Intravital three-dimensional bioprinting

feature-image

Play all audios:

Loading...

ABSTRACT Fabrication of three-dimensional (3D) structures and functional tissues directly in live animals would enable minimally invasive surgical techniques for organ repair or


reconstruction. Here, we show that 3D cell-laden photosensitive polymer hydrogels can be bioprinted across and within tissues of live mice, using bio-orthogonal two-photon cycloaddition and


crosslinking of the polymers at wavelengths longer than 850 nm. Such intravital 3D bioprinting—which does not create by-products and takes advantage of commonly available multiphoton


microscopes for the accurate positioning and orientation of the bioprinted structures into specific anatomical sites—enables the fabrication of complex structures inside tissues of live


mice, including the dermis, skeletal muscle and brain. We also show that intravital 3D bioprinting of donor-muscle-derived stem cells under the epimysium of hindlimb muscle in mice leads to


the de novo formation of myofibres in the mice. Intravital 3D bioprinting could serve as an in vivo alternative to conventional bioprinting. Access through your institution Buy or subscribe


This is a preview of subscription content, access via your institution ACCESS OPTIONS Access through your institution Access Nature and 54 other Nature Portfolio journals Get Nature+, our


best-value online-access subscription $29.99 / 30 days cancel any time Learn more Subscribe to this journal Receive 12 digital issues and online access to articles $119.00 per year only


$9.92 per issue Learn more Buy this article * Purchase on SpringerLink * Instant access to full article PDF Buy now Prices may be subject to local taxes which are calculated during checkout


ADDITIONAL ACCESS OPTIONS: * Log in * Learn about institutional subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS MOLECULARLY CLEAVABLE BIOINKS


FACILITATE HIGH-PERFORMANCE DIGITAL LIGHT PROCESSING-BASED BIOPRINTING OF FUNCTIONAL VOLUMETRIC SOFT TISSUES Article Open access 09 June 2022 GUIDING CELL MIGRATION IN 3D WITH


HIGH-RESOLUTION PHOTOGRAFTING Article Open access 23 May 2022 TRICOLOR VISIBLE WAVELENGTH-SELECTIVE PHOTODEGRADABLE HYDROGEL BIOMATERIALS Article Open access 29 August 2023 DATA AVAILABILITY


The main data supporting the results in this study are available within the paper and its Supplementary Information. The raw image data and the analysed data generated in this study are


available from the corresponding author upon reasonable request. REFERENCES * Kruth, J. P. Material incress manufacturing by rapid prototyping techniques. _CIRP Ann. Manuf. Technol._ 40,


603–614 (1991). Article  Google Scholar  * Gross, B. C., Erkal, J. L., Lockwood, S. Y., Chen, C. & Spence, D. M. Evaluation of 3D printing and its potential impact on biotechnology and


the chemical sciences. _Anal. Chem._ 86, 3240–3253 (2014). Article  CAS  PubMed  Google Scholar  * Moroni, L. et al. Biofabrication strategies for 3D in vitro models and regenerative


medicine. _Nat. Rev. Mater._ 3, 21–37 (2018). Article  CAS  PubMed  PubMed Central  Google Scholar  * Murphy, S. V. & Atala, A. 3D bioprinting of tissues and organs. _Nat. Biotechnol._


32, 773–785 (2014). Article  CAS  PubMed  Google Scholar  * Ong, C. S. et al. 3D bioprinting using stem cells. _Pediatr. Res._ 83, 223–231 (2018). Article  CAS  PubMed  Google Scholar  *


Kang, H. W. et al. A 3D bioprinting system to produce human-scale tissue constructs with structural integrity. _Nat. Biotechnol._ 34, 312–319 (2016). Article  CAS  PubMed  Google Scholar  *


Hong, N., Yang, G.-H., Lee, J. & Kim, G. 3D bioprinting and its in vivo applications. _J. Biomed. Mater. Res. B_ 106, 444–459 (2018). Article  CAS  Google Scholar  * Wang, M. et al. The


trend towards in vivo bioprinting. _Int. J. Bioprint._ 1, 15–26 (2015). Google Scholar  * Skardal, A. et al. Bioprinted amniotic fluid-derived stem cells accelerate healing of large skin


wounds. _Stem Cells Transl. Med._ 1, 792–802 (2012). Article  CAS  PubMed  PubMed Central  Google Scholar  * Binder, K. W. et al. In situ bioprinting of the skin for burns. _J. Am. Coll.


Surg._ 211, S76 (2010). Article  Google Scholar  * Keriquel, V. et al. In situ printing of mesenchymal stromal cells, by laser-assisted bioprinting, for in vivo bone regeneration


applications. _Sci. Rep._ 7, 1–10 (2017). Article  CAS  Google Scholar  * Di Bella, C. et al. In situ handheld three-dimensional bioprinting for cartilage regeneration. _J. Tissue Eng.


Regen. Med_ 12, 611–621 (2018). Article  CAS  PubMed  Google Scholar  * Wang, X., Rivera-Bolanos, N., Jiang, B. & Ameer, G. A. Advanced functional biomaterials for stem cell delivery in


regenerative engineering and medicine. _Adv. Funct. Mater._ 29, 1–31 (2019). CAS  Google Scholar  * Zhang, Z., Wang, B., Hui, D., Qiu, J. & Wang, S. 3D bioprinting of soft


materials-based regenerative vascular structures and tissues. _Composites B_ 123, 279–291 (2017). Article  CAS  Google Scholar  * Chin, S. Y. et al. Additive manufacturing of hydrogel-based


materials for next-generation implantable medical devices. _Sci. Robot._ 2, eaah6451 (2017). Article  Google Scholar  * Murphy, S. V., Skardal, A. & Atala, A. Evaluation of hydrogels for


bio-printing applications. _J. Biomed. Mater. Res. A_ 101, 272–284 (2013). Article  PubMed  CAS  Google Scholar  * König, K. Multiphoton microscopy in life sciences. _J. Microsc._ 200,


83–104 (2000). Article  PubMed  Google Scholar  * Chang, H., Shi, M., Sun, Y. & Jiang, J. Photo-dimerization characteristics of coumarin pendants within amphiphilic random copolymer


micelles. _Chin. J. Polym. Sci._ 33, 1086–1095 (2015). Article  CAS  Google Scholar  * Mahon, M. F., Raithby, P. R. & Sparkes, H. A. Investigation of the factors favouring solid state


[2+2] cycloaddition reactions; the [2+2] cycloaddition reaction of coumarin-3-carboxylic acid. _CrystEngComm_ 10, 573–576 (2008). Article  CAS  Google Scholar  * Wang, D., Hou, X., Ma, B.,


Sun, Y. & Wang, J. UV and NIR dual-responsive self-assembly systems based on a novel coumarin derivative surfactant. _Soft Matter_ 13, 6700–6708 (2017). Article  CAS  PubMed  Google


Scholar  * Belfield, K. D., Bondar, M. V., Liu, Y. & Przhonska, O. V. Photophysical and photochemical properties of 5,7-di- methoxycoumarin under one- and two-photon excitation. _J.


Phys. Org. Chem._ 16, 69–78 (2002). Article  CAS  Google Scholar  * Iliopoulos, K., Krupka, O., Gindre, D. & Salle, M. Reversible two-photon optical data storage in coumarin-based


copolymers. _J. Am. Chem. Soc._ 132, 14343–14345 (2010). Article  CAS  PubMed  Google Scholar  * Kim, S. H., Sun, Y., Kaplan, J. A., Grinstaff, M. W. & Parquette, J. R.


Photo-crosslinking of a self-assembled coumarin-dipeptide hydrogel. _N. J. Chem._ 39, 3225–3228 (2015). Article  CAS  Google Scholar  * Kabb, C. P., O’Bryan, C. S., Deng, C. C., Angelini, T.


E. & Sumerlin, B. S. Photoreversible covalent hydrogels for soft-matter additive manufacturing. _ACS Appl. Mater. Interfaces_ 10, 16793–16801 (2018). Article  CAS  PubMed  Google


Scholar  * Zhu, C. & Bettinger, C. J. Light-induced remodeling of physically crosslinked hydrogels using near-IR wavelengths. _J. Mater. Chem. B_ 2, 1613–1618 (2014). Article  CAS 


PubMed  PubMed Central  Google Scholar  * Azagarsamy, M. A., McKinnon, D. D., Alge, D. L. & Anseth, K. S. Coumarin-based photodegradable hydrogel: design, synthesis, gelation, and


degradation kinetics. _ACS Macro Lett_. 3, 515–519 (2014). Article  CAS  Google Scholar  * Williams, C. G., Malik, A. N., Kim, T. K., Manson, P. N. & Elisseeff, J. H. Variable


cytocompatibility of six cell lines with photoinitiators used for polymerizing hydrogels and cell encapsulation. _Biomaterials_ 26, 1211–1218 (2005). Article  CAS  PubMed  Google Scholar  *


Torgersen, J. et al. Hydrogels for two-photon polymerization: A toolbox for mimicking the extracellular matrix. _Adv. Funct. Mater._ 23, 4542–4554 (2013). Article  CAS  Google Scholar  *


Xing, J.-F., Zheng, M.-L. & Duan, X.-M. Two-photon polymerization microfabrication of hydrogels: an advanced 3D printing technology for tissue engineering and drug delivery. _Chem. Soc.


Rev._ 44, 5031–5039 (2015). Article  CAS  PubMed  Google Scholar  * Ingber, D. E. Cellular mechanotransduction: putting all the pieces together again. _FASEB J._ 20, 811–827 (2006). Article


  CAS  PubMed  Google Scholar  * Dupont, S. et al. Role of YAP/TAZ in mechanotransduction. _Nature_ 474, 179–184 (2011). Article  CAS  PubMed  Google Scholar  * Bian, L. et al. The influence


of hyaluronic acid hydrogel crosslinking density and macromolecular diffusivity on human MSC chondrogenesis and hypertrophy. _Biomaterials_ 34, 413–421 (2013). Article  CAS  PubMed  Google


Scholar  * Brigo, L. et al. 3D high-resolution two-photon crosslinked hydrogel structures for biological studies. _Acta Biomater._ 55, 373–384 (2017). Article  CAS  PubMed  Google Scholar  *


Lefort, C. A review of biomedical multiphoton microscopy and its laser sources. _J. Phys. D_ 50, 423001 (2017). Article  CAS  Google Scholar  * Ostrovidov, S. et al. Skeletal muscle tissue


engineering: methods to form skeletal myotubes and their applications. _Tissue Eng. B_ 20, 403–436 (2014). Article  Google Scholar  * Moon, D. G., Christ, G., Stitzel, J. D., Atala, A. &


Yoo, J J. Cyclic mechanical preconditioning improves engineered muscle contraction. _Tissue Eng. A_ 14, 473–482 (2008). Article  CAS  Google Scholar  * Gjorevski, N. et al. Designer


matrices for intestinal stem cell and organoid culture. _Nature_ 539, 560–564 (2016). Article  CAS  PubMed  Google Scholar  * Morra, M. On the molecular basis of fouling resistance. _J.


Biomater. Sci. Polym. Ed._ 11, 547–569 (2000). Article  CAS  PubMed  Google Scholar  * Drumheller, P. D. & Hubbell, J. A. J. Densely crosslinked polymer networks of poly(ethylene glycol)


in trimethylolpropane triacrylate for cell-adhesion-resistant surfaces. _Biomed. Mater. Res._ 29, 207–215 (1995). Article  CAS  Google Scholar  * Gjorevski, N. & Lutolf, M. P. Synthesis


and characterization of well-defined hydrogel matrices and their application to intestinal stem cell and organoid culture. _Nat. Protoc._ 12, 2263–2274 (2017). Article  CAS  PubMed  Google


Scholar  * Kominami, K. et al. The molecular mechanism of apoptosis upon caspase-8 activation: quantitative experimental validation of a mathematical model. _Biochim. Biophys. Acta_ 1823,


1825–1840 (2012). Article  CAS  PubMed  Google Scholar  * Tummers, B. & Green, D. R. Caspase-8; regulating life and death. _Immunol. Rev._ 277, 76–89 (2017). Article  CAS  PubMed  PubMed


Central  Google Scholar  * Swartzlander, M. D., Lynn, A. D., Blakney, A. K., Kyriakides, T. R. & Bryant, S. J. Understanding the host response to cell-laden poly(ethylene glycol)-based


hydrogels. _Biomaterials_ 34, 952–964 (2013). Article  CAS  PubMed  Google Scholar  * Qazi, T. H. et al. Cell therapy to improve regeneration of skeletal muscle injuries. _J. Cachexia


Sarcopenia Muscle_ 10, 501–516 (2019). Article  PubMed  PubMed Central  Google Scholar  * Yin, H., Price, F. & Rudnicki, M. A. Satellite cells and the muscle stem cell niche. _Physiol.


Rev._ 93, 23–67 (2013). Article  CAS  PubMed  PubMed Central  Google Scholar  * Cerletti, M. et al. Highly efficient, functional engraftment of skeletal muscle stem cells in dystrophic


muscles. _Cell_ 134, 37–47 (2008). Article  CAS  PubMed  PubMed Central  Google Scholar  * Rossi, C. A. et al. In vivo tissue engineering of functional skeletal muscle by freshly isolated


satellite cells embedded in a photopolymerizable hydrogel. _FASEB J._ 25, 2296–2304 (2011). Article  CAS  PubMed  Google Scholar  * Chapman, M. A., Meza, R. & Lieber, R. L. Skeletal


muscle fibroblasts in health and disease. _Differentiation_ 92, 108–115 (2016). Article  CAS  PubMed  PubMed Central  Google Scholar  * Mendias, C. L. Fibroblasts take the centre stage in


human skeletal muscle regeneration. _J. Physiol._ 595, 5005 (2017). Article  CAS  PubMed  PubMed Central  Google Scholar  * Murphy, M. M., Lawson, J. A., Mathew, S. J., Hutcheson, D. A.


& Kardon, G. Satellite cells, connective tissue fibroblasts and their interactions are crucial for muscle regeneration. _Development_ 138, 3625–3637 (2011). Article  CAS  PubMed  PubMed


Central  Google Scholar  * Urciuolo, A. et al. Decellularised skeletal muscles allow functional muscle regeneration by promoting host cell migration. _Sci. Rep._ 8, 8398 (2018). Article 


PubMed  PubMed Central  CAS  Google Scholar  * Rossi, G., Manfrin, A. & Lutolf, M. P. Progress and potential in organoid research. _Nat. Rev. Genet._ 19, 671–687 (2018). Article  CAS 


PubMed  Google Scholar  * Foster, A. A., Marquardt, L. M. & Heilshorn, S. C. The diverse roles of hydrogel mechanics in injectable stem cell transplantation. _Curr. Opin. Chem. Eng._ 15,


15–23 (2017). Article  PubMed  Google Scholar  * Hoover, E. E. & Squier, J. A. Advances in multiphoton microscopy technology. _Nat. Photonics_ 7, 93–101 (2013). Article  CAS  PubMed 


PubMed Central  Google Scholar  * Horton, N. G. et al. In vivo three-photon microscopy of subcortical structures within an intact mouse brain. _Nat. Photonics_ 7, 205–209 (2013). Article 


CAS  PubMed Central  Google Scholar  * Delrot, P., Loterie, D., Psaltis, D. & Moser, C. Single-photon three-dimensional microfabrication through a multimode optical fiber. _Opt. Express_


26, 1766–1778 (2018). Article  CAS  PubMed  Google Scholar  * Chu, W. et al. Centimeter-height 3D printing with femtosecond laser two-photon polymerization. _Adv. Mater. Technol._ 3,


1700396 (2018). Article  CAS  Google Scholar  * Schultz, S. R., Copeland, C. S., Foust, A. J., Quicke, P. & Schuck, R. Advances in two-photon scanning and scanless microscopy


technologies for functional neural circuit imaging. _Proc. IEEE Inst. Electr. Electron. Eng._ 105, 139–157 (2017). Article  CAS  PubMed  Google Scholar  * Horváth, O. P. Minimal invasive


surgery. _Acta Chir. Hung._ 36, 130–131 (1997). PubMed  Google Scholar  * Palep, J. H. Robotic assisted minimally invasive surgery. _J. Minim. Access Surg._ 5, 1–7 (2009). Article  PubMed 


PubMed Central  Google Scholar  * Sims, G. E. C. & Snape, T. J. A method for the estimation of polyethylene glycol in plasma protein fractions. _Anal. Biochem._ 107, 60–63 (1980).


Article  CAS  PubMed  Google Scholar  * Habeeb, A. F. S. A. Determination of free amino groups in proteins by trinitrobenzenesulfonic acid. _Anal. Biochem._ 14, 328–336 (1966). Article  CAS


  PubMed  Google Scholar  * Natarajan, D. et al. Lentiviral labeling of mouse and human enteric nervous system stem cells for regenerative medicine studies. _Neurogastroenterol. Motil._ 26,


1513–1518 (2014). Article  CAS  PubMed  PubMed Central  Google Scholar  * Urcuiolo, A. et al. Collagen VI regulates satellite cell self-renewal and muscle regeneration. _Nat. Commun._ 4,


1964 (2013). Article  CAS  Google Scholar  * Jung, P. et al. Isolation and in vitro expansion of human colonic stem cells. _Nat. Med._ 17, 1225–1227 (2011). Article  CAS  PubMed  Google


Scholar  * Sato, T. et al. Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett’s epithelium. _Gastroenterology_ 141, 1762–1772 (2011). Article


  CAS  PubMed  Google Scholar  * Ajduk, A., Biswas Shivhare, S. & Zernicka-Goetz, M. The basal position of nuclei is one pre-requisite for asymmetric cell divisions in the early mouse


embryo. _Dev. Biol._ 392, 133–140 (2014). Article  CAS  PubMed  PubMed Central  Google Scholar  Download references ACKNOWLEDGEMENTS This work was supported by 2017 STARS-WiC grant of


University of Padova, Progetti di Eccellenza CaRiPaRo, TWINING of University of Padova, Oak Foundation Award (grant no. W1095/OCAY-14-191), ‘Consorzio per la Ricerca Sanitaria’ (CORIS) of


the Veneto Region, Italy (LifeLab Program) to N.E. and the STARS Starting Grant 2017 of University of Padova (grant code LS3-19613) to A.U. P.D.C. is supported by the National Institute for


Health Research (NIHR; grant no. NIHR-RP-2014-04-046). G.G.G. was supported by the NIHR Great Ormond Street Hospital Biomedical Research Centre Catalyst Fellowship. G.G.G., P.D.C. and N.E.


were supported by the Oak award W1095/OCAY-14-191. All research at Great Ormond Street Hospital NHS Foundation Trust and University College London Great Ormond Street Institute of Child


Health is made possible by the NIHR Great Ormond Street Hospital Biomedical Research Centre. The views expressed are those of the author(s) and not necessarily those of the National Health


Service, the NIHR or the Department of Health. We thank D. Moulding for technical support and S. Schiaffino for scientific advice and discussion. AUTHOR INFORMATION AUTHORS AND AFFILIATIONS


* Department of Industrial Engineering, University of Padova, Padova, Italy Anna Urciuolo, Luca Brandolino, Cecilia Laterza, Monica Giomo & Nicola Elvassore * Veneto Institute of


Molecular Medicine, Padova, Italy Anna Urciuolo, Luca Brandolino, Paolo Raffa, Valentina Scattolini, Cecilia Laterza, Laura Brigo & Nicola Elvassore * Department of Women’s and


Children’s Health, University of Padova, Padova, Italy Anna Urciuolo, Paolo Raffa, Valentina Scattolini & Elisa Zambaiti * ONYEL Biotech, Padova, Italy Ilaria Poli * University College


London Great Ormond Street Institute of Child Health, London, UK Giovanni G. Giobbe, Giulia Selmin, Michael Magnussen, Paolo De Coppi & Nicola Elvassore * Department of Specialist


Paediatric and Neonatal Surgery, Great Ormond Street Hospital for Children, London, UK Paolo De Coppi * Department of Pharmaceutical and Pharmacological Science, University of Padova,


Padova, Italy Stefano Salmaso * Shanghai Institute for Advanced Immunochemical Studies (SIAIS), ShanghaiTech University, Shanghai, China Nicola Elvassore Authors * Anna Urciuolo View author


publications You can also search for this author inPubMed Google Scholar * Ilaria Poli View author publications You can also search for this author inPubMed Google Scholar * Luca Brandolino


View author publications You can also search for this author inPubMed Google Scholar * Paolo Raffa View author publications You can also search for this author inPubMed Google Scholar *


Valentina Scattolini View author publications You can also search for this author inPubMed Google Scholar * Cecilia Laterza View author publications You can also search for this author


inPubMed Google Scholar * Giovanni G. Giobbe View author publications You can also search for this author inPubMed Google Scholar * Elisa Zambaiti View author publications You can also


search for this author inPubMed Google Scholar * Giulia Selmin View author publications You can also search for this author inPubMed Google Scholar * Michael Magnussen View author


publications You can also search for this author inPubMed Google Scholar * Laura Brigo View author publications You can also search for this author inPubMed Google Scholar * Paolo De Coppi


View author publications You can also search for this author inPubMed Google Scholar * Stefano Salmaso View author publications You can also search for this author inPubMed Google Scholar *


Monica Giomo View author publications You can also search for this author inPubMed Google Scholar * Nicola Elvassore View author publications You can also search for this author inPubMed 


Google Scholar CONTRIBUTIONS A.U. and N.E. designed the experiments. N.E. designed the photochemistry, I.P. synthesized and chemically characterized the coumarin polymers and S.S.


contributed to the chemical characterization of coumarin polymers. A.U. performed and analysed in vitro and in vivo experiments. L.Brandolino. and P.R. contributed to in vitro experiments.


V.S. contributed to the analysis of in vivo experiments. C.L. performed hydrogel injection into the brain and derived reporter cells and human ES cell-derived NSCs. G.G.G., E.Z., G.S. and


M.M. contributed to organoid experiments. G.G. and P.D.C. characterized human intestinal organoid cultures. L.Brigo. contributed to the design and interpretation of in vitro two-photon


crosslinking experiments. M.G. performed AFM analysis. A.U. and N.E. analysed the data and wrote the manuscript. N.E. supervised the project. CORRESPONDING AUTHOR Correspondence to Nicola


Elvassore. ETHICS DECLARATIONS COMPETING INTERESTS N.E. has an equity stake in ONYEL Biotech s.r.l. A.U. and N.E. are submitting a patent for the intravital 3D bioprinting (provisional


patent number 102020000008779). ADDITIONAL INFORMATION PUBLISHER’S NOTE Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION Supplementary methods, figures, tables and video captions. REPORTING SUMMARY SUPPLEMENTARY VIDEO 1 3D projection of _z_-stack images


showing a ‘LIFE’-shaped HCC–4-arm PEG 3D structure related to Supplementary Fig. 12c. SUPPLEMENTARY VIDEO 2 3D reconstruction of _z_-stack images showing an empty cuboidal-shaped HCC–8-arm


PEG 3D structure related to Supplementary Fig. 12e. SUPPLEMENTARY VIDEO 3 3D reconstruction of _z_-stack images showing a flower-shaped HCC–gel 3D structure related to Fig. 3d. SUPPLEMENTARY


VIDEO 4 3D reconstruction of _z_-stack images showing the maximum fabrication depth related to Fig. 3e. SUPPLEMENTARY VIDEO 5 Orthogonal 3D reconstruction of _z_-stack images showing a


cell-laden bioprinted structure related to Supplementary Fig. 18a. SUPPLEMENTARY VIDEO 6 Long-term 3D culture of MuSCs related to Fig. 4g. SUPPLEMENTARY VIDEO 7 3D reconstruction of


_z_-stack images showing object fabricated into a drop of HCC–gel/Matrigel related to Fig. 5a. SUPPLEMENTARY VIDEO 8 3D reconstruction of _z_-stack images showing objects fabricated into a


drop of HCC–gel/Matrigel in respect to hSIOs related to Supplementary Fig. 20a. SUPPLEMENTARY VIDEO 9 Intravital imaging related to Fig. 6b. SUPPLEMENTARY VIDEO 10 Intravital imaging related


to Fig. 6e. SUPPLEMENTARY VIDEO 11 3D reconstruction related to Fig. 6e. RIGHTS AND PERMISSIONS Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Urciuolo, A., Poli, I.,


Brandolino, L. _et al._ Intravital three-dimensional bioprinting. _Nat Biomed Eng_ 4, 901–915 (2020). https://doi.org/10.1038/s41551-020-0568-z Download citation * Received: 22 July 2019 *


Accepted: 08 May 2020 * Published: 22 June 2020 * Issue Date: September 2020 * DOI: https://doi.org/10.1038/s41551-020-0568-z SHARE THIS ARTICLE Anyone you share the following link with will


be able to read this content: Get shareable link Sorry, a shareable link is not currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt


content-sharing initiative