University, University Park, PA, USA Saehyun Choi, Philip C. Bevilacqua & Christine D. Keating * Center for RNA Molecular


Biology, The Pennsylvania State University, University Park, PA, USA McCauley O. Meyer & Philip C. Bevilacqua * Department of Biochemistry and Molecular Biology, The Pennsylvania State


University, University Park, PA, USA McCauley O. Meyer & Philip C. Bevilacqua Authors * Saehyun Choi View author publications You can also search for this author inPubMed Google Scholar


* McCauley O. Meyer View author publications You can also search for this author inPubMed Google Scholar * Philip C. Bevilacqua View author publications You can also search for this author


inPubMed Google Scholar * Christine D. Keating View author publications You can also search for this author inPubMed Google Scholar CONTRIBUTIONS M.O.M. performed the radiolabelled RNA


partitioning experiments. S.C. performed all other experiments. All authors conceived and designed the experiments and analysed the data. S.C. and C.D.K. wrote the manuscript, with input


from P.C.B. and M.O.M. CORRESPONDING AUTHORS Correspondence to Philip C. Bevilacqua or Christine D. Keating. ETHICS DECLARATIONS COMPETING INTERESTS The authors declare no competing


interests. PEER REVIEW PEER REVIEW INFORMATION _Nature Chemistry_ thanks Pilong Li and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. ADDITIONAL


INFORMATION PUBLISHER’S NOTE Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. SUPPLEMENTARY INFORMATION SUPPLEMENTARY


INFORMATION Supplementary Figs. 1–18, Discussions 1–7 and Tables 1–17. SUPPLEMENTARY DATA 1 Calculation of radiolabelled RNA partitioning in coacervate phases. SOURCE DATA SOURCE DATA FIG. 1


Estimated labelled peptide concentration for all trials. SOURCE DATA FIG. 2 Estimated RNA concentration for all trials. SOURCE DATA FIG. 3 FRET values and its intensities for all trials.


SUPPLEMENTARY INFORMATION RIGHTS AND PERMISSIONS Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Choi, S., Meyer, M.O., Bevilacqua, P.C. _et al._ Phase-specific RNA


accumulation and duplex thermodynamics in multiphase coacervate models for membraneless organelles. _Nat. Chem._ 14, 1110–1117 (2022). https://doi.org/10.1038/s41557-022-00980-7 Download


citation * Received: 15 May 2021 * Accepted: 20 May 2022 * Published: 30 June 2022 * Issue Date: October 2022 * DOI: https://doi.org/10.1038/s41557-022-00980-7 SHARE THIS ARTICLE Anyone you


share the following link with will be able to read this content: Get shareable link Sorry, a shareable link is not currently available for this article. Copy to clipboard Provided by the


Springer Nature SharedIt content-sharing initiative