Opportunities and limitations for studying neuropsychiatric disorders using patient-derived induced pluripotent stem cells

feature-image

Play all audios:

Loading...

ABSTRACT Neuropsychiatric disorders affect a large proportion of the global population and there is an urgent need to understand the pathogenesis and to develop novel and improved treatments


of these devastating disorders. However, the diverse symptomatology combined with complex polygenic etiology, and the limited access to disorder-relevant cell types in human brains


represent a major obstacle for mechanistic disease research. Conventional animal models, such as rodents, are limited by inherent species differences in brain development, architecture, and


function. Advances in human induced pluripotent stem cells (hiPSCs) technologies have provided platforms for new discoveries in neuropsychiatric disorders. First, hiPSC-based disease models


enable unprecedented investigation of psychiatric disorders at the molecular, cellular, and structural levels. Second, hiPSCs derived from patients with known genetics, symptoms, and drug


response profiles offer an opportunity to recapitulate pathogenesis in relevant cell types and provide novel approaches for understanding disease mechanisms and for developing effective


treatments. Third, genome-editing technologies have extended the potential of hiPSCs for generating models to elucidate the genetic basis of rare monogenetic and complex polygenic


psychiatric disorders and to establish the causality between genotype and phenotype. Here we review opportunities and limitations for studying psychiatric disorders using various


hiPSC-derived model systems. Access through your institution Buy or subscribe This is a preview of subscription content, access via your institution ACCESS OPTIONS Access through your


institution Subscribe to this journal Receive 12 print issues and online access $259.00 per year only $21.58 per issue Learn more Buy this article * Purchase on SpringerLink * Instant access


to full article PDF Buy now Prices may be subject to local taxes which are calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in * Learn about institutional subscriptions * Read


our FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS PEERING INTO THE MIND: UNRAVELING SCHIZOPHRENIA’S SECRETS USING MODELS Article 08 September 2024 A RESOURCE OF


INDUCED PLURIPOTENT STEM CELL (IPSC) LINES INCLUDING CLINICAL, GENOMIC, AND CELLULAR DATA FROM GENETICALLY ISOLATED FAMILIES WITH MOOD AND PSYCHOTIC DISORDERS Article Open access 16 December


2023 FUNCTIONAL PATIENT-DERIVED CELLULAR MODELS FOR NEUROPSYCHIATRIC DRUG DISCOVERY Article Open access 17 February 2021 REFERENCES * Wen Z, Christian KM, Song H, Ming GL. Modeling


psychiatric disorders with patient-derived iPSCs. Curr Opin Neurobiol. 2016;36:118–27. Article  CAS  PubMed  Google Scholar  * Amin ND, Paşca SP. Building models of brain disorders with


three-dimensional organoids. Neuron. 2018;100:389–405. Article  CAS  PubMed  Google Scholar  * Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, et al. Induction of


pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131:861–72. Article  CAS  PubMed  Google Scholar  * Jacob F, Schnoll JG, Song H, Ming GL. Building the


brain from scratch: Engineering region-specific brain organoids from human stem cells to study neural development and disease. Curr Top Dev Biol. 2021;142:477–530. Article  PubMed  PubMed


Central  Google Scholar  * Wang M, Zhang L, Gage FH. Modeling neuropsychiatric disorders using human induced pluripotent stem cells. Protein Cell. 2020;11:45–59. Article  CAS  PubMed  Google


Scholar  * Zhang DY, Song H, Ming GL. Modeling neurological disorders using brain organoids. Semin Cell Dev Biol. 2021;111:4–14. Article  PubMed  Google Scholar  * Zhou Y, Su Y, Li S,


Kennedy BC, Zhang DY, Bond AM, et al. Molecular landscapes of human hippocampal immature neurons across lifespan. Nature. 2022;607:527–33. Article  CAS  PubMed  PubMed Central  Google


Scholar  * Tao Y, Zhang SC. Neural subtype specification from human pluripotent stem cells. Cell Stem Cell. 2016;19:573–86. Article  CAS  PubMed  PubMed Central  Google Scholar  * Coghlan S,


Horder J, Inkster B, Mendez MA, Murphy DG, Nutt DJ. GABA system dysfunction in autism and related disorders: from synapse to symptoms. Neurosci Biobehav Rev. 2012;36:2044–55. Article  CAS 


PubMed  PubMed Central  Google Scholar  * Marín O. Interneuron dysfunction in psychiatric disorders. Nat Rev Neurosci. 2012;13:107–20. Article  PubMed  Google Scholar  * Chao HT, Chen H,


Samaco RC, Xue M, Chahrour M, Yoo J, et al. Dysfunction in GABA signalling mediates autism-like stereotypies and Rett syndrome phenotypes. Nature. 2010;468:263–9. Article  CAS  PubMed 


PubMed Central  Google Scholar  * Javitt DC. Glutamatergic theories of schizophrenia. Isr J Psychiatry Relat Sci. 2010;47:4–16. PubMed  Google Scholar  * Lewis DA, Hashimoto T, Volk DW.


Cortical inhibitory neurons and schizophrenia. Nat Rev Neurosci. 2005;6:312–24. Article  CAS  PubMed  Google Scholar  * Li XJ, Zhang X, Johnson MA, Wang ZB, Lavaute T, Zhang SC. Coordination


of sonic hedgehog and Wnt signaling determines ventral and dorsal telencephalic neuron types from human embryonic stem cells. Development. 2009;136:4055–63. Article  CAS  PubMed  PubMed


Central  Google Scholar  * Shi Y, Kirwan P, Livesey FJ. Directed differentiation of human pluripotent stem cells to cerebral cortex neurons and neural networks. Nat Protoc. 2012;7:1836–46.


Article  CAS  PubMed  Google Scholar  * Shi Y, Kirwan P, Smith J, Robinson HP, Livesey FJ. Human cerebral cortex development from pluripotent stem cells to functional excitatory synapses.


Nat Neurosci. 2012;15:477–86. Article  CAS  PubMed  Google Scholar  * Wonders CP, Anderson SA. The origin and specification of cortical interneurons. Nat Rev Neurosci. 2006;7:687–96. Article


  CAS  PubMed  Google Scholar  * Liu Y, Liu H, Sauvey C, Yao L, Zarnowska ED, Zhang SC. Directed differentiation of forebrain GABA interneurons from human pluripotent stem cells. Nat Protoc.


2013;8:1670–9. Article  CAS  PubMed  PubMed Central  Google Scholar  * Maroof AM, Keros S, Tyson JA, Ying SW, Ganat YM, Merkle FT, et al. Directed differentiation and functional maturation


of cortical interneurons from human embryonic stem cells. Cell Stem Cell. 2013;12:559–72. Article  CAS  PubMed  PubMed Central  Google Scholar  * Nicholas CR, Chen J, Tang Y, Southwell DG,


Chalmers N, Vogt D, et al. Functional maturation of hPSC-derived forebrain interneurons requires an extended timeline and mimics human neural development. Cell Stem Cell. 2013;12:573–86.


Article  CAS  PubMed  PubMed Central  Google Scholar  * Abi-Dargham A. Schizophrenia: overview and dopamine dysfunction. J Clin Psychiatry. 2014;75:e31. Article  PubMed  Google Scholar  *


Whitton AE, Treadway MT, Pizzagalli DA. Reward processing dysfunction in major depression, bipolar disorder and schizophrenia. Curr Opin Psychiatry. 2015;28:7–12. Article  PubMed  PubMed


Central  Google Scholar  * Kriks S, Shim JW, Piao J, Ganat YM, Wakeman DR, Xie Z, et al. Dopamine neurons derived from human ES cells efficiently engraft in animal models of Parkinson’s


disease. Nature. 2011;480:547–51. Article  CAS  PubMed  PubMed Central  Google Scholar  * Swistowski A, Peng J, Liu Q, Mali P, Rao MS, Cheng L, et al. Efficient generation of functional


dopaminergic neurons from human induced pluripotent stem cells under defined conditions. Stem Cells. 2010;28:1893–904. Article  CAS  PubMed  Google Scholar  * Ma L, Liu Y, Zhang SC. Directed


differentiation of dopamine neurons from human pluripotent stem cells. Methods Mol Biol. 2011;767:411–8. Article  CAS  PubMed  Google Scholar  * Yu DX, Di Giorgio FP, Yao J, Marchetto MC,


Brennand K, Wright R, et al. Modeling hippocampal neurogenesis using human pluripotent stem cells. Stem Cell Rep. 2014;2:295–310. Article  CAS  Google Scholar  * Mertens J, Wang QW, Kim Y,


Yu DX, Pham S, Yang B, et al. Differential responses to lithium in hyperexcitable neurons from patients with bipolar disorder. Nature. 2015;527:95–99. Article  CAS  PubMed  PubMed Central 


Google Scholar  * Sakaguchi H, Kadoshima T, Soen M, Narii N, Ishida Y, Ohgushi M, et al. Generation of functional hippocampal neurons from self-organizing human embryonic stem cell-derived


dorsomedial telencephalic tissue. Nat Commun. 2015;6:8896. Article  CAS  PubMed  Google Scholar  * Ming GL, Song H. Adult neurogenesis in the mammalian brain: significant answers and


significant questions. Neuron. 2011;70:687–702. Article  CAS  PubMed  PubMed Central  Google Scholar  * Reif A, Fritzen S, Finger M, Strobel A, Lauer M, Schmitt A, et al. Neural stem cell


proliferation is decreased in schizophrenia, but not in depression. Mol Psychiatry. 2006;11:514–22. Article  CAS  PubMed  Google Scholar  * Tamminga CA, Thomas BP, Chin R, Mihalakos P,


Youens K, Wagner AD, et al. Hippocampal novelty activations in schizophrenia: disease and medication effects. Schizophr Res. 2012;138:157–63. Article  PubMed  Google Scholar  * Sarkar A, Mei


A, Paquola ACM, Stern S, Bardy C, Klug JR, et al. Efficient generation of CA3 neurons from human pluripotent stem cells enables modeling of hippocampal connectivity in vitro. Cell Stem


Cell. 2018;22:684–697.e689. Article  CAS  PubMed  PubMed Central  Google Scholar  * Barres BA. The mystery and magic of glia: a perspective on their roles in health and disease. Neuron.


2008;60:430–40. Article  CAS  PubMed  Google Scholar  * Molofsky AV, Krencik R, Ullian EM, Tsai HH, Deneen B, Richardson WD, et al. Astrocytes and disease: a neurodevelopmental perspective.


Genes Dev. 2012;26:891–907. Article  CAS  PubMed  PubMed Central  Google Scholar  * Santos R, Vadodaria KC, Jaeger BN, Mei A, Lefcochilos-Fogelquist S, Mendes APD, et al. Differentiation of


inflammation-responsive astrocytes from glial progenitors generated from human induced pluripotent stem cells. Stem Cell Rep. 2017;8:1757–69. Article  CAS  Google Scholar  * Simons M, Nave


KA. Oligodendrocytes: Myelination and axonal support. Cold Spring Harb Perspect Biol. 2015;8:a020479. Article  PubMed  Google Scholar  * Hu BY, Du ZW, Zhang SC. Differentiation of human


oligodendrocytes from pluripotent stem cells. Nat Protoc. 2009;4:1614–22. Article  CAS  PubMed  PubMed Central  Google Scholar  * Wang S, Bates J, Li X, Schanz S, Chandler-Militello D,


Levine C, et al. Human iPSC-derived oligodendrocyte progenitor cells can myelinate and rescue a mouse model of congenital hypomyelination. Cell Stem Cell. 2013;12:252–64. Article  CAS 


PubMed  PubMed Central  Google Scholar  * Rodrigues GMC, Gaj T, Adil MM, Wahba J, Rao AT, Lorbeer FK, et al. Defined and scalable differentiation of human oligodendrocyte precursors from


pluripotent stem cells in a 3D culture system. Stem Cell Rep. 2017;8:1770–83. Article  CAS  Google Scholar  * Hammond TR, Robinton D, Stevens B. Microglia and the brain: complementary


partners in development and disease. Annu Rev Cell Dev Biol. 2018;34:523–44. Article  CAS  PubMed  Google Scholar  * Ginhoux F, Greter M, Leboeuf M, Nandi S, See P, Gokhan S, et al. Fate


mapping analysis reveals that adult microglia derive from primitive macrophages. Science. 2010;330:841–5. Article  CAS  PubMed  PubMed Central  Google Scholar  * Kierdorf K, Erny D, Goldmann


T, Sander V, Schulz C, Perdiguero EG, et al. Microglia emerge from erythromyeloid precursors via Pu.1- and Irf8-dependent pathways. Nat Neurosci. 2013;16:273–80. Article  CAS  PubMed 


Google Scholar  * Abud EM, Ramirez RN, Martinez ES, Healy LM, Nguyen CHH, Newman SA, et al. iPSC-derived human microglia-like cells to study neurological diseases. Neuron.


2017;94:278–293.e279. Article  CAS  PubMed  PubMed Central  Google Scholar  * Pandya H, Shen MJ, Ichikawa DM, Sedlock AB, Choi Y, Johnson KR, et al. Differentiation of human and murine


induced pluripotent stem cells to microglia-like cells. Nat Neurosci. 2017;20:753–9. Article  CAS  PubMed  PubMed Central  Google Scholar  * Muffat J, Li Y, Yuan B, Mitalipova M, Omer A,


Corcoran S, et al. Efficient derivation of microglia-like cells from human pluripotent stem cells. Nat Med. 2016;22:1358–67. Article  CAS  PubMed  PubMed Central  Google Scholar  * McQuade


A, Coburn M, Tu CH, Hasselmann J, Davtyan H, Blurton-Jones M. Development and validation of a simplified method to generate human microglia from pluripotent stem cells. Mol Neurodegener.


2018;13:67. Article  CAS  PubMed  PubMed Central  Google Scholar  * Zhang Y, Pak C, Han Y, Ahlenius H, Zhang Z, Chanda S, et al. Rapid single-step induction of functional neurons from human


pluripotent stem cells. Neuron. 2013;78:785–98. Article  CAS  PubMed  PubMed Central  Google Scholar  * Yang N, Chanda S, Marro S, Ng YH, Janas JA, Haag D, et al. Generation of pure


GABAergic neurons by transcription factor programming. Nat Methods. 2017;14:621–8. Article  CAS  PubMed  PubMed Central  Google Scholar  * Ng YH, Chanda S, Janas JA, Yang N, Kokubu Y, Südhof


TC, et al. Efficient generation of dopaminergic induced neuronal cells with midbrain characteristics. Stem Cell Rep. 2021;16:1763–76. Article  CAS  Google Scholar  * Powell SK, O’Shea C,


Townsley K, Prytkova I, Dobrindt K, Elahi R, et al. Induction of dopaminergic neurons for neuronal subtype-specific modeling of psychiatric disease risk. Mol Psychiatry. 2021.


https://doi.org/10.1038/s41380-021-01273-0. Online ahead of print. * Canals I, Ginisty A, Quist E, Timmerman R, Fritze J, Miskinyte G, et al. Rapid and efficient induction of functional


astrocytes from human pluripotent stem cells. Nat Methods. 2018;15:693–6. Article  CAS  PubMed  Google Scholar  * Ehrlich M, Mozafari S, Glatza M, Starost L, Velychko S, Hallmann AL, et al.


Rapid and efficient generation of oligodendrocytes from human induced pluripotent stem cells using transcription factors. Proc Natl Acad Sci USA. 2017;114:E2243–e2252. Article  CAS  PubMed 


PubMed Central  Google Scholar  * Chen SW, Hung YS, Fuh JL, Chen NJ, Chu YS, Chen SC, et al. Efficient conversion of human induced pluripotent stem cells into microglia by defined


transcription factors. Stem Cell Rep. 2021;16:1363–80. Article  CAS  Google Scholar  * Dräger NM, Sattler SM, Huang CT, Teter OM, Leng K, Hashemi SH, et al. A CRISPRi/a platform in human


iPSC-derived microglia uncovers regulators of disease states. Nat Neurosci. 2022;25:1149–62. Article  PubMed  PubMed Central  Google Scholar  * Pasca SP, Arlotta P, Bateup HS, Camp JG,


Cappello S, Gage FH, et al. A nomenclature consensus for nervous system organoids and assembloids. Nature. 2022;609:907–10. Article  CAS  PubMed  Google Scholar  * Lancaster MA, Renner M,


Martin CA, Wenzel D, Bicknell LS, Hurles ME, et al. Cerebral organoids model human brain development and microcephaly. Nature. 2013;501:373–9. Article  CAS  PubMed  Google Scholar  * Paşca


AM, Sloan SA, Clarke LE, Tian Y, Makinson CD, Huber N, et al. Functional cortical neurons and astrocytes from human pluripotent stem cells in 3D culture. Nat Methods. 2015;12:671–8. Article


  PubMed  PubMed Central  Google Scholar  * Qian X, Jacob F, Song MM, Nguyen HN, Song H, Ming GL. Generation of human brain region-specific organoids using a miniaturized spinning


bioreactor. Nat Protoc. 2018;13:565–80. Article  CAS  PubMed  PubMed Central  Google Scholar  * Qian X, Nguyen HN, Song MM, Hadiono C, Ogden SC, Hammack C, et al. Brain-region-specific


organoids using mini-bioreactors for Modeling ZIKV exposure. Cell. 2016;165:1238–54. Article  CAS  PubMed  PubMed Central  Google Scholar  * Kadoshima T, Sakaguchi H, Nakano T, Soen M, Ando


S, Eiraku M, et al. Self-organization of axial polarity, inside-out layer pattern, and species-specific progenitor dynamics in human ES cell-derived neocortex. Proc Natl Acad Sci USA.


2013;110:20284–9. Article  CAS  PubMed  PubMed Central  Google Scholar  * Muguruma K, Nishiyama A, Kawakami H, Hashimoto K, Sasai Y. Self-organization of polarized cerebellar tissue in 3D


culture of human pluripotent stem cells. Cell Rep. 2015;10:537–50. Article  CAS  PubMed  Google Scholar  * Xiang Y, Tanaka Y, Cakir B, Patterson B, Kim KY, Sun P, et al. hESC-derived


thalamic organoids form reciprocal projections when fused with cortical organoids. Cell Stem Cell. 2019;24:487–497.e487. Article  CAS  PubMed  PubMed Central  Google Scholar  * Huang WK,


Wong SZH, Pather SR, Nguyen PTT, Zhang F, Zhang DY, et al. Generation of hypothalamic arcuate organoids from human induced pluripotent stem cells. Cell Stem Cell. 2021;28:1657–1670.e1610.


Article  CAS  PubMed  PubMed Central  Google Scholar  * Monzel AS, Smits LM, Hemmer K, Hachi S, Moreno EL, van Wuellen T, et al. Derivation of human midbrain-specific organoids from


neuroepithelial stem cells. Stem Cell Rep. 2017;8:1144–54. Article  CAS  Google Scholar  * Qian X, Su Y, Adam CD, Deutschmann AU, Pather SR, Goldberg EM, et al. Sliced human cortical


organoids for modeling distinct cortical layer formation. Cell Stem Cell. 2020;26:766–781.e769. Article  CAS  PubMed  PubMed Central  Google Scholar  * Marton RM, Pasca SP. Organoid and


assembloid technologies for investigating cellular crosstalk in human brain development and disease. Trends Cell Biol. 2020;30:133–43. Article  CAS  PubMed  Google Scholar  * Bagley JA,


Reumann D, Bian S, Lévi-Strauss J, Knoblich JA. Fused cerebral organoids model interactions between brain regions. Nat Methods. 2017;14:743–51. Article  CAS  PubMed  PubMed Central  Google


Scholar  * Birey F, Andersen J, Makinson CD, Islam S, Wei W, Huber N, et al. Assembly of functionally integrated human forebrain spheroids. Nature. 2017;545:54–59. Article  CAS  PubMed 


PubMed Central  Google Scholar  * Bennett ML, Song H, Ming GL. Microglia modulate neurodevelopment in human neuroimmune organoids. Cell Stem Cell. 2021;28:2035–6. Article  CAS  PubMed 


Google Scholar  * Song L, Yuan X, Jones Z, Vied C, Miao Y, Marzano M, et al. Functionalization of brain region-specific spheroids with isogenic Microglia-like cells. Sci Rep. 2019;9:11055.


Article  PubMed  PubMed Central  Google Scholar  * Shen Q, Goderie SK, Jin L, Karanth N, Sun Y, Abramova N, et al. Endothelial cells stimulate self-renewal and expand neurogenesis of neural


stem cells. Science. 2004;304:1338–40. Article  CAS  PubMed  Google Scholar  * Yin X, Mead BE, Safaee H, Langer R, Karp JM, Levy O. Engineering stem cell organoids. Cell Stem Cell.


2016;18:25–38. Article  CAS  PubMed  PubMed Central  Google Scholar  * Raybaud C. Normal and abnormal embryology and development of the intracranial vascular system. Neurosurg Clin N. Am.


2010;21:399–426. Article  PubMed  Google Scholar  * Paredes I, Himmels P, Ruiz de Almodovar C. Neurovascular communication during CNS development. Dev Cell. 2018;45:10–32. Article  CAS 


PubMed  Google Scholar  * Santander N, Lizama CO, Meky E, McKinsey GL, Jung B, Sheppard D, et al. Lack of Flvcr2 impairs brain angiogenesis without affecting the blood-brain barrier. J Clin


Invest. 2020;130:4055–68. CAS  PubMed  PubMed Central  Google Scholar  * Shi Y, Sun L, Wang M, Liu J, Zhong S, Li R, et al. Vascularized human cortical organoids (vOrganoids) model cortical


development in vivo. PLoS Biol. 2020;18:e3000705. Article  CAS  PubMed  PubMed Central  Google Scholar  * Pham MT, Pollock KM, Rose MD, Cary WA, Stewart HR, Zhou P, et al. Generation of


human vascularized brain organoids. Neuroreport. 2018;29:588–93. Article  PubMed  PubMed Central  Google Scholar  * Chen HI, Wolf JA, Blue R, Song MM, Moreno JD, Ming GL, et al.


Transplantation of human brain organoids: revisiting the science and ethics of brain chimeras. Cell Stem Cell. 2019;25:462–72. Article  CAS  PubMed  PubMed Central  Google Scholar  * Mansour


AA, Gonçalves JT, Bloyd CW, Li H, Fernandes S, Quang D, et al. An in vivo model of functional and vascularized human brain organoids. Nat Biotechnol. 2018;36:432–41. Article  CAS  PubMed 


PubMed Central  Google Scholar  * Dong X, Xu SB, Chen X, Tao M, Tang XY, Fang KH, et al. Human cerebral organoids establish subcortical projections in the mouse brain after transplantation.


Mol Psychiatry. 2021;26:2964–76. Article  CAS  PubMed  Google Scholar  * Revah O, Gore F, Kelley KW, Andersen J, Sakai N, Chen X, et al. Maturation and circuit integration of transplanted


human cortical organoids. Nature. 2022;610:319–26. Article  CAS  PubMed  PubMed Central  Google Scholar  * Sacco R, Cacci E, Novarino G. Neural stem cells in neuropsychiatric disorders. Curr


Opin Neurobiol. 2018;48:131–8. Article  CAS  PubMed  Google Scholar  * Villa C, Combi R, Conconi D, Lavitrano M. Patient-derived Induced Pluripotent Stem Cells (iPSCs) and cerebral


organoids for drug screening and development in autism spectrum disorder: opportunities and challenges. Pharmaceutics. 2021;13:280. Article  CAS  PubMed  PubMed Central  Google Scholar  *


Kahn RS, Sommer IE, Murray RM, Meyer-Lindenberg A, Weinberger DR, Cannon TD, et al. Schizophrenia. Nat Rev Dis Prim. 2015;1:15067. Article  PubMed  Google Scholar  * Chiang CH, Su Y, Wen Z,


Yoritomo N, Ross CA, Margolis RL, et al. Integration-free induced pluripotent stem cells derived from schizophrenia patients with a DISC1 mutation. Mol Psychiatry. 2011;16:358–60. Article 


CAS  PubMed  PubMed Central  Google Scholar  * Brennand KJ, Simone A, Jou J, Gelboin-Burkhart C, Tran N, Sangar S, et al. Modelling schizophrenia using human induced pluripotent stem cells.


Nature. 2011;473:221–5. Article  CAS  PubMed  PubMed Central  Google Scholar  * Robicsek O, Karry R, Petit I, Salman-Kesner N, Muller FJ, Klein E, et al. Abnormal neuronal differentiation


and mitochondrial dysfunction in hair follicle-derived induced pluripotent stem cells of schizophrenia patients. Mol Psychiatry. 2013;18:1067–76. Article  CAS  PubMed  Google Scholar  *


Stertz L, Di ReJ, Pei G, Fries GR, Mendez E, Li S, et al. Convergent genomic and pharmacological evidence of PI3K/GSK3 signaling alterations in neurons from schizophrenia patients.


Neuropsychopharmacology. 2021;46:673–82. Article  CAS  PubMed  Google Scholar  * Wen Z, Nguyen HN, Guo Z, Lalli MA, Wang X, Su Y, et al. Synaptic dysregulation in a human iPS cell model of


mental disorders. Nature. 2014;515:414–8. Article  CAS  PubMed  PubMed Central  Google Scholar  * Page SC, Sripathy SR, Farinelli F, Ye Z, Wang Y, Hiler DJ, et al. Electrophysiological


measures from human iPSC-derived neurons are associated with schizophrenia clinical status and predict individual cognitive performance. Proc Natl Acad Sci USA. 2022;119:e2109395119. Article


  CAS  PubMed  PubMed Central  Google Scholar  * Lord C, Brugha TS, Charman T, Cusack J, Dumas G, Frazier T, et al. Autism spectrum disorder. Nat Rev Dis Prim. 2020;6:5. Article  PubMed 


Google Scholar  * Geschwind DH. Autism: many genes, common pathways? Cell. 2008;135:391–5. Article  CAS  PubMed  PubMed Central  Google Scholar  * Marchetto MC, Belinson H, Tian Y, Freitas


BC, Fu C, Vadodaria K, et al. Altered proliferation and networks in neural cells derived from idiopathic autistic individuals. Mol Psychiatry. 2017;22:820–35. Article  CAS  PubMed  Google


Scholar  * Mariani J, Coppola G, Zhang P, Abyzov A, Provini L, Tomasini L, et al. FOXG1-dependent dysregulation of GABA/Glutamate neuron differentiation in autism spectrum disorders. Cell.


2015;162:375–90. Article  CAS  PubMed  PubMed Central  Google Scholar  * Wang M, Wei PC, Lim CK, Gallina IS, Marshall S, Marchetto MC, et al. Increased neural progenitor proliferation in a


hiPSC Model of autism induces replication stress-associated genome instability. Cell Stem Cell. 2020;26:221–233.e226. Article  CAS  PubMed  PubMed Central  Google Scholar  * Malhotra D,


Sebat J. CNVs: harbingers of a rare variant revolution in psychiatric genetics. Cell. 2012;148:1223–41. Article  CAS  PubMed  PubMed Central  Google Scholar  * Sebat J, Lakshmi B, Malhotra


D, Troge J, Lese-Martin C, Walsh T, et al. Strong association of de novo copy number mutations with autism. Science. 2007;316:445–9. Article  CAS  PubMed  PubMed Central  Google Scholar  *


McCarthy SE, Makarov V, Kirov G, Addington AM, McClellan J, Yoon S, et al. Microduplications of 16p11.2 are associated with schizophrenia. Nat Genet. 2009;41:1223–7. Article  CAS  PubMed 


PubMed Central  Google Scholar  * Pinto D, Pagnamenta AT, Klei L, Anney R, Merico D, Regan R, et al. Functional impact of global rare copy number variation in autism spectrum disorders.


Nature. 2010;466:368–72. Article  CAS  PubMed  PubMed Central  Google Scholar  * Yoon KJ, Nguyen HN, Ursini G, Zhang F, Kim NS, Wen Z, et al. Modeling a genetic risk for schizophrenia in


iPSCs and mice reveals neural stem cell deficits associated with adherens junctions and polarity. Cell Stem Cell. 2014;15:79–91. Article  CAS  PubMed  PubMed Central  Google Scholar  *


Sawada T, Chater TE, Sasagawa Y, Yoshimura M, Fujimori-Tonou N, Tanaka K, et al. Developmental excitation-inhibition imbalance underlying psychoses revealed by single-cell analyses of


discordant twins-derived cerebral organoids. Mol Psychiatry. 2020;25:2695–711. Article  PubMed  PubMed Central  Google Scholar  * Sellgren CM, Gracias J, Watmuff B, Biag JD, Thanos JM,


Whittredge PB, et al. Increased synapse elimination by microglia in schizophrenia patient-derived models of synaptic pruning. Nat Neurosci. 2019;22:374–85. Article  CAS  PubMed  PubMed


Central  Google Scholar  * de Jong JO, Llapashtica C, Genestine M, Strauss K, Provenzano F, Sun Y, et al. Cortical overgrowth in a preclinical forebrain organoid model of CNTNAP2-associated


autism spectrum disorder. Nat Commun. 2021;12:4087. Article  PubMed  PubMed Central  Google Scholar  * Urresti J, Zhang P, Moran-Losada P, Yu NK, Negraes PD, Trujillo CA, et al. Cortical


organoids model early brain development disrupted by 16p11.2 copy number variants in autism. Mol Psychiatry. 2021;26:7560–80. Article  CAS  PubMed  PubMed Central  Google Scholar  *


Martin-Brevet S, Rodríguez-Herreros B, Nielsen JA, Moreau C, Modenato C, Maillard AM, et al. Quantifying the effects of 16p11.2 copy number variants on brain structure: a multisite


genetic-first study. Biol Psychiatry. 2018;84:253–64. Article  CAS  PubMed  Google Scholar  * Sønderby IE, Gústafsson Ó, Doan NT, Hibar DP, Martin-Brevet S, Abdellaoui A, et al. Dose


response of the 16p11.2 distal copy number variant on intracranial volume and basal ganglia. Mol Psychiatry. 2020;25:584–602. Article  PubMed  Google Scholar  * Ye F, Kang E, Yu C, Qian X,


Jacob F, Yu C, et al. DISC1 regulates neurogenesis via modulating Kinetochore attachment of Ndel1/Nde1 during Mitosis. Neuron. 2017;96:1041–1054.e1045. Article  CAS  PubMed  PubMed Central 


Google Scholar  * Stoner R, Chow ML, Boyle MP, Sunkin SM, Mouton PR, Roy S, et al. Patches of disorganization in the neocortex of children with autism. N. Engl J Med. 2014;370:1209–19.


Article  CAS  PubMed  PubMed Central  Google Scholar  * Stern S, Santos R, Marchetto MC, Mendes APD, Rouleau GA, Biesmans S, et al. Neurons derived from patients with bipolar disorder divide


into intrinsically different sub-populations of neurons, predicting the patients’ responsiveness to lithium. Mol Psychiatry. 2018;23:1453–65. Article  CAS  PubMed  Google Scholar  * Kamijo


S, Ishii Y, Horigane SI, Suzuki K, Ohkura M, Nakai J, et al. A critical neurodevelopmental role for L-type voltage-gated calcium channels in neurite extension and radial migration. J


Neurosci. 2018;38:5551–66. Article  CAS  PubMed  PubMed Central  Google Scholar  * Bhat S, Dao DT, Terrillion CE, Arad M, Smith RJ, Soldatov NM, et al. CACNA1C (Cav1.2) in the


pathophysiology of psychiatric disease. Prog Neurobiol. 2012;99:1–14. Article  CAS  PubMed  PubMed Central  Google Scholar  * Birey F, Li MY, Gordon A, Thete MV, Valencia AM, Revah O, et al.


Dissecting the molecular basis of human interneuron migration in forebrain assembloids from Timothy syndrome. Cell Stem Cell. 2022;29:248–264.e247. Article  CAS  PubMed  Google Scholar  *


Ruzzo EK, Pérez-Cano L, Jung JY, Wang LK, Kashef-Haghighi D, Hartl C, et al. Inherited and De Novo genetic risk for autism impacts shared networks. Cell. 2019;178:850–866.e826. Article  CAS


  PubMed  PubMed Central  Google Scholar  * Sanders SJ, Murtha MT, Gupta AR, Murdoch JD, Raubeson MJ, Willsey AJ, et al. De novo mutations revealed by whole-exome sequencing are strongly


associated with autism. Nature. 2012;485:237–41. Article  CAS  PubMed  PubMed Central  Google Scholar  * Grove J, Ripke S, Als TD, Mattheisen M, Walters RK, Won H, et al. Identification of


common genetic risk variants for autism spectrum disorder. Nat Genet. 2019;51:431–44. Article  CAS  PubMed  PubMed Central  Google Scholar  * Satterstrom FK, Kosmicki JA, Wang J, Breen MS,


De Rubeis S, An JY, et al. Large-scale exome sequencing study implicates both developmental and functional changes in the neurobiology of autism. Cell. 2020;180:568–584.e523. Article  CAS 


PubMed  PubMed Central  Google Scholar  * Cederquist GY, Tchieu J, Callahan SJ, Ramnarine K, Ryan S, Zhang C, et al. A multiplex human pluripotent stem cell platform defines molecular and


functional subclasses of autism-related genes. Cell Stem Cell. 2020;27:35–49.e36. Article  CAS  PubMed  PubMed Central  Google Scholar  * Paulsen B, Velasco S, Kedaigle AJ, Pigoni M,


Quadrato G, Deo AJ, et al. Autism genes converge on asynchronous development of shared neuron classes. Nature. 2022;602:268–73. Article  CAS  PubMed  PubMed Central  Google Scholar  *


Pardiñas AF, Holmans P, Pocklington AJ, Escott-Price V, Ripke S, Carrera N, et al. Common schizophrenia alleles are enriched in mutation-intolerant genes and in regions under strong


background selection. Nat Genet. 2018;50:381–9. Article  PubMed  PubMed Central  Google Scholar  * Stahl EA, Breen G, Forstner AJ, McQuillin A, Ripke S, Trubetskoy V, et al. Genome-wide


association study identifies 30 loci associated with bipolar disorder. Nat Genet. 2019;51:793–803. Article  CAS  PubMed  PubMed Central  Google Scholar  * Forrest MP, Zhang H, Moy W, McGowan


H, Leites C, Dionisio LE, et al. Open chromatin profiling in hiPSC-derived neurons prioritizes functional noncoding psychiatric risk variants and highlights neurodevelopmental Loci. Cell


Stem Cell. 2017;21:305–318.e308. Article  CAS  PubMed  PubMed Central  Google Scholar  * Schrode N, Ho SM, Yamamuro K, Dobbyn A, Huckins L, Matos MR, et al. Synergistic effects of common


schizophrenia risk variants. Nat Genet. 2019;51:1475–85. Article  CAS  PubMed  PubMed Central  Google Scholar  * Das D, Feuer K, Wahbeh M, Avramopoulos D. Modeling psychiatric disorder


biology with stem cells. Curr Psychiatry Rep. 2020;22:24. Article  PubMed  PubMed Central  Google Scholar  * Brookhouser N, Tekel SJ, Standage-Beier K, Nguyen T, Schwarz G, Wang X, et al.


BIG-TREE: Base-edited isogenic hPSC line generation using a transient reporter for editing enrichment. Stem Cell Rep. 2020;14:184–91. Article  CAS  Google Scholar  * Chang YJ, Xu CL, Cui X,


Bassuk AG, Mahajan VB, Tsai YT, et al. CRISPR base editing in induced pluripotent stem cells. Methods Mol Biol. 2019;2045:337–46. Article  CAS  PubMed  Google Scholar  * Sürün D, Schneider


A, Mircetic J, Neumann K, Lansing F, Paszkowski-Rogacz M, et al. Efficient generation and correction of mutations in human iPS cells utilizing mRNAs of CRISPR base editors and prime editors.


Genes. 2020;11:511. Article  PubMed  PubMed Central  Google Scholar  * Anzalone AV, Randolph PB, Davis JR, Sousa AA, Koblan LW, Levy JM, et al. Search-and-replace genome editing without


double-strand breaks or donor DNA. Nature. 2019;576:149–57. Article  CAS  PubMed  PubMed Central  Google Scholar  * McTague A, Rossignoli G, Ferrini A, Barral S, Kurian MA. Genome editing in


iPSC-based neural systems: from disease models to future therapeutic strategies. Front Genome Ed. 2021;3:630600. Article  PubMed  PubMed Central  Google Scholar  * Matos MR, Ho SM, Schrode


N, Brennand KJ. Integration of CRISPR-engineering and hiPSC-based models of psychiatric genomics. Mol Cell Neurosci. 2020;107:103532. Article  CAS  PubMed  PubMed Central  Google Scholar  *


Li Q, Barres BA. Microglia and macrophages in brain homeostasis and disease. Nat Rev Immunol. 2018;18:225–42. Article  CAS  PubMed  Google Scholar  * Ormel PR, Vieira de Sa R, van Bodegraven


EJ, Karst H, Harschnitz O, Sneeboer MAM, et al. Microglia innately develop within cerebral organoids. Nat Commun. 2018;9:4167. Article  PubMed  PubMed Central  Google Scholar  * Xu R,


Boreland AJ, Li X, Erickson C, Jin M, Atkins C, et al. Developing human pluripotent stem cell-based cerebral organoids with a controllable microglia ratio for modeling brain development and


pathology. Stem Cell Rep. 2021;16:1923–37. Article  Google Scholar  * Su Y, Zhou Y, Bennett ML, Li S, Carceles-Cordon M, Lu L, et al. A single-cell transcriptome atlas of glial diversity in


the human hippocampus across the postnatal lifespan. Cell Stem Cell. 2022;29:1594–1610.e1598. Article  CAS  PubMed  Google Scholar  * Kim NS, Wen Z, Liu J, Zhou Y, Guo Z, Xu C, et al.


Pharmacological rescue in patient iPSC and mouse models with a rare DISC1 mutation. Nat Commun. 2021;12:1398. Article  CAS  PubMed  PubMed Central  Google Scholar  Download references


FUNDING Funding The research in the authors’ laboratory were supported by grants from the Institutes of Health (R35NS097370, U19AI131130, RF1MH123979, R01MH125528 to GLM, and R35NS116843,


U01HG012047, RF1AG079557, and U19MH106434 to H.S.) and from Dr. Miriam and Sheldon G. Adelson Medical Research Foundation (to GLM). AUTHOR INFORMATION AUTHORS AND AFFILIATIONS * Department


of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA Yan Hong, Qian Yang, Hongjun Song & Guo-li Ming *


Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA Hongjun Song & Guo-li Ming * Institute for Regenerative


Medicine, University of Pennsylvania, Philadelphia, PA, USA Hongjun Song & Guo-li Ming * The Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia,


PA, USA Hongjun Song * Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA Guo-li Ming Authors * Yan Hong View author publications You


can also search for this author inPubMed Google Scholar * Qian Yang View author publications You can also search for this author inPubMed Google Scholar * Hongjun Song View author


publications You can also search for this author inPubMed Google Scholar * Guo-li Ming View author publications You can also search for this author inPubMed Google Scholar CONTRIBUTIONS YH


wrote the manuscript with contributions from all co-authors. CORRESPONDING AUTHOR Correspondence to Guo-li Ming. ETHICS DECLARATIONS COMPETING INTERESTS The authors declare no competing


interests. ADDITIONAL INFORMATION PUBLISHER’S NOTE Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. RIGHTS AND


PERMISSIONS Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s);


author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Reprints and permissions ABOUT THIS


ARTICLE CITE THIS ARTICLE Hong, Y., Yang, Q., Song, H. _et al._ Opportunities and limitations for studying neuropsychiatric disorders using patient-derived induced pluripotent stem cells.


_Mol Psychiatry_ 28, 1430–1439 (2023). https://doi.org/10.1038/s41380-023-01990-8 Download citation * Received: 21 September 2022 * Revised: 27 January 2023 * Accepted: 31 January 2023 *


Published: 13 February 2023 * Issue Date: April 2023 * DOI: https://doi.org/10.1038/s41380-023-01990-8 SHARE THIS ARTICLE Anyone you share the following link with will be able to read this


content: Get shareable link Sorry, a shareable link is not currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative