
- Select a language for the TTS:
- UK English Female
- UK English Male
- US English Female
- US English Male
- Australian Female
- Australian Male
- Language selected: (auto detect) - EN
Play all audios:
During the past decade, there has been an explosion in the development of novel optical techniques in biomedical research and clinical applications. Immense progress has been made in optical
imaging and detection to provide necessary biological information for disease diagnosis and in-depth understanding of biological processes. Moreover, recent advances integrating laser
technology with biomarkers have enabled novel diagnostic and treatment approaches for different types of diseases. The special issue on Biomedical Optics collects 20 excellent papers: 18
original papers and 2 review articles, spanning NIR II imaging, high-speed imaging, adaptive wavefront shaping, label-free imaging, ultrasensitive detection, polarization optics,
photodynamic therapy, and preclinical applications. NIR II IMAGING With 1700 nm optical coherence microscopy, Zhu et al. from the University of California-Davis successfully demonstrated
deep label-free imaging, with great image resolution benefitting from the low scattering coefficient at 1700 nm1. With this technique, divergent superficial and deep cortical layers were
observed in an Alzheimer’s disease (AD) mouse model. This was supported by Feng et al.’s work from Zhejiang University, in which the deep imaging performance of NIR II illumination has been
studied extensively2. Moreover, Tao et al. from Shanghai Jiaotong University reported that 1070-nm light pulses at 10 Hz can trigger microglial rather than astrocyte responses in AD mice,
paving a new avenue for AD treatment3. Taking advantage of the hot-band absorption of indocyanine green (ICG), a dye approved by the US Food and Drug Administration for clinical use,
anti-Stokes fluorescence imaging was first demonstrated by a joint research team from China and the US4. HIGH-SPEED IMAGING To address the missing cone problem in conventional light-field
microscopy (LFM), Xiong et al. from Tsinghua University developed mirror-enhanced LFM, which realizes long-term high-speed imaging with isotropic 3D resolution. The technique has been
applied to the imaging of various cellular organelle interactions and stable 3D blood cell tracking in zebrafish larvae at volume rates as high as 18 Hz5. Zhao et al. from Beihang University
presented halftone spatial frequency domain imaging (SFDI), realizing kilohertz high-speed (two orders of magnitude faster than the state-of-the-art technique) label-free imaging by using
DMD for modulation of illumination. This approach can be applied to noncontact wide-field imaging and quantification of the optical properties of strongly turbid media6. ADAPTIVE IMAGING AND
WAVEFRONT SHAPING Digital micromirror devices (DMDs) have played a key role in both display and biological microscopy. In this issue, Abouakil et al. from Aix Marseille University in France
have reported two approaches of adaptive imaging of biological surfaces by using DMDs; both approaches yield over 20-fold reduction in light dose7. Yang et al. from Beihang University
achieved fast wavefront shaping for anti-scattering light focusing with synthetic DMD multipixel encoding8. Compared with state-of-the-art DMD-based wavefront shaping, this technique
increased the speed of optimization and enhancement of focus by 179- and 16-fold, respectively. DMD has also been applied in halftone SFDI for fast illumination pattern generation6.
LABEL-FREE IMAGING With 3D volumetric transport optical diffraction tomography and synthetic aperture, Li et al. from Nanjing University of Science and Technology reported a novel label-free
microscopy technique, which achieves 200 nm lateral and 500 nm axial resolution, on both cell lines and _C. elegans_ imaging9. By using Monte-Carlo simulation following with experimental
validation, Li et al. from Huazhong University of Science and Technology have demonstrated that the transmissive-detected laser speckle contrast imaging showing superior performance over
reflective-detection counterparts for blood flow monitoring in thick tissue, on different samples such as tissue phantom, animal, and human hands10. POLARIZATION EFFECTS Polarization plays
an important role in biomedical imaging. With single-shot illumination, Tang et al. from University of Washington traced the evolution of the polarization state in depth along the Poincare
sphere, achieving depth-resolved collagen imaging on both an animal model (rodent heart, ex vivo) and human subjects (face, in vivo) with polarization-sensitive OCT11. In fluorescence
microscopy, Guan et al. from Peking University and Tsinghua University reported the combination of lock-in detection with the fluorescence polarization detection, yielding the detection of a
universal fluorescence anisotropy of subcellular organelles in live cells, reflecting subtle heterogeneity of the subcellular compartments that was too weak to detect before12. He et al.
from Oxford University have contributed a comprehensive review on the application of polarization optics in biomedical and clinical study. Cell and tissue polarimetry related methodologies
and applications were covered in the Stokes–Mueller expressions13. Recent breakthroughs, development trends, and emerging multimodal techniques are also discussed. ULTRASENSITIVE DETECTION
Through plasmonic spectral comb, researchers from Tsinghua University and Jinan University developed a simple optical fiber biosensing platform for ultrasensitive detection of endocrine
disruptors, with sensitivity of environmental estrogens detection down to nanogram per liter level14. An international team led by researchers from Shenzhen University (China) and Buffalo
University (USA) has proposed a novel fluorescence lifetime imaging assay to study the fine genomic structural alterations such as DNA compaction, replication, and gene expression, based on
the lifetime change of DNA fluorescence probes in responding to their local refractive index, and the Förster resonance energy transfer (FRET) process15. PHOTODYNAMIC THERAPY PDT has been
applied as a clinically approved treatment for cancers, despite its limitations, such as relatively low efficiency and the inability to penetrate deep tissue. In this issue, Shramova et al.
from the Russian Academy of Sciences developed genetically encoded bioluminescence resonance energy transfer (BRET)-activated photodynamic therapy toward a self-glowing, deep-tissue
“photodynamic” therapy without any external light source16. With polymer-encapsulated carbonized hemin nanoparticles as photosensitizers, Lin et al. from Shanghai Jiao-tong University
demonstrated superior in vitro and in vivo PDT effects through improved ROS generation efficiency, hypoxia relief, and glutathione depletion17. PRECLINICAL APPLICATIONS Pshenay-Severin et
al. from the Russian Academy of Sciences reported an ultracompact fiber-scanning endoscope platform for multimodal nonlinear endomicroscopy18. Based on a powerful, compact four-wave
mixing-based fiber laser and a 2.4 mm diameter NIR-dual-waveband corrected endomicroscopic high-numerical-aperture objective, ultrahigh spatiotemporal resolution tissue imaging at 1 fps with
submicron spatial resolution has been achieved. Furthermore, with fluorescence in vivo flow cytometry (IVFC), circulating tumor cells (CTCs) were monitored noninvasively in an orthotopic
mouse model of human prostate cancer19. Researchers from Shanghai Jiaotong University and Peking University found that CTCs exhibited stochastic bursts over cancer progression. IVFC has also
been applied to hematologic malignancy models by Williams et al.20,21. Optical coherence tomography angiography (OCTA) has become an emerging tool for retinal diagnosis. In a review paper,
authors from the University of Surrey in the UK listed the key steps for standardizing OCTA imaging of the human retina, analyzed issues and inconsistencies, and proposed minimum standards
for imaging protocols, data analysis methods, metrics, reporting of findings, and clinical practice, as well as possible areas that require further investigation22. We hope you enjoy reading
these exciting breakthroughs. We thank all the authors and reviewers for their strong support of this special issue. Additionally, we are grateful to the editors of _Light: Science and
Applications_ for giving us the opportunity to organize this special issue. Last but not least, we express our gratitude to the editorial team of _Light: Science and Applications_ for their
excellent and professional work. REFERENCES * Zhu, J. et al. 1700 nm optical coherence microscopy enables minimally invasive, label-free, in vivo optical biopsy deep in the mouse brain.
_Light: Sci. Appl._ 10, 145 (2021). Article ADS Google Scholar * Feng, Z. et al. Perfecting and extending the near-infrared imaging window. _Light: Sci. Appl._ 10, 197 (2021). Article
ADS Google Scholar * Tao, L. et al. Microglia modulation with 1070-nm light attenuates Aβ burden and cognitive impairment in Alzheimer’s disease mouse model. _Light: Sci. Appl._ 10, 179
(2021). Article ADS Google Scholar * Zhou, J. et al. Hot-band absorption of indocyanine green for advanced anti-stokes fluorescence bioimaging. _Light: Sci. Appl._ 10, 182 (2021). Article
ADS Google Scholar * Xiong, B. et al. Mirror-enhanced scanning light-field microscopy for long-term high-speed 3D imaging with isotropic resolution. _Light: Sci. Appl._ 10, 227 (2021).
Article ADS Google Scholar * Zhao, Y. et al. Halftone spatial frequency domain imaging enables kilohertz high-speed label-free non-contact quantitative mapping of optical properties for
strongly turbid media. _Light: Sci. Appl._ 10, 245 (2021). Article ADS Google Scholar * Abouakil, F. et al. An adaptive microscope for the imaging of biological surfaces. _Light: Sci.
Appl._ 10, 210 (2021). Article ADS Google Scholar * Yang, J. et al. Anti-scattering light focusing by fast wavefront shaping based on multi-pixel encoded digital-micromirror device.
_Light: Sci. Appl._ 10, 149 (2021). Article ADS Google Scholar * Li, J. et al. Transport of intensity diffraction tomography with non-interferometric synthetic aperture for
three-dimensional label-free microscopy. _Light: Sci. Appl._ 11, 154 (2022). Google Scholar * Li, D. Y. et al. Transmissive-detected laser speckle contrast imaging for blood flow monitoring
in thick tissue: from Monte Carlo simulation to experimental demonstration. _Light: Sci. Appl._ 10, 241 (2021). Article ADS Google Scholar * Tang, P. et al. Polarization sensitive
optical coherence tomography with single input for imaging depth-resolved collagen organizations. _Light: Sci. Appl._ 10, 237 (2021). Article ADS Google Scholar * Guan, M. et al.
Polarization modulation with optical lock-in detection reveals universal fluorescence anisotropy of subcellular structures in live cells. _Light: Sci. Appl._ 11, 4 (2022). Article ADS
Google Scholar * He, C. et al. Polarisation optics for biomedical and clinical applications: a review. _Light: Sci. Appl._ 10, 194 (2021). Article ADS Google Scholar * Liu, L. et al.
Ultrasensitive detection of endocrine disruptors via superfine plasmonic spectral combs. _Light: Sci. Appl._ 10, 181 (2021). Article ADS Google Scholar * Levchenko, S. M. et al.
Fluorescence lifetime imaging for studying DNA compaction and gene activities. _Light: Sci. Appl._ 10, 224 (2021). Article ADS Google Scholar * Shramova, E. I. et al. Genetically encoded
BRET-activated photodynamic therapy for the treatment of deep-seated tumors. _Light: Sci. Appl._ 11, 38 (2022). Article ADS Google Scholar * Lin, L. et al. Light amplified oxidative
stress in tumor microenvironment by carbonized hemin nanoparticles for boosting photodynamic anticancer therapy. _Light: Sci. Appl._ 11, 47 (2022). Article ADS Google Scholar *
Pshenay-Severin, E. et al. Multimodal nonlinear endomicroscopic imaging probe using a double-core double-clad fiber and focus-combining micro-optical concept. _Light: Sci. Appl._ 10, 207
(2021). Article ADS Google Scholar * Zhu, X. et al. In vivo flow cytometry reveals a circadian rhythm of circulating tumor cells. _Light: Sci. Appl._ 10, 110 (2021). Article ADS Google
Scholar * Williams, A. L. et al. Comment on “In vivo flow cytometry reveals a circadian rhythm of circulating tumor cells”. _Light: Sci. Appl._ 10, 188 (2021). Article ADS Google Scholar
* Zhu, X. et al. Reply to Comment on “In vivo flow cytometry reveals a circadian rhythm of circulating tumor cells”. _Light: Sci. Appl._ 10, 189 (2021). Article ADS Google Scholar *
Sampson, D. M. et al. Towards standardizing retinal optical coherence tomography angiography: a review. _Light: Sci. Appl._ 11, 63 (2022). Article ADS Google Scholar Download references
AUTHOR INFORMATION AUTHORS AND AFFILIATIONS * Department of Biomedical Engineering, College of Future Technology, Peking University, 100871, Beijing, China Peng Xi * Department of Biomedical
Engineering, Peking University, 100081, Beijing, China Xunbin Wei * Center for Biomedical Optics and Photonics (CBOP) & College of Physics and Optoelectronic Engineering, Key Laboratory
of Optoelectronic Devices and Systems of Guangdong Province and Ministry of Education, Shenzhen University, 518060, Shenzhen, China Junle Qu * Saratov State University, 83 Astrakhanskaya
str., Saratov, 410012, Russia Valery V. Tuchin Authors * Peng Xi View author publications You can also search for this author inPubMed Google Scholar * Xunbin Wei View author publications
You can also search for this author inPubMed Google Scholar * Junle Qu View author publications You can also search for this author inPubMed Google Scholar * Valery V. Tuchin View author
publications You can also search for this author inPubMed Google Scholar CORRESPONDING AUTHOR Correspondence to Peng Xi. RIGHTS AND PERMISSIONS OPEN ACCESS This article is licensed under a
Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit
to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are
included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
license, visit http://creativecommons.org/licenses/by/4.0/. Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Xi, P., Wei, X., Qu, J. _et al._ Shedding light on biology and
healthcare—preface to the special issue on Biomedical Optics. _Light Sci Appl_ 11, 156 (2022). https://doi.org/10.1038/s41377-022-00804-w Download citation * Received: 15 April 2022 *
Accepted: 15 April 2022 * Published: 02 June 2022 * DOI: https://doi.org/10.1038/s41377-022-00804-w SHARE THIS ARTICLE Anyone you share the following link with will be able to read this
content: Get shareable link Sorry, a shareable link is not currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative