A hydrogel-based mechanical metamaterial for the interferometric profiling of extracellular vesicles in patient samples

feature-image

Play all audios:

Loading...

ABSTRACT The utility of mechanical metamaterials for biomedical applications has seldom been explored. Here we show that a metamaterial that is mechanically responsive to antibody-mediated


biorecognition can serve as an optical interferometric mask to molecularly profile extracellular vesicles in ascites fluid from patients with cancer. The metamaterial consists of a hydrogel


responsive to temperature and redox activity functionalized with antibodies to surface biomarkers on extracellular vesicles, and is patterned into micrometric squares on a gold-coated glass


substrate. Through plasmonic heating, the metamaterial is maintained in a transition state between a relaxed form and a buckled state. Binding of extracellular vesicles from the patient


samples to the antibodies on the hydrogel causes it to undergo crosslinking, induced by free radicals generated via the activity of horseradish peroxidase conjugated to the antibodies.


Hydrogel crosslinking causes the metamaterial to undergo fast chiral re-organization, inducing amplified changes in its mechanical deformation and diffraction patterns, which are detectable


by a smartphone camera. The mechanical metamaterial may find broad utility in the sensitive optical immunodetection of biomolecules. Access through your institution Buy or subscribe This is


a preview of subscription content, access via your institution ACCESS OPTIONS Access through your institution Access Nature and 54 other Nature Portfolio journals Get Nature+, our best-value


online-access subscription $29.99 / 30 days cancel any time Learn more Subscribe to this journal Receive 12 digital issues and online access to articles $119.00 per year only $9.92 per


issue Learn more Buy this article * Purchase on SpringerLink * Instant access to full article PDF Buy now Prices may be subject to local taxes which are calculated during checkout ADDITIONAL


ACCESS OPTIONS: * Log in * Learn about institutional subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS MAGNETO-ACOUSTIC PROTEIN NANOSTRUCTURES


FOR NON-INVASIVE IMAGING OF TISSUE MECHANICS IN VIVO Article Open access 16 October 2023 IMAGING-BASED SPECTROMETER-LESS OPTOFLUIDIC BIOSENSORS BASED ON DIELECTRIC METASURFACES FOR DETECTING


EXTRACELLULAR VESICLES Article Open access 31 May 2021 SINGLE-CELL AND EXTRACELLULAR NANO-VESICLES BIOSENSING THROUGH PHASE SPECTRAL ANALYSIS OF OPTICAL FIBER TWEEZERS BACK-SCATTERING


SIGNALS Article Open access 10 July 2024 DATA AVAILABILITY The main data supporting the results in this study are available within the paper and its Supplementary Information. The raw and


analyzed datasets generated during the study are too large to be publicly shared, yet they are available for research purposes from the corresponding author on reasonable request. CODE


AVAILABILITY The custom code used for the statistical analyses is available from the corresponding author on reasonable request. REFERENCES * Bertoldi, K., Vitelli, V., Christensen, J. &


Hecke, M. V. Flexible mechanical metamaterials. _Nat. Rev. Mater._ 2, 17066 (2017). Article  CAS  Google Scholar  * Kadic, M., Milton, G. W., Hecke, V. M. & Wegener, M. 3D


metamaterials. _Nat. Rev. Phys._ 1, 198–210 (2019). Article  Google Scholar  * Lee, J. B. et al. A mechanical metamaterial made from a DNA hydrogel. _Nat. Nanotechnol._ 7, 816–820 (2012).


Article  CAS  PubMed  Google Scholar  * Nicolaou, Z. G. & Motter, A. E. Mechanical metamaterials with negative compressibility transitions. _Nat. Mater._ 11, 608–613 (2012). Article  CAS


  PubMed  Google Scholar  * Zheng, X. et al. Ultralight, ultrastiff mechanical metamaterials. _Science_ 344, 1373–1377 (2014). Article  CAS  PubMed  Google Scholar  * Surjadi, J. U. et al.


Mechanical metamaterials and their engineering applications. _Adv. Eng. Mater._ 21, 1800864 (2019). Article  CAS  Google Scholar  * Babaee, S. et al. Bioinspired kirigami metasurfaces as


assistive shoe grips. _Nat. Biomed. Eng._ 4, 778–786 (2020). Article  PubMed  Google Scholar  * Wegst, U. G., Bai, H., Saiz, E., Tomsia, A. P. & Ritchie, R. O. Bioinspired structural


materials. _Nat. Mater._ 14, 23–36 (2015). Article  CAS  PubMed  Google Scholar  * Laronda, M. M. et al. A bioprosthetic ovary created using 3D printed microporous scaffolds restores ovarian


function in sterilized mice. _Nat. Commun._ 8, 15261 (2017). Article  CAS  PubMed  PubMed Central  Google Scholar  * Silverberg, J. L. et al. Origami structures with a critical transition


to bistability arising from hidden degrees of freedom. _Nat. Mater._ 14, 389–393 (2015). Article  CAS  PubMed  Google Scholar  * Zhang, H., Guo, X., Wu, J., Fang, D. & Zhang, Y. Soft


mechanical metamaterials with unusual swelling behavior and tunable stress–strain curves. _Sci. Adv._ 4, eaar8535 (2018). Article  PubMed  PubMed Central  Google Scholar  * Peppas, N. A.,


Hilt, J. Z., Khademhosseini, A. & Langer, R. Hydrogels in biology and medicine: from molecular principles to bionanotechnology. _Adv. Mater._ 18, 1345–1360 (2006). Article  CAS  Google


Scholar  * Lu, Y., Aimetti, A. A., Langer, R. & Gu, Z. Bioresponsive materials. _Nat. Rev. Mater._ 2, 16075 (2017). Article  CAS  Google Scholar  * Zhang, S. et al. A pH-responsive


supramolecular polymer gel as an enteric elastomer for use in gastric devices. _Nat. Mater._ 14, 1065–1071 (2015). Article  CAS  PubMed  PubMed Central  Google Scholar  * Zheng, Y. et al.


Reversible gating of smart plasmonic molecular traps using thermoresponsive polymers for single-molecule detection. _Nat. Commun._ 6, 8797 (2015). Article  CAS  PubMed  Google Scholar  *


Chin, S. Y. et al. Additive manufacturing of hydrogel-based materials for next-generation implantable medical devices. _Sci. Robot_ 2, eaah6451 (2017). Article  Google Scholar  * Yeh, J. et


al. Micromolding of shape-controlled, harvestable cell-laden hydrogels. _Biomaterials_ 27, 5391–5398 (2006). Article  CAS  PubMed  Google Scholar  * Gladman, A. S., Matsumoto, E. A., Nuzzo,


R. G., Mahadevan, L. & Lewis, J. A. Biomimetic 4D printing. _Nat. Mater._ 15, 413–418 (2016). Article  PubMed  Google Scholar  * Lubensky, T. C., Kane, C. L., Mao, X., Souslov, A. &


Sun, K. Phonons and elasticity in critically coordinated lattices. _Rep. Prog. Phys._ 78, 073901 (2015). Article  CAS  PubMed  Google Scholar  * Tenje, M. et al. A practical guide to


microfabrication and patterning of hydrogels for biomimetic cell culture scaffolds. _Organs-on-a-Chip_ 2, 100003 (2020). Article  Google Scholar  * Shi, Q. et al. Bioactuators based on


stimulus-responsive hydrogels and their emerging biomedical applications. _NPG Asia Mater._ 11, 64 (2019). Article  CAS  Google Scholar  * Buenger, D., Topuz, F. & Groll, J. Hydrogels in


sensing applications. _Prog. Polym. Sci._ 37, 1678–1719 (2012). Article  CAS  Google Scholar  * Andaloussi, S. E. L., Mäger, I., Breakefield, X. O. & Wood, M. J. A. Extracellular


vesicles: biology and emerging therapeutic opportunities. _Nat. Rev. Drug Discov._ 12, 347–357 (2013). Article  PubMed  Google Scholar  * Shao, H. et al. New technologies for analysis of


extracellular vesicles. _Chem. Rev._ 118, 1917–1950 (2018). Article  CAS  PubMed  PubMed Central  Google Scholar  * Théry, C. et al. Minimal information for studies of extracellular vesicles


2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. _J. Extracell. Vesicles_ 7, 1535750 (2018). Article 


PubMed  PubMed Central  Google Scholar  * Son, J. H. et al. Ultrafast photonic PCR. _Light Sci. Appl._ 4, e280–e280 (2015). Article  CAS  Google Scholar  * Han, F., Soeriyadi, A. H. &


Gooding, J. J. Reversible thermoresponsive plasmonic core-satellite nanostructures that exhibit both expansion and contraction (UCST and LCST). _Macromol. Rapid Commun._ 39, e1800451 (2018).


Article  PubMed  Google Scholar  * Tanaka, T. & Fillmore, D. J. Kinetics of swelling of gels. _J. Chem. Phys._ 70, 1214–1218 (1979). Article  CAS  Google Scholar  * Miyata, T., Uragami,


T. & Nakamae, K. Biomolecule-sensitive hydrogels. _Adv. Drug Deliv. Rev._ 54, 79–98 (2002). Article  CAS  PubMed  Google Scholar  * Cai, S., Bertoldi, K., Wang, H. & Suo, Z. Osmotic


collapse of a void in an elastomer: breathing, buckling and creasing. _Soft Matter_ 6, 5770 (2010). Article  CAS  Google Scholar  * Xin, H., Namgung, B. & Lee, L. P. Nanoplasmonic


optical antennas for life sciences and medicine. _Nat. Rev. Mater._ 3, 228–243 (2018). Article  CAS  Google Scholar  * Palmer, E. W., Hutley, M. C., Franks, A., Verrill, J. F. & Gale, B.


Diffraction gratings. _Rep. Prog. Phys._ 38, 975–1048 (1975). Article  CAS  Google Scholar  * Lim, C. Z. J., Zhang, L., Zhang, Y., Sundah, N. R. & Shao, H. New sensors for extracellular


vesicles: insights on constituent and associated biomarkers. _ACS Sens._ 5, 4–12 (2020). Article  CAS  PubMed  Google Scholar  * Shao, H. et al. Protein typing of circulating microvesicles


allows real-time monitoring of glioblastoma therapy. _Nat. Med._ 18, 1835–1840 (2012). Article  CAS  PubMed  PubMed Central  Google Scholar  * Im, H. et al. Label-free detection and


molecular profiling of exosomes with a nano-plasmonic sensor. _Nat. Biotechnol._ 32, 490–495 (2014). Article  CAS  PubMed  PubMed Central  Google Scholar  * Wu, X. et al. Exosome-templated


nanoplasmonics for multiparametric molecular profiling. _Sci. Adv._ 6, eaba2556 (2020). Article  CAS  PubMed  PubMed Central  Google Scholar  * Hohman, J. R., Givens, R. S., Carlson, R. G.


& Orosz, G. Synthesis and chemiluminescence of a protected peroxyoxalate. _Tetrahedron Lett._ 37, 8273–8276 (1996). Article  CAS  Google Scholar  * Liu, M., Ishida, Y., Ebina, Y.,


Sasaki, T. & Aida, T. Photolatently modulable hydrogels using unilamellar titania nanosheets as photocatalytic crosslinkers. _Nat. Commun._ 4, 2029 (2013). Article  PubMed  Google


Scholar  * Carey, F. A. & Sundberg, R. J. _Advanced Organic Chemistry_ (Springer Science & Business Media, 2007). * Foucard, L. C., Price, J. K., Klug, W. S. & Levine, A. J.


Cooperative buckling and the nonlinear mechanics of nematic semiflexible networks. _Nonlinearity_ 28, 89–112 (2015). Article  Google Scholar  * Wang, D., Hu, Y., Liu, P. & Luo, D.


Bioresponsive DNA hydrogels: beyond the conventional stimuli responsiveness. _Acc. Chem. Res._ 50, 733–739 (2017). Article  CAS  PubMed  Google Scholar  * Ho, N. R. Y. et al. Visual and


modular detection of pathogen nucleic acids with enzyme–DNA molecular complexes. _Nat. Commun._ 9, 3238 (2018). Article  PubMed  PubMed Central  Google Scholar  * Sundah, N. R. et al.


Barcoded DNA nanostructures for the multiplexed profiling of subcellular protein distribution. _Nat. Biomed. Eng._ 3, 684–694 (2019). Article  CAS  PubMed  Google Scholar  * Jiang, Y. et al.


Auxetic mechanical metamaterials to enhance sensitivity of stretchable strain sensors. _Adv. Mater._ 30, e1706589 (2018). Article  PubMed  Google Scholar  * Yesilkoy, F. et al.


Ultrasensitive hyperspectral imaging and biodetection enabled by dielectric metasurfaces. _Nat. Photonics_ 13, 390–396 (2019). Article  CAS  Google Scholar  * Paulose, J., Meeussen, A. S.


& Vitelli, V. Selective buckling via states of self-stress in topological metamaterials. _Proc. Natl Acad. Sci. USA_ 112, 7639–7644 (2015). Article  CAS  PubMed  PubMed Central  Google


Scholar  * Rafsanjani, A., Akbarzadeh, A. & Pasini, D. Snapping mechanical metamaterials under tension. _Adv. Mater._ 27, 5931–5935 (2015). Article  CAS  PubMed  Google Scholar  *


Waitukaitis, S., Menaut, R., Chen, B. G. & Hecke, M. V. Origami multistability: from single vertices to metasheets. _Phys. Rev. Lett._ 114, 055503 (2015). Article  PubMed  Google Scholar


  * Lim, C. Z. J. et al. Subtyping of circulating exosome-bound amyloid β reflects brain plaque deposition. _Nat. Commun._ 10, 1144 (2019). Article  PubMed  PubMed Central  Google Scholar  *


Lim, C. Z. J., Natalia, A., Sundah, N. R. & Shao, H. Biomarker organization in circulating extracellular vesicles: new applications in detecting neurodegenerative diseases. _Adv.


Biosyst._ 4, e1900309 (2020). Article  PubMed  Google Scholar  * Liu, C. et al. Low-cost thermophoretic profiling of extracellular-vesicle surface proteins for the early detection and


classification of cancers. _Nat. Biomed. Eng._ 3, 183–193 (2019). Article  CAS  PubMed  Google Scholar  * Liang, K. et al. Nanoplasmonic quantification of tumour-derived extracellular


vesicles in plasma microsamples for diagnosis and treatment monitoring. _Nat. Biomed. Eng._ 1, 0021 (2017). Article  CAS  PubMed  PubMed Central  Google Scholar  * Yelleswarapu, V. et al.


Mobile platform for rapid sub-picogram-per-milliliter, multiplexed, digital droplet detection of proteins. _Proc. Natl Acad. Sci. USA_ 116, 4489–4495 (2019). Article  CAS  PubMed  PubMed


Central  Google Scholar  * Zhao, H. et al. Accessible detection of SARS-CoV-2 through molecular nanostructures and automated microfluidics. _Biosens. Bioelectron._ 194, 113629 (2021).


Article  CAS  PubMed  PubMed Central  Google Scholar  * Zhang, P. et al. Ultrasensitive detection of circulating exosomes with a 3D-nanopatterned microfluidic chip. _Nat. Biomed. Eng._ 3,


438–451 (2019). Article  CAS  PubMed  PubMed Central  Google Scholar  * Tittl, A. et al. Imaging-based molecular barcoding with pixelated dielectric metasurfaces. _Science_ 360, 1105–1109


(2018). Article  CAS  PubMed  Google Scholar  * Wang, Z. et al. Dual-selective magnetic analysis of extracellular vesicle glycans. _Matter_ 2, 150–166 (2020). Article  Google Scholar  *


Zhao, H. et al. Massive nanophotonic trapping and alignment of rod-shaped bacteria for parallel single-cell studies. _Sens. Actuators B_ 306, 127562 (2020). Article  CAS  Google Scholar  *


Pan, S. et al. Extracellular vesicle drug occupancy enables real-time monitoring of targeted cancer therapy. _Nat. Nanotechnol._ 16, 734–742 (2021). Article  CAS  PubMed  Google Scholar  *


Musgrave, C. S. A. & Fang, F. Contact lens materials: a materials science perspective. _Materials_ 12, 261 (2019). Article  CAS  PubMed  PubMed Central  Google Scholar  * Childs, A. et


al. Fabricating customized hydrogel contact lens. _Sci. Rep._ 6, 34905 (2016). Article  CAS  PubMed  PubMed Central  Google Scholar  * Ayantunde, A. & Parsons, S. Pattern and prognostic


factors in patients with malignant ascites: a retrospective study. _Ann. Oncol._ 18, 945–949 (2007). Article  CAS  PubMed  Google Scholar  Download references ACKNOWLEDGEMENTS The authors


thank X. Qiu, J.W.S. Tan, C.Y.J. Chee and S.C. Teo for assistance with clinical-sample collection. This work was supported in part by funding from the National University of Singapore (NUS),


the NUS Research Scholarship, the Ministry of Education, the National Medical Research Council and the Institute for Health Innovation & Technology, and by an IMCB Independent


Fellowship and a NUS Early Career Research Award. AUTHOR INFORMATION Author notes * These authors contributed equally: Haitao Zhao, Sijun Pan. AUTHORS AND AFFILIATIONS * Institute for Health


Innovation & Technology, National University of Singapore, Singapore, Singapore Haitao Zhao, Sijun Pan, Auginia Natalia, Xingjie Wu & Huilin Shao * Department of Biomedical


Engineering, Faculty of Engineering, National University of Singapore, Singapore, Singapore Auginia Natalia & Huilin Shao * Division of Surgical Oncology, National Cancer Centre,


Singapore, Singapore Chin-Ann J. Ong & Melissa C. C. Teo * Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore Jimmy B. Y. So 


& Huilin Shao * Division of Surgical Oncology, National University Cancer Institute, Singapore, Singapore Jimmy B. Y. So * Institute of Molecular and Cell Biology, Agency for Science,


Technology and Research, Singapore, Singapore Huilin Shao Authors * Haitao Zhao View author publications You can also search for this author inPubMed Google Scholar * Sijun Pan View author


publications You can also search for this author inPubMed Google Scholar * Auginia Natalia View author publications You can also search for this author inPubMed Google Scholar * Xingjie Wu


View author publications You can also search for this author inPubMed Google Scholar * Chin-Ann J. Ong View author publications You can also search for this author inPubMed Google Scholar *


Melissa C. C. Teo View author publications You can also search for this author inPubMed Google Scholar * Jimmy B. Y. So View author publications You can also search for this author inPubMed 


Google Scholar * Huilin Shao View author publications You can also search for this author inPubMed Google Scholar CONTRIBUTIONS H.Z., S.P. and H.S. designed the study. C.-A.J.O., M.C.C.T.


and J.B.Y.S. provided de-identified clinical samples and health information. H.Z., S.P., X.W. and A.N. performed the research. H.Z., S.P., A.N. and H.S. analyzed the data and wrote the


manuscript. All authors contributed to revising the manuscript. CORRESPONDING AUTHOR Correspondence to Huilin Shao. ETHICS DECLARATIONS COMPETING INTERESTS The authors declare no competing


interests. PEER REVIEW PEER REVIEW INFORMATION _Nature Biomedical Engineering_ thanks Giuseppe Strangi and the other, anonymous, reviewer(s) for their contribution to the peer review of this


work. ADDITIONAL INFORMATION PUBLISHER’S NOTE Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. SUPPLEMENTARY


INFORMATION SUPPLEMENTARY INFORMATION Supplementary Figs. 1–27 and Tables 1–4. REPORTING SUMMARY RIGHTS AND PERMISSIONS Springer Nature or its licensor holds exclusive rights to this article


under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such


publishing agreement and applicable law. Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Zhao, H., Pan, S., Natalia, A. _et al._ A hydrogel-based mechanical metamaterial for


the interferometric profiling of extracellular vesicles in patient samples. _Nat. Biomed. Eng_ 7, 135–148 (2023). https://doi.org/10.1038/s41551-022-00954-7 Download citation * Received: 30


October 2020 * Accepted: 15 September 2022 * Published: 27 October 2022 * Issue Date: February 2023 * DOI: https://doi.org/10.1038/s41551-022-00954-7 SHARE THIS ARTICLE Anyone you share the


following link with will be able to read this content: Get shareable link Sorry, a shareable link is not currently available for this article. Copy to clipboard Provided by the Springer


Nature SharedIt content-sharing initiative