Generation of model tissues with dendritic vascular networks via sacrificial laser-sintered carbohydrate templates

feature-image

Play all audios:

Loading...

ABSTRACT Sacrificial templates for patterning perfusable vascular networks in engineered tissues have been constrained in architectural complexity, owing to the limitations of


extrusion-based 3D printing techniques. Here, we show that cell-laden hydrogels can be patterned with algorithmically generated dendritic vessel networks and other complex hierarchical


networks by using sacrificial templates made from laser-sintered carbohydrate powders. We quantified and modulated gradients of cell proliferation and cell metabolism emerging in response to


fluid convection through these networks and to diffusion of oxygen and metabolites out of them. We also show scalable strategies for the fabrication, perfusion culture and volumetric


analysis of large tissue-like constructs with complex and heterogeneous internal vascular architectures. Perfusable dendritic networks in cell-laden hydrogels may help sustain thick and


densely cellularized engineered tissues, and assist interrogations of the interplay between mass transport and tissue function. Access through your institution Buy or subscribe This is a


preview of subscription content, access via your institution ACCESS OPTIONS Access through your institution Access Nature and 54 other Nature Portfolio journals Get Nature+, our best-value


online-access subscription $29.99 / 30 days cancel any time Learn more Subscribe to this journal Receive 12 digital issues and online access to articles $119.00 per year only $9.92 per issue


Learn more Buy this article * Purchase on SpringerLink * Instant access to full article PDF Buy now Prices may be subject to local taxes which are calculated during checkout ADDITIONAL


ACCESS OPTIONS: * Log in * Learn about institutional subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS SACRIFICIAL CAPILLARY PUMPS TO ENGINEER


MULTISCALAR BIOLOGICAL FORMS Article 11 December 2024 LARGE-SCALE PERFUSED TISSUES VIA SYNTHETIC 3D SOFT MICROFLUIDICS Article Open access 12 January 2023 3D MICROMESH-BASED HYBRID


BIOPRINTING: MULTIDIMENSIONAL LIQUID PATTERNING FOR 3D MICROTISSUE ENGINEERING Article Open access 21 January 2022 DATA AVAILABILITY The main data supporting the results in this study are


available within the paper and its Supplementary Information. Much of the source and analysed data are available in Zenodo (https://doi.org/10.5281/zenodo.3723373). Some source datasets are


too large to be shared in public repositories and are available from the corresponding author on reasonable request. Design files and documentation for our open-source selective laser


sintering hardware and software are available in the Zenodo repository and at https://github.com/MillerLabFTW/OpenSLS. CODE AVAILABILITY A custom Python add-on for Blender to generate


bifurcating vascular structures is available in the Zenodo repository and at https://github.com/MillerLabFTW/IntussusceptionAddon. Image-processing and analysis scripts are also available in


the Zenodo repository. The mutual tree attraction algorithm for generating dendritic networks is closed source, but the generated architectures are included in the Zenodo repository. CHANGE


HISTORY * _ 16 JUNE 2021 A Correction to this paper has been published: https://doi.org/10.1038/s41551-021-00761-6 _ REFERENCES * Zamir, M. Fractal dimensions and multifractility in


vascular branching. _J. Theor. Biol._ 212, 183–190 (2001). CAS  PubMed  Google Scholar  * West, G. B., Brown, J. H. & Enquist, B. J. A general model for the origin of allometric scaling


laws in biology. _Science_ 276, 122–126 (1997). CAS  PubMed  Google Scholar  * West, G. B., Brown, J. H. & Enquist, B. J. A general model for ontogenetic growth. _Nature_ 413, 628–631


(2001). CAS  PubMed  Google Scholar  * Monahan-Earley, R., Dvorak, A. M. & Aird, W. C. Evolutionary origins of the blood vascular system and endothelium. _J. Thromb. Haemost._ 11, 46–66


(2013). PubMed  PubMed Central  Google Scholar  * Novosel, E. C., Kleinhans, C. & Kluger, P. J. Vascularization is the key challenge in tissue engineering. _Adv. Drug Deliv. Rev._ 63,


300–311 (2011). CAS  PubMed  Google Scholar  * Kinstlinger, I. S. & Miller, J. S. 3D-printed fluidic networks as vasculature for engineered tissue. _Lab Chip_ 16, 2025–2043 (2016). CAS 


PubMed  Google Scholar  * Cabodi, M. et al. A microfluidic biomaterial. _J. Am. Chem. Soc._ 127, 13788–13789 (2005). CAS  PubMed  Google Scholar  * Chrobak, K. M., Potter, D. R. & Tien,


J. Formation of perfused, functional microvascular tubes in vitro. _Microvasc. Res._ 71, 185–196 (2006). CAS  PubMed  Google Scholar  * Zhang, B. et al. Biodegradable scaffold with built-in


vasculature for organ-on-a-chip engineering and direct surgical anastomosis. _Nat. Mater._ 15, 669–678 (2016). CAS  PubMed  PubMed Central  Google Scholar  * Miller, J. S. The billion cell


construct: will three-dimensional printing get us there? _PLoS Biol._ 12, e1001882 (2014). PubMed  PubMed Central  Google Scholar  * Luo, Y., Lode, A. & Gelinsky, M. Direct plotting of


three-dimensional hollow fiber scaffolds based on concentrated alginate pastes for tissue engineering. _Adv. Healthc. Mater._ 2, 777–783 (2013). CAS  PubMed  Google Scholar  * Christensen,


K. et al. Freeform inkjet printing of cellular structures with bifurcations. _Biotechnol. Bioeng._ 112, 1047–1055 (2015). CAS  PubMed  Google Scholar  * Hinton, T. J. et al.


Three-dimensional printing of complex biological structures by freeform reversible embedding of suspended hydrogels. _Sci. Adv._ 1, e1500758 (2015). PubMed  PubMed Central  Google Scholar  *


Lee, A. et al. 3D bioprinting of collagen to rebuild components of the human heart. _Science_ 365, 482–487 (2019). CAS  PubMed  Google Scholar  * Zhang, R. & Larsen, N. B.


Stereolithographic hydrogel printing of 3D culture chips with biofunctionalized complex 3D perfusion networks. _Lab Chip_ 17, 4273–4282 (2017). CAS  PubMed  Google Scholar  * Meyer, W. et


al. Soft polymers for building up small and smallest blood supplying systems by stereolithography. _J. Funct. Biomater._ 3, 257–268 (2012). PubMed  PubMed Central  Google Scholar  *


Brandenberg, N. & Lutolf, M. P. In situ patterning of microfluidic networks in 3D cell-laden hydrogels. _Adv. Mater._ 28, 7450–7456 (2016). CAS  PubMed  Google Scholar  * Heintz, K. A.


et al. Fabrication of 3D biomimetic microfluidic networks in hydrogels. _Adv. Healthc. Mater._ 5, 2153–2160 (2016). CAS  PubMed  PubMed Central  Google Scholar  * Arakawa, C. K., Badeau, B.


A., Zheng, Y. & DeForest, C. A. Multicellular vascularized engineered tissues through user-programmable biomaterial photodegradation. _Adv. Mat._ 29, 1703156 (2017). Google Scholar  *


Grigoryan, B. et al. Functional intravascular topologies and multivascular networks within biocompatible hydrogels. _Science_ 364, 458–464 (2019). CAS  PubMed  PubMed Central  Google Scholar


  * Golden, A. P. & Tien, J. Fabrication of microfluidic hydrogels using molded gelatin as a sacrificial element. _Lab Chip_ 7, 720–725 (2007). CAS  PubMed  Google Scholar  * Miller, J.


S. et al. Rapid casting of patterned vascular networks for perfusable engineered three-dimensional tissues. _Nat. Mater._ 11, 768–774 (2012). CAS  PubMed  PubMed Central  Google Scholar  *


Bégin-Drolet, A. et al. Design of a 3D printer head for additive manufacturing of sugar glass for tissue engineering applications. _Addit. Manuf._ 15, 29–39 (2017). Google Scholar  * Gelber,


M. K., Hurst, G., Comi, T. J. & Bhargava, R. Model-guided design and characterization of a high-precision 3D printing process for carbohydrate glass. _Addit. Manuf._ 22, 38–50 (2018).


CAS  Google Scholar  * Homan, K. A. et al. Bioprinting of 3D convoluted renal proximal tubules on perfusable chips. _Sci. Rep._ 6, 34845 (2016). CAS  PubMed  PubMed Central  Google Scholar 


* Kolesky, D. B. et al. 3D bioprinting of vascularized, heterogeneous cell-laden tissue constructs. _Adv. Mater._ 26, 3124–3130 (2014). CAS  PubMed  Google Scholar  * Kolesky, D. B., Homan,


K. A., Skylar-Scott, M. A. & Lewis, J. A. Three-dimensional bioprinting of thick vascularized tissues. _Proc. Natl Acad. Sci. USA_ 113, 3179–3184 (2016). CAS  PubMed  PubMed Central 


Google Scholar  * Skylar-Scott, M. A. et al. Biomanufacturing of organ-specific tissues with high cellular density and embedded vascular channels. _Sci. Adv._ 5, eaaw2459 (2019). CAS  PubMed


  PubMed Central  Google Scholar  * Wu, W., Deconinck, A. & Lewis, J. A. Omnidirectional printing of 3D microvascular networks. _Adv. Mater._ 23, H178–H183 (2011). CAS  PubMed  Google


Scholar  * Song, K. H., Highley, C. B., Rouff, A. & Burdick, J. A. Complex 3D-printed microchannels within cell-degradable hydrogels. _Adv. Funct. Mater._ 28, 1801331 (2018). Google


Scholar  * Pimentel, C. R. et al. Three-dimensional fabrication of thick and densely populated soft constructs with complex and actively perfused channel network. _Acta Biomater._ 65,


174–184 (2018). Google Scholar  * Kinstlinger, I. S. et al. Open-source selective laser sintering (OpenSLS) of nylon and biocompatible polycaprolactone. _PLoS ONE_ 11, e0147399 (2016).


PubMed  PubMed Central  Google Scholar  * Roszelle, B. N. et al. Flow diverter effect on cerebral aneurysm hemodynamics: An in vitro comparison of telescoping stents and the Pipeline.


_Neuroradiology_ 55, 751–758 (2013). PubMed  Google Scholar  * Saggiomo, V. & Velders, A. H. Simple 3D printed scaffold-removal method for the fabrication of intricate microfluidic


devices. _Adv. Sci._ 2, 1500125 (2015). Google Scholar  * Nguyen, L. H. et al. Vascularized bone tissue engineering: approaches for potential improvement. _Tissue Eng. Part B_ 18, 363–382


(2012). CAS  Google Scholar  * Nguyen, Q. T., Hwang, Y., Chen, A. C., Varghese, S. & Sah, R. L. Cartilage-like mechanical properties of poly (ethylene glycol)-diacrylate hydrogels.


_Biomaterials_ 33, 6682–6690 (2012). CAS  PubMed  PubMed Central  Google Scholar  * Partlow, B. P. et al. Highly tunable elastomeric silk biomaterials. _Adv. Funct. Mater._ 24, 4615–4624


(2014). CAS  PubMed  PubMed Central  Google Scholar  * Mooney, R., Tawil, B. & Mahoney, M. Specific fibrinogen and thrombin concentrations promote neuronal rather than glial growth when


primary neural cells are seeded within plasma-derived fibrin gels. _Tissue Eng. Part A_ 16, 1607–1619 (2010). CAS  PubMed  Google Scholar  * Duong, H., Wu, B. & Tawil, B. Modulation of


3D fibrin matrix stiffness by intrinsic fibrinogen–thrombin compositions and by extrinsic cellular activity. _Tissue Eng. Part A_ 15, 1865–1876 (2009). CAS  PubMed  PubMed Central  Google


Scholar  * Subhash, G., Liu, Q., Moore, D. F., Ifju, P. G. & Haile, M. A. Concentration dependence of tensile behavior in agarose gel using digital image correlation. _Exp. Mech._ 51,


255–262 (2011). CAS  Google Scholar  * Feugier, F. G., Mochizuki, A. & Iwasa, Y. Self-organization of the vascular system in plant leaves: inter-dependent dynamics of auxin flux and


carrier proteins. _J. Theor. Biol._ 236, 366–375 (2005). CAS  PubMed  Google Scholar  * Fujita, H. & Mochizuki, A. The origin of the diversity of leaf venation pattern. _Dev. Dyn._ 235,


2710–2721 (2006). PubMed  Google Scholar  * Runions, A., Lane, B. & Prusinkiewicz, P. Modeling trees with a space colonization algorithm. In _Proc. 3rd Eurographics Conference on Natural


Phenomena_ (Eds Ebert, D. & Mérillou, S.) 63–70 (Eurographics Association, 2007). * Murray, C. D. The physiological principle of minimum work applied to the angle of branching of


arteries. _J. Gen. Physiol._ 9, 835–841 (1926). CAS  PubMed  PubMed Central  Google Scholar  * Miguel, A. F. Dendritic design as an archetype for growth patterns in nature: fractal and


constructal views. _Front. Phys._ 2, 9 (2014). Google Scholar  * Moon, J. J. et al. Biomimetic hydrogels with pro-angiogenic properties. _Biomaterials_ 31, 3840–3847 (2010). CAS  PubMed 


PubMed Central  Google Scholar  * Calderon, G. et al. Tubulogenesis of co-cultured human iPS-derived endothelial cells and human mesenchymal stem cells in fibrin and gelatin methacrylate


gels. _Biomater. Sci._ 5, 1652–1660 (2017). CAS  PubMed  Google Scholar  * Eskin, S. G., Ives, C., McIntire, L. & Navarro, L. Response of cultured endothelial cells to steady flow.


_Microvasc. Res._ 28, 87–94 (1984). CAS  PubMed  Google Scholar  * Yang, P. J. & Temenoff, J. S. Engineering orthopedic tissue interfaces. _Tissue Eng. Part B_ 15, 127–141 (2009). CAS 


Google Scholar  * Eckes, B. et al. Fibroblast-matrix interactions in wound healing and fibrosis. _Matrix Biol._ 19, 325–332 (2000). CAS  PubMed  Google Scholar  * Lu, P., Weaver, V. M. &


Werb, Z. The extracellular matrix: a dynamic niche in cancer progression. _J. Cell Biol._ 196, 395–406 (2012). CAS  PubMed  PubMed Central  Google Scholar  * Radisic, M. et al. Oxygen


gradients correlate with cell density and cell viability in engineered cardiac tissue. _Biotechnol. Bioeng._ 93, 332–343 (2006). CAS  PubMed  Google Scholar  * Tocchio, A. et al. Versatile


fabrication of vascularizable scaffolds for large tissue engineering in bioreactor. _Biomaterials_ 45, 124–131 (2015). CAS  PubMed  Google Scholar  * Tsang, V. L. et al. Fabrication of 3D


hepatic tissues by additive photopatterning of cellular hydrogels. _FASEB J._ 21, 790–801 (2007). CAS  Google Scholar  * Krogh, A. The number and distribution of capillaries in muscles with


calculations of the oxygen pressure head necessary for supplying the tissue. _J. Physiol._ 52, 409–415 (1919). CAS  PubMed  PubMed Central  Google Scholar  * Lewis, M. C., MacArthur, B. D.,


Malda, J., Pettet, G. & Please, C. P. Heterogeneous proliferation within engineered cartilaginous tissue: the role of oxygen tension. _Biotechnol. Bioeng._ 91, 607–615 (2005). CAS 


PubMed  Google Scholar  * Demol, J., Lambrechts, D., Geris, L., Schrooten, J. & Van Oosterwyck, H. Towards a quantitative understanding of oxygen tension and cell density evolution in


fibrin hydrogels. _Biomaterials_ 32, 107–118 (2011). CAS  PubMed  Google Scholar  * Gu, W. Y., Yao, H., Huang, C. Y. & Cheung, H. S. New insight into deformation-dependent hydraulic


permeability of gels and cartilage, and dynamic behavior of agarose gels in confined compression. _J. Biomech._ 36, 593–598 (2003). CAS  PubMed  Google Scholar  * Chuppa, S. et al. Fermentor


temperature as a tool for control of high-density perfusion cultures of mammalian cells. _Biotechnol. Bioeng._ 55, 328–338 (1997). CAS  PubMed  Google Scholar  * Ducommun, P., Ruffieux, P.


A., Kadouri, A., Von Stockar, U. & Marison, I. W. Monitoring of temperature effects on animal cell metabolism in a packed bed process. _Biotechnol. Bioeng._ 77, 838–842 (2002). CAS 


PubMed  Google Scholar  * Jorjani, P. & Ozturk, S. S. Effects of cell density and temperature on oxygen consumption rate for different mammalian cell lines. _Biotechnol. Bioeng._ 64,


349–356 (1999). CAS  PubMed  Google Scholar  * Xiang, C. et al. Long-term functional maintenance of primary human hepatocytes in vitro. _Science_ 364, 399–402 (2019). CAS  PubMed  Google


Scholar  * Bhatia, S. N., Balis, U. J., Yarmush, M. L. & Toner, M. Effect of cell–cell interactions in preservation of cellular phenotype: cocultivation of hepatocytes and nonparenchymal


cells. _FASEB J._ 13, 1883–1900 (1999). CAS  PubMed  Google Scholar  * Stevens, K. R. et al. InVERT molding for scalable control of tissue microarchitecture. _Nat. Commun._ 4, 1847 (2013).


CAS  PubMed  Google Scholar  * Stevens, K. R. et al. In situ expansion of engineered human liver tissue in a mouse model of chronic liver disease. _Sci. Transl. Med._ 9, eaah5505 (2017).


PubMed  PubMed Central  Google Scholar  * Khetani, S. R. & Bhatia, S. N. Microscale culture of human liver cells for drug development. _Nat. Biotechnol._ 26, 120–126 (2008). CAS  PubMed


  Google Scholar  * Bhatia, S. N., Underhill, G. H., Zaret, K. S. & Fox, I. J. Cell and tissue engineering for liver disease. _Sci. Transl. Med._ 6, 245sr2 (2014). PubMed  PubMed Central


  Google Scholar  * Rafii, S., Butler, J. M. & Ding, B.-S. Angiocrine functions of organ-specific endothelial cells. _Nature_ 529, 316–325 (2016). CAS  PubMed  PubMed Central  Google


Scholar  * Baranski, J. D. et al. Geometric control of vascular networks to enhance engineered tissue integration and function. _Proc. Natl Acad. Sci USA_ 110, 7586–7591 (2013). CAS  PubMed


  PubMed Central  Google Scholar  * Mirabella, T. et al. 3D-printed vascular networks direct therapeutic angiogenesis in ischaemia. _Nat. Biomed. Eng._ 1, 0083 (2017). CAS  PubMed  PubMed


Central  Google Scholar  * Lindström, N. O. et al. Conserved and divergent molecular and anatomic features of human and mouse nephron patterning. _J. Am. Soc. Nephrol._ 29, 825–840 (2018).


PubMed  PubMed Central  Google Scholar  * Bosco, D. et al. Unique arrangement of α- and β-cells in human islets of Langerhans. 59, 1202–1210 (2010). * Wang, X.-N. et al. A three-dimensional


atlas of human dermal leukocytes, lymphatics, and blood vessels. _J. Invest. Dermatol._ 134, 965–974 (2014). CAS  PubMed  Google Scholar  * Kang, H.-W. et al. A 3D bioprinting system to


produce human-scale tissue constructs with structural integrity. _Nat. Biotechnol._ 34, 312–319 (2016). CAS  PubMed  Google Scholar  * Shapiro, A. J. et al. Islet transplantation in seven


patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regime. _N. Engl. J. Med._ 343, 230–238 (2000). CAS  PubMed  Google Scholar  * Iansante, V., Mitry, R.


R., Filippi, C., Fitzpatrick, E. & Dhawan, A. Human hepatocyte transplantation for liver disease: current status and future perspectives. _Pediatr. Res._ 83, 232–240 (2018). CAS  PubMed


  Google Scholar  * Parker Ponder, K. et al. Mouse hepatocytes migrate to liver parenchyma and function indefinitely after intrasplenic transplantation. _Proc. Natl Acad. Sci. USA_ 88,


1217–1221 (1991). Google Scholar  * Truslow, J. G. & Tien, J. Perfusion systems that minimize vascular volume fraction in engineered tissues. _Biomicrofluidics_ 5, 022201 (2011). PubMed


Central  Google Scholar  * Ronellenfitsch, H. & Katifori, E. Global optimization, local adaptation, and the role of growth in distribution networks. _Phys. Rev. Lett._ 117, 138301


(2016). PubMed  Google Scholar  * Freeman, R. Measuring the flow properties of consolidated, conditioned and aerated powders—a comparative study using a powder rheometer and a rotational


shear cell. _Powder Technol._ 174, 25–33 (2007). CAS  Google Scholar  * Thadavirul, N., Pavasant, P. & Supaphol, P. Development of polycaprolactone porous scaffolds by combining solvent


casting, particulate leaching, and polymer leaching techniques for bone tissue engineering. _J. Biomed. Mater. Res. A_ 102, 3379–3392 (2013). PubMed  Google Scholar  * Miller, J. S. et al.


Bioactive hydrogels made from step-growth derived PEG-peptide macromers. _Biomaterials_ 31, 3736–3743 (2010). CAS  PubMed  PubMed Central  Google Scholar  * Rockwood, D. N. et al. Materials


fabrication from _Bombyx mori_ silk fibroin. _Nat. Protoc._ 6, 1612–1631 (2011). CAS  PubMed  Google Scholar  * Li, W., Germain, R. N. & Gerner, M. Y. Multiplex, quantitative cellular


analysis in large tissue volumes with clearing-enhanced 3D microscopy (Ce3D)._Proc. Natl Acad. Sci. USA_ 114, E7321–E7330 (2017). CAS  PubMed  PubMed Central  Google Scholar  * Thielicke, W.


& Stamhuis, E. J. PIVlab—towards user-friendly, affordable and accurate digital particle image velocimetry in MATLAB. _J. Open Res. Softw._ 2, e30 (2014). Google Scholar  * Thielicke,


W. _The Flapping Flight of Birds—Analysis and Application_. PhD thesis, Rijksuniversiteit Groningen (2014). * Thielicke, W. & Stamhuis, E. J. PIVlab—time-resolved digital particle image


velocimetry tool for MATLAB https://doi.org/10.6084/M9.FIGSHARE.1092508.V5 (2014). * Cheng, N.-S. Formula for the viscosity of a glycerol–water mixture. _Ind. Eng. Chem. Res._ 47, 3285–3288


(2008). CAS  Google Scholar  * Volk, A. & Kähler, C. J. Density model for aqueous glycerol solutions. _Exp. Fluids_ 59, 75 (2018). Google Scholar  * van de Loosdrecht, A. A., Beelen, R.


H., Ossenkoppele, G. J., Broekhoven, M. G. & Langenhuijsen, M. M. A tetrazolium-based colorimetric MTT assay to quantitate human monocyte mediated cytotoxicity against leukemic cells


from cell lines and patients with acute myeloid leukemia. _J. Immunol. Methods_ 174, 311–320 (1994). PubMed  Google Scholar  * Ahrens, J., Geveci, B. & Law, C. in _The Visualization


Handbook_ (eds Hansen, C. D. & Johnson, C. R.) 717–731 (2005). Download references ACKNOWLEDGEMENTS We thank A. Bastian, A. Ta and T. Schmidt for assistance with OpenSLS hardware and


firmware; E. Watson and A. Mikos for assistance with mechanical testing; J. Wagner, P. Desai and C. F. Higgs for assistance with powder rheology; D. De Santos for technical assistance with


carbohydrate SLS; D. Kaplan and W. Stoppel for providing silk fibroin; D. L. Gibbons for providing the 344SQ lung adenocarcinoma cell line; and C. Fortin for help with hepatocyte isolations.


This work was supported in part by a Medical Research Grant from the Robert J. Kleberg Jr and Helen C. Kleberg Foundation (J.S.M.), National Institutes of Health (grants HL134510 and


DK115461 (K.-D.B.)), the Texas Hepatocellular Carcinoma Consortium (THCCC) (CPRIT RP150587 (K.-D.B.)), National Insitutes of Health grant DP2HL137188 (K.R.S.) and National Insitutes of


Health NIBIB Cardiovascular Training grant (T32EB001650 (S.H.S.)). I.S.K. acknowledges support by an F31 National Research Service Award (NRSA) from the National Institutes of Health


(HL140905). The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript. AUTHOR INFORMATION AUTHORS AND AFFILIATIONS *


Department of Bioengineering, Rice University, Houston, TX, USA Ian S. Kinstlinger, Gisele A. Calderon, Karen Vasquez Ruiz, David R. Yalacki, Palvasha R. Deme, Kevin D. Janson, Daniel W.


Sazer, Saarang S. Panchavati & Jordan S. Miller * Department of Bioengineering, University of Washington, Seattle, WA, USA Sarah H. Saxton, Fredrik Johansson & Kelly R. Stevens *


Nervous System, Palenville, NY, USA Jessica E. Rosenkrantz & Jesse D. Louis-Rosenberg * Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA


Karl-Dimiter Bissig * Department of Pathology, University of Washington, Seattle, WA, USA Kelly R. Stevens Authors * Ian S. Kinstlinger View author publications You can also search for this


author inPubMed Google Scholar * Sarah H. Saxton View author publications You can also search for this author inPubMed Google Scholar * Gisele A. Calderon View author publications You can


also search for this author inPubMed Google Scholar * Karen Vasquez Ruiz View author publications You can also search for this author inPubMed Google Scholar * David R. Yalacki View author


publications You can also search for this author inPubMed Google Scholar * Palvasha R. Deme View author publications You can also search for this author inPubMed Google Scholar * Jessica E.


Rosenkrantz View author publications You can also search for this author inPubMed Google Scholar * Jesse D. Louis-Rosenberg View author publications You can also search for this author


inPubMed Google Scholar * Fredrik Johansson View author publications You can also search for this author inPubMed Google Scholar * Kevin D. Janson View author publications You can also


search for this author inPubMed Google Scholar * Daniel W. Sazer View author publications You can also search for this author inPubMed Google Scholar * Saarang S. Panchavati View author


publications You can also search for this author inPubMed Google Scholar * Karl-Dimiter Bissig View author publications You can also search for this author inPubMed Google Scholar * Kelly R.


Stevens View author publications You can also search for this author inPubMed Google Scholar * Jordan S. Miller View author publications You can also search for this author inPubMed Google


Scholar CONTRIBUTIONS I.S.K. and J.S.M. conceived and initiated the project and wrote the manuscript. I.S.K., S.H.S., G.A.C., K.V.R., D.R.Y., P.R.D., K.D.J. and F.J. designed and performed


experiments. I.S.K., S.H.S. and G.A.C. acquired and analysed imaging data. J.E.R., J.D.L.-R. and S.S.P. developed generative design algorithms. D.W.S. synthesized materials. K.-D.B., K.R.S.


and J.S.M. supervised the project. CORRESPONDING AUTHOR Correspondence to Jordan S. Miller. ETHICS DECLARATIONS COMPETING INTERESTS J.S.M. is a co-founder and holds an equity stake in


Volumetric, Inc. J.E.R. and J.D.L.-R. are co-founders and hold equity stakes in Nervous System, Inc. ADDITIONAL INFORMATION PUBLISHER’S NOTE Springer Nature remains neutral with regard to


jurisdictional claims in published maps and institutional affiliations. SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION Supplementary Methods. REPORTING SUMMARY SUPPLEMENTARY VIDEO 1


Annotated video recording of one layer of carbohydrate SLS. SUPPLEMENTARY VIDEO 2 Mutual-tree-attraction algorithm for the generative design of dendritic networks. SUPPLEMENTARY VIDEO 3


Fluorescent bead perfusion through a whole planar dendritic network. SUPPLEMENTARY VIDEO 4 Magnified view of fluorescent bead perfusion through the centre of a planar dendritic network.


SUPPLEMENTARY VIDEO 5 Perfusion of dendritic architectures at a high volumetric flow rate. SUPPLEMENTARY VIDEO 6 Animated volume rendering of a region in an endothelialized planar dendritic


network. SUPPLEMENTARY VIDEO 7 Rotating rendering of a volumetric μCT scan of a dendritic carbohydrate template. SUPPLEMENTARY VIDEO 8 Fly-through rendering of a volumetric μCT scan of a


dendritic carbohydrate template. SUPPLEMENTARY VIDEO 9 Fly-through sequence of MTT staining in sections from a cell-laden gel with dendritic architecture. SUPPLEMENTARY VIDEO 10 Fly-through


sequence of nuclear staining in sections from a cell-laden gel with dendritic architecture. SUPPLEMENTARY VIDEO 11 Fly-through sequence of processed MTT staining images from a cell-laden gel


with dendritic architecture. SUPPLEMENTARY VIDEO 12 Rotating rendering of a volumetrically reconstructed MTT signal in a cell-laden gel with dendritic architecture. SUPPLEMENTARY VIDEO 13


Computational fluid-dynamics simulation of perfusion through a 3D dendritic architecture. RIGHTS AND PERMISSIONS Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Kinstlinger,


I.S., Saxton, S.H., Calderon, G.A. _et al._ Generation of model tissues with dendritic vascular networks via sacrificial laser-sintered carbohydrate templates. _Nat Biomed Eng_ 4, 916–932


(2020). https://doi.org/10.1038/s41551-020-0566-1 Download citation * Received: 27 September 2018 * Accepted: 01 May 2020 * Published: 29 June 2020 * Issue Date: September 2020 * DOI:


https://doi.org/10.1038/s41551-020-0566-1 SHARE THIS ARTICLE Anyone you share the following link with will be able to read this content: Get shareable link Sorry, a shareable link is not


currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative