Evidence of mitochondrial dysfunction and impaired ros detoxifying machinery in fanconi anemia cells

feature-image

Play all audios:

Loading...

ABSTRACT Fanconi Anemia (FA) is a rare genetic disorder associated with a bone-marrow failure, cancer predisposition and hypersensitivity to DNA crosslinking agents. Majority of the 15 FA


genes and encoded proteins characterized so far are integrated into DNA repair pathways, however, other important functions cannot be excluded. FA cells are sensitive to oxidants, and


accumulation of oxidized proteins has been characterized for several FA subgroups. Clinical phenotypes of both FA and other closely related diseases suggest altered functions of


mitochondria, organelles responsible for cellular energetic metabolism, and also serving as an important producer and the most susceptible target from reactive oxidative species (ROS). In


this study, we have shown that elevated level of mitochondrial ROS in FA cells is in parallel with the decrease of mitochondrial membrane potential, the decrease of ATP production, impaired


oxygen uptake and pathological changes in the morphology of mitochondria. This is accompanied by inactivation of enzymes that are essential for the energy production (F1F0ATPase and


cytochrome C oxidase) and detoxification of ROS (superoxide dismutase, SOD1). In turn, overexpression of SOD1 could rescue oxygen consumption rate in FA-deficient cells. Importantly, the


depletion of mitochondria improved survival rate of mitomycin C treated FA cells suggesting that hypersensitivity of FA cells to chemotherapeutic drugs could be in part due to the


mitochondria-mediated oxidative stress. On the basis of our results, we propose that deficiency in FA genes lead to disabling mitochondrial ROS-scavenging machinery further affecting


mitochondrial functions and suppressing cell respiration. Access through your institution Buy or subscribe This is a preview of subscription content, access via your institution ACCESS


OPTIONS Access through your institution Subscribe to this journal Receive 50 print issues and online access $259.00 per year only $5.18 per issue Learn more Buy this article * Purchase on


SpringerLink * Instant access to full article PDF Buy now Prices may be subject to local taxes which are calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in * Learn about


institutional subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS CONGENITAL SIDEROBLASTIC ANEMIA MODEL DUE TO _ALAS2_ MUTATION IS SUSCEPTIBLE TO


FERROPTOSIS Article Open access 30 May 2022 DECIPHERING THE ROLE OF POST-TRANSLATIONAL MODIFICATIONS IN FANCONI ANEMIA PROTEINS AND THEIR INFLUENCE ON TUMORIGENESIS Article 15 June 2024


FERRITIN-MEDIATED MITOCHONDRIAL IRON HOMEOSTASIS IS ESSENTIAL FOR THE SURVIVAL OF HEMATOPOIETIC STEM CELLS AND LEUKEMIC STEM CELLS Article 24 February 2024 REFERENCES * Moldovan GL,


D'Andrea AD . FANCD2 hurdles the DNA interstrand crosslink. _Cell_ 2009; 139: 1222–1224. Article  Google Scholar  * Kim Y, Lach FP, Desetty R, Hanenberg H, Auerbach AD, Smogorzewska A .


Mutations of the SLX4 gene in Fanconi Anemia. _Nat Genet_ 2011; 43: 142–146. Article  CAS  Google Scholar  * Vaz F, Hanenberg H, Schuster B, Barker K, Wiek C, Erven V _et al_. Mutation of


the RAD51C gene in a Fanconi Anemia-like disorder. _Nat Genet_ 2010; 42: 406–409. Article  CAS  Google Scholar  * Vandenberg CJ, Gergely F, Ong CY, Pace P, Mallery DL, Hiom K _et al_.


BRCA1-independent ubiquitination of FANCD2. _Mol Cell_ 2003; 12: 247–254. Article  CAS  Google Scholar  * Meetei AR, de Winter JP, Medhurst AL, Wallisch M, Waisfisz Q, van de Vrugt HJ _et


al_. A novel ubiquitin ligase is deficient in Fanconi anemia. _Nat Genet_ 2003; 35: 165–170. Article  CAS  Google Scholar  * Kennedy RD, D'Andrea AD . The Fanconi Anemia/BRCA pathway:


new faces in the crowd. _Genes Dev_ 2005; 19: 2925–2940. Article  CAS  Google Scholar  * Deans AJ, West SC . DNA interstrand crosslink repair and cancer. _Nat Rev Cancer_ 2011; 11: 467–480.


Article  CAS  Google Scholar  * Ruppitsch W, Meisslitzer C, Weirich-Schwaiger H, Klocker H, Scheidereit C, Schweiger M _et al_. The role of oxygen metabolism for the pathological phenotype


of Fanconi Anemia. _Hum Genet_ 1997; 99: 710–719. Article  CAS  Google Scholar  * Degan P, Bonassi S, De Caterina M, Korkina LG, Pinto L, Scopacasa F _et al_. _In vivo_ accumulation of


8-hydroxy-2'-deoxyguanosine in DNA correlates with release of reactive oxygen species in Fanconi's anaemia families. _Carcinogenesis_ 1995; 16: 735–741. Article  CAS  Google


Scholar  * Bogliolo M, Borghini S, Abbondandolo A, Degan P . Alternative metabolic pathways for energy supply and resistance to apoptosis in Fanconi Anaemia. _Mutagenesis_ 2002; 17: 25–30.


Article  CAS  Google Scholar  * Saadatzadeh MR, Bijangi-Vishehsaraei K, Hong P, Bergmann H, Haneline LS . Oxidant hypersensitivity of Fanconi anemia type C-deficient cells is dependent on a


redox-regulated apoptotic pathway. _J Biol Chem_ 2004; 279: 16805–16812. Article  CAS  Google Scholar  * Rani R, Li J, Pang Q . Differential p53 engagement in response to oxidative and


oncogenic stresses in Fanconi anemia mice. _Cancer Res_ 2008; 68: 9693–9702. Article  CAS  Google Scholar  * Lyakhovich A, Surralles J . Constitutive activation of caspase-3 and poly ADP


ribose polymerase cleavage in fanconi anemia cells. _Mol Cancer Res_ 2010; 8: 46–56. Article  CAS  Google Scholar  * Takeuchi T, Morimoto K . Increased formation of 8-hydroxydeoxyguanosine,


an oxidative DNA damage, in lymphoblasts from Fanconi's anemia patients due to possible catalase deficiency. _Carcinogenesis_ 1993; 14: 1115–1120. Article  CAS  Google Scholar  * Pagano


G, Degan P, d'Ischia M, Kelly FJ, Pallardo FV, Zatterale A _et al_. Gender- and age-related distinctions for the _in vivo_ prooxidant state in Fanconi Anaemia patients.


_Carcinogenesis_ 2004; 25: 1899–1909. Article  CAS  Google Scholar  * Petrovic S, Leskovac A, Kotur-Stevuljevic J, Joksic J, Guc-Scekic M, Vujic D _et al_. Gender-related differences in the


oxidant state of cells in Fanconi Anemia heterozygotes. _Biol Chem_ 2011; 392: 625–632. Article  CAS  Google Scholar  * Du W, Rani R, Sipple J, Schick J, Myers KC, Mehta P _et al_. The FA


pathway counteracts oxidative stress through selective protection of antioxidant defense gene promoters. _Blood_ 2012; 119: 4142–4151. Article  CAS  Google Scholar  * Pagano G, Aiello


Talamanca A, Castello G, Pallardo FV, Zatterale A, Degan P . Oxidative stress in Fanconi anaemia: from cells and molecules toward prospects in clinical management. _Biol Chem_ 2012; 393:


11–21. Article  CAS  Google Scholar  * Mukhopadhyay SS, Leung KS, Hicks MJ, Hastings PJ, Youssoufian H, Plon SE . Defective mitochondrial peroxiredoxin-3 results in sensitivity to oxidative


stress in Fanconi Anemia. _J Cell Biol_ 2006; 175: 225–235. Article  CAS  Google Scholar  * Pallardo FV, Lloret A, Lebel M, d'Ischia M, Cogger VC, Le Couteur DG _et al_. Mitochondrial


dysfunction in some oxidative stress-related genetic diseases: Ataxia-Telangiectasia, Down Syndrome, Fanconi Anaemia and Werner Syndrome. _Biogerontology_ 2010; 11: 401–419. Article  CAS 


Google Scholar  * Chacinska A, Koehler CM, Milenkovic D, Lithgow T, Pfanner N . Importing mitochondrial proteins: machineries and mechanisms. _Cell_ 2009; 138: 628–644. Article  CAS  Google


Scholar  * Hutter E, Skovbro M, Lener B, Prats C, Rabol R, Dela F _et al_. Oxidative stress and mitochondrial impairment can be separated from lipofuscin accumulation in aged human skeletal


muscle. _Aging Cell_ 2007; 6: 245–256. Article  Google Scholar  * Rachek LI, Musiyenko SI, LeDoux SP, Wilson GL . Palmitate induced mitochondrial deoxyribonucleic acid damage and apoptosis


in l6 rat skeletal muscle cells. _Endocrinology_ 2007; 148: 293–299. Article  CAS  Google Scholar  * O'Neill HC, Orlicky DJ, Hendry-Hofer TB, Loader JE, Day BJ, White CW . Role of


reactive oxygen and nitrogen species in olfactory epithelial injury by the sulfur mustard analogue 2-chloroethyl ethyl sulfide. _Am J Respir Cell Mol Biol_ 2011; 45: 323–331. Article  CAS 


Google Scholar  * Li RC, Morris MW, Lee SK, Pouranfar F, Wang Y, Gozal D . Neuroglobin protects PC12 cells against oxidative stress. _Brain Res_ 2008; 1190: 159–166. Article  CAS  Google


Scholar  * Yu T, Robotham JL, Yoon Y . Increased production of reactive oxygen species in hyperglycemic conditions requires dynamic change of mitochondrial morphology. _Proc Natl Acad Sci


USA_ 2006; 103: 2653–2658. Article  CAS  Google Scholar  * Rousset S, Nocentini S, Revet B, Moustacchi E . Molecular analysis by electron microscopy of the removal of psoralen-photoinduced


DNA cross-links in normal and Fanconi's Anemia fibroblasts. _Cancer Res_ 1990; 50: 2443–2448. CAS  PubMed  Google Scholar  * Rousset S, Nocentini S, Rouillard D, Baroche C, Moustacchi E


. Mitochondrial alterations in Fanconi Anemia fibroblasts following ultraviolet A or psoralen photoactivation. _Photochem Photobiol_ 2002; 75: 159–166. Article  CAS  Google Scholar  *


Hadjur S, Ung K, Wadsworth L, Dimmick J, Rajcan-Separovic E, Scott RW _et al_. Defective hematopoiesis and hepatic steatosis in mice with combined deficiencies of the genes encoding Fancc


and Cu/Zn superoxide dismutase. _Blood_ 2001; 98: 1003–1011. Article  CAS  Google Scholar  * Cuccarolo P, Barbieri F, Sancandi M, Viaggi S, Degan P . Differential behaviour of normal,


transformed and Fanconi's Anemia lymphoblastoid cells to modeled microgravity. _J Biomed Sci_ 2010; 17: 63. Article  Google Scholar  * Ponte F, Carvalho F, Porto B . Protective effect


of acetyl-l-carnitine and alpha-lipoic acid against the acute toxicity of diepoxybutane to human lymphocytes. _Toxicology_ 2011; 289: 52–58. Article  CAS  Google Scholar  * Tobaben S, Grohm


J, Seiler A, Conrad M, Plesnila N, Culmsee C . Bid-mediated mitochondrial damage is a key mechanism in glutamate-induced oxidative stress and AIF-dependent cell death in immortalized HT-22


hippocampal neurons. _Cell Death Differ_ 2011; 18: 282–292. Article  CAS  Google Scholar  * Richter C, Kass GE . Oxidative stress in mitochondria: its relationship to cellular Ca2+


homeostasis, cell death, proliferation, and differentiation. _Chem Biol Interact_ 1991; 77: 1–23. Article  CAS  Google Scholar  * Dirmeier R, O'Brien KM, Engle M, Dodd A, Spears E,


Poyton RO . Exposure of yeast cells to anoxia induces transient oxidative stress. Implications for the induction of hypoxic genes. _J Biol Chem_ 2002; 277: 34773–34784. Article  CAS  Google


Scholar  * Uchida K . 4-Hydroxy-2-nonenal: a product and mediator of oxidative stress. _Prog Lipid Res_ 2003; 42: 318–343. Article  CAS  Google Scholar  * Talbot DA, Lambert AJ, Brand MD .


Production of endogenous matrix superoxide from mitochondrial complex I leads to activation of uncoupling protein 3. _FEBS Lett_ 2004; 556: 111–115. Article  CAS  Google Scholar  * Nordenson


I . Effect of superoxide dismutase and catalase on spontaneously occurring chromosome breaks in patients with Fanconi's Anemia. _Hereditas_ 1977; 86: 147–150. Article  CAS  Google


Scholar  * Joenje H, Arwert F, Eriksson AW, de Koning H, Oostra AB . Oxygen-dependence of chromosomal aberrations in Fanconi's anaemia. _Nature_ 1981; 290: 142–143. Article  CAS  Google


Scholar  * Dallapiccola B, Porfirio B, Mokini V, Alimena G, Isacchi G, Gandini E . Effect of oxidants and antioxidants on chromosomal breakage in Fanconi Anemia lymphocytes. _Hum Genet_


1985; 69: 62–65. Article  CAS  Google Scholar  * Schindler D, Hoehn H . Fanconi Anemia mutation causes cellular susceptibility to ambient oxygen. _Am J Hum Genet_ 1988; 43: 429–435. CAS 


PubMed  PubMed Central  Google Scholar  * Pagano G, Korkina LG, Degan P, Del Principe D, Lindau-Shepard B, Zatterale A _et al_. _In vitro_ hypersensitivity to oxygen of Fanconi Anemia (FA)


cells is linked to _ex vivo_ evidence for oxidative stress in FA homozygotes and heterozygotes. _Blood_ 1997; 89: 1111–1112. CAS  PubMed  Google Scholar  * Fridlyand LE, Philipson LH .


Oxidative reactive species in cell injury: mechanisms in diabetes mellitus and therapeutic approaches. _Ann N Y Acad Sci_ 2005; 1066: 136–151. Article  CAS  Google Scholar  * Droge W . Free


radicals in the physiological control of cell function. _Physiol Rev_ 2002; 82: 47–95. Article  CAS  Google Scholar  * Wu Y, Sommers JA, Suhasini AN, Leonard T, Deakyne JS, Mazin AV _et al_.


Fanconi Anemia group J mutation abolishes its DNA repair function by uncoupling DNA translocation from helicase activity or disruption of protein-DNA complexes. _Blood_ 2010; 116:


3780–3791. Article  CAS  Google Scholar  * Xue Y, Li Y, Guo R, Ling C, Wang W . FANCM of the Fanconi Anemia core complex is required for both monoubiquitination and DNA repair. _Hum Mol


Genet_ 2008; 17: 1641–1652. Article  CAS  Google Scholar  * Kumar B, Koul S, Khandrika L, Meacham RB, Koul HK . Oxidative stress is inherent in prostate cancer cells and is required for


aggressive phenotype. _Cancer Res_ 2008; 68: 1777–1785. Article  CAS  Google Scholar  * Bogliolo M, Lyakhovich A, Callen E, Castella M, Cappelli E, Ramirez MJ _et al_. Histone H2AX and


Fanconi Anemia FANCD2 function in the same pathway to maintain chromosome stability. _EMBO J_ 2007; 26: 1340–1351. Article  CAS  Google Scholar  * Frezza C, Cipolat S, Scorrano L . Organelle


isolation: functional mitochondria from mouse liver, muscle and cultured fibroblasts. _Nat Protoc_ 2007; 2: 287–295. Article  CAS  Google Scholar  * Ali SS, Marcondes MC, Bajova H, Dugan


LL, Conti B . Metabolic depression and increased reactive oxygen species production by isolated mitochondria at moderately lower temperatures. _J Biol Chem_ 2010; 285: 32522–32528. Article 


CAS  Google Scholar  * Cossarizza A, Salvioli S . Flow cytometric analysis of mitochondrial membrane potential using JC-1. _Curr Protoc Cytom_ 2001, Chapter 9:Unit 9 14,


doi:10.1002/0471142956.cy0914s13. * Allan AC, Fluhr R . Two distinct sources of elicited reactive oxygen species in tobacco epidermal cells. _Plant Cell_ 1997; 9: 1559. Article  CAS  Google


Scholar  * Amano F, Noda T . Improved detection of nitric oxide radical (NO.) production in an activated macrophage culture with a radical scavenger, carboxy PTIO and Griess reagent. _FEBS


Lett_ 1995; 368: 425–428. Article  CAS  Google Scholar  * Miller SW, Trimmer PA, Parker WD, Davis RE . Creation and characterization of mitochondrial DNA-depleted cell lines with


‘neuronal-like’ properties. _J Neurochem_ 1996; 67: 1897–1907. Article  CAS  Google Scholar  Download references ACKNOWLEDGEMENTS We are grateful to Drs Itahana and Li Ying (Duke-NUS) for


technical help with OCR and Seahorse experiments. We also acknowledge Dr Alex Panov for helpful comments related to mitochondria isolation and Dr Casey’s lab, Duke-NUS sorting core facility


for technical help and sharing materials as well as Dr Surralles’lab for providing FA cell lines. We are indebted to Drs Giovani Pagano and Massimo Bogliolo for helpful critics upon writing


this manuscript. _Authors contribution:_ UK performed majority of experiments (except EM), WYJ and BHB performed EM experiments and analyzed the data, AL designed and performed the


experiments, analyzed and interpreted the data, drafted the manuscript. AUTHOR INFORMATION AUTHORS AND AFFILIATIONS * Cancer and Stem Cell Research Program, DUKE-NUS Graduate Medical School,


Singapore, Singapore U Kumari & A Lyakhovich * Department of Anatomy, Yong Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore W Ya Jun & B Huat


Bay Authors * U Kumari View author publications You can also search for this author inPubMed Google Scholar * W Ya Jun View author publications You can also search for this author inPubMed 


Google Scholar * B Huat Bay View author publications You can also search for this author inPubMed Google Scholar * A Lyakhovich View author publications You can also search for this author


inPubMed Google Scholar CORRESPONDING AUTHOR Correspondence to A Lyakhovich. ETHICS DECLARATIONS COMPETING INTERESTS The authors declare no conflict of interest. ADDITIONAL INFORMATION


Supplementary Information accompanies the paper on the Oncogene website SUPPLEMENTARY INFORMATION SUPPLEMENTARY FIGURE 1 (JPG 135 KB) SUPPLEMENTARY FIGURE 2 (JPG 416 KB) SUPPLEMENTARY FIGURE


3 (JPG 77 KB) SUPPLEMENTARY FIGURE 4 (JPG 78 KB) SUPPLEMENTARY FIGURE 5 (JPG 427 KB) SUPPLEMENTARY FIGURE 6 (JPG 381 KB) SUPPLEMENTARY FIGURE 7 (JPG 229 KB) SUPPLEMENTARY FIGURE 8 (JPG 132


KB) SUPPLEMENTARY FIGURE 9 (JPG 85 KB) SUPPLEMENTARY FIGURE 10 (JPG 34 KB) SUPPLEMENTARY FIGURE LEGENDS (DOC 48 KB) RIGHTS AND PERMISSIONS Reprints and permissions ABOUT THIS ARTICLE CITE


THIS ARTICLE Kumari, U., Ya Jun, W., Huat Bay, B. _et al._ Evidence of mitochondrial dysfunction and impaired ROS detoxifying machinery in Fanconi Anemia cells. _Oncogene_ 33, 165–172


(2014). https://doi.org/10.1038/onc.2012.583 Download citation * Received: 04 May 2012 * Revised: 25 October 2012 * Accepted: 29 October 2012 * Published: 14 January 2013 * Issue Date: 09


January 2014 * DOI: https://doi.org/10.1038/onc.2012.583 SHARE THIS ARTICLE Anyone you share the following link with will be able to read this content: Get shareable link Sorry, a shareable


link is not currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative KEYWORDS * Fanconi Anemia * reactive oxygen species *


mitochondria