Functions of fos phosphorylation in bone homeostasis, cytokine response and tumourigenesis

feature-image

Play all audios:

Loading...

ABSTRACT Mice lacking _c-fos_ develop osteopetrosis due to a block in osteoclast differentiation. Carboxy-terminal phosphorylation of Fos on serine 374 by ERK1/2 and serine 362 by RSK1/2


regulates Fos stability and transactivation potential _in vitro_. To assess the physiological relevance of Fos phosphorylation _in vivo_, serine 362 and/or serine 374 was replaced by alanine


(Fos362A, Fos374A and FosAA) or by phospho-mimetic aspartic acid (FosDD). Homozygous mutants were healthy and skeletogenesis was largely unaffected. Fos C-terminal phosphorylation,


predominantly on serine 374, was found important for osteoclast differentiation _in vitro_ and affected lipopolysaccharide (LPS)-induced cytokine response _in vitro_ and _in vivo_.


Importantly, skin papilloma development was delayed in FosAA, Fos362A and _Rsk2_-deficient mice, accelerated in FosDD mice and unaffected in Fos374A mutants. Furthermore, the related Fos


protein and putative RSK2 target Fra1 failed to substitute for Fos in papilloma development. This indicates that phosphorylation of serines 362 and 374 exerts context-dependent roles in


modulating Fos activity _in vivo_. Inhibition of Fos C-terminal phosphorylation on serine 362 by targeting RSK2 might be of therapeutic relevance for skin tumours. Access through your


institution Buy or subscribe This is a preview of subscription content, access via your institution ACCESS OPTIONS Access through your institution Subscribe to this journal Receive 50 print


issues and online access $259.00 per year only $5.18 per issue Learn more Buy this article * Purchase on SpringerLink * Instant access to full article PDF Buy now Prices may be subject to


local taxes which are calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in * Learn about institutional subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT


BEING VIEWED BY OTHERS MEF2C REGULATES OSTEOCLASTOGENESIS AND PATHOLOGIC BONE RESORPTION VIA C-FOS Article Open access 11 January 2021 WNT SIGNALING AND LOXL2 PROMOTE AGGRESSIVE OSTEOSARCOMA


Article Open access 20 July 2020 INHIBITION OF CDK5 INCREASES OSTEOBLAST DIFFERENTIATION AND BONE MASS AND IMPROVES FRACTURE HEALING Article Open access 06 April 2022 REFERENCES * Bakiri L,


Takada Y, Radolf M, Eferl R, Yaniv M, Wagner EF _et al_. (2007). Role of heterodimerization of c-Fos and Fra1 proteins in osteoclast differentiation. _Bone_ 40: 867–875. Article  CAS 


PubMed  Google Scholar  * Barber JR, Verma IM . (1987). Modification of fos proteins: phosphorylation of c-fos, but not v-fos, is stimulated by 12-tetradecanoyl-phorbol-13-acetate and serum.


_Mol Cell Biol_ 7: 2201–2211. Article  CAS  PubMed  PubMed Central  Google Scholar  * Basbous J, Chalbos D, Hipskind R, Jariel-Encontre I, Piechaczyk M . (2007). Ubiquitin-independent


proteasomal degradation of Fra-1 is antagonized by Erk1/2 pathway-mediated phosphorylation of a unique C-terminal destabilizer. _Mol Cell Biol_ 27: 3936–3950. Article  CAS  PubMed  PubMed


Central  Google Scholar  * Casalino L, Bakiri L, Talotta F, Weitzman JB, Fusco A, Yaniv M _et al_. (2007). Fra-1 promotes growth and survival in RAS-transformed thyroid cells by controlling


cyclin A transcription. _EMBO J_ 26: 1878–1890. Article  CAS  PubMed  PubMed Central  Google Scholar  * Chen RH, Abate C, Blenis J . (1993). Phosphorylation of the c-Fos transrepression


domain by mitogen-activated protein kinase and 90-kDa ribosomal S6 kinase. _Proc Natl Acad Sci USA_ 90: 10952–10956. Article  CAS  PubMed  PubMed Central  Google Scholar  * Chen RH, Juo PC,


Curran T, Blenis J . (1996). Phosphorylation of c-Fos at the C-terminus enhances its transforming activity. _Oncogene_ 12: 1493–1502. CAS  PubMed  Google Scholar  * Clausen BE, Burkhardt C,


Reith W, Renkawitz R, Forster I . (1999). Conditional gene targeting in macrophages and granulocytes using LysMcre mice. _Transgenic Res_ 8: 265–277. Article  CAS  PubMed  Google Scholar  *


Curran T, Miller AD, Zokas L, Verma IM . (1984). Viral and cellular Fos proteins: a comparative analysis. _Cell_ 36: 259–268. Article  CAS  PubMed  Google Scholar  * David JP, Mehic D,


Bakiri L, Schilling AF, Mandic V, Priemel M _et al_. (2005). Essential role of RSK2 in c-Fos-dependent osteosarcoma development. _J Clin Invest_ 115: 664–672. Article  CAS  PubMed  PubMed


Central  Google Scholar  * Deng T, Karin M . (1994). c-Fos transcriptional activity stimulated by H-ras-activated protein kinase distinct from JNK and ERK. _Nature_ 371: 171–175. Article 


CAS  PubMed  Google Scholar  * Doehn U, Hauge C, Frank SR, Jensen CJ, Duda K, Nielsen JV _et al_. (2009). RSK is a principal effector of the RAS-ERK pathway for eliciting a coordinate


promotile/invasive gene program and phenotype in epithelial cells. _Mol Cell_ 35: 511–522. Article  CAS  PubMed  PubMed Central  Google Scholar  * Durchdewald M, Guinea-Viniegra J, Haag D,


Riehl A, Lichter P, Hahn M _et al_. (2008). Podoplanin is a novel Fos target gene in skin carcinogenesis. _Cancer Res_ 68: 6877–6883. Article  CAS  PubMed  Google Scholar  * Dymecki SM .


(1996). Flp recombinase promotes site-specific DNA recombination in embryonic stem cells and transgenic mice. _Proc Natl Acad Sci USA_ 93: 6191–6196. Article  CAS  PubMed  PubMed Central 


Google Scholar  * Eferl R, Wagner EF . (2003). AP-1: a double-edged sword in tumorigenesis. _Nat Rev Cancer_ 3: 859–868. Article  CAS  PubMed  Google Scholar  * Ferrara P, Andermarcher E,


Bossis G, Acquaviva C, Brockly F, Jariel-Encontre I _et al_. (2003). The structural determinants responsible for c-Fos protein proteasomal degradation differ according to the conditions of


expression. _Oncogene_ 22: 1461–1474. Article  CAS  PubMed  Google Scholar  * Fleischmann A, Hafezi F, Elliott C, Reme CE, Ruther U, Wagner EF . (2000). Fra-1 replaces c-Fos-dependent


functions in mice. _Genes Dev_ 14: 2695–2700. Article  CAS  PubMed  PubMed Central  Google Scholar  * Fleischmann A, Hvalby O, Jensen V, Strekalova T, Zacher C, Layer LE _et al_. (2003a).


Impaired long-term memory and NR2A-type NMDA receptor-dependent synaptic plasticity in mice lacking c-Fos in the CNS. _J Neurosci_ 23: 9116–9122. Article  CAS  PubMed  PubMed Central  Google


Scholar  * Fleischmann A, Jochum W, Eferl R, Witowsky J, Wagner EF . (2003b). Rhabdomyosarcoma development in mice lacking Trp53 and Fos: tumor suppression by the Fos protooncogene. _Cancer


Cell_ 4: 477–482. Article  CAS  PubMed  Google Scholar  * Fu L, Patel MS, Bradley A, Wagner EF, Karsenty G . (2005). The molecular clock mediates leptin-regulated bone formation. _Cell_


122: 803–815. Article  CAS  PubMed  Google Scholar  * Gius D, Cao XM, Rauscher III FJ, Cohen DR, Curran T, Sukhatme VP . (1990). Transcriptional activation and repression by Fos are


independent functions: the C terminus represses immediate-early gene expression via CArG elements. _Mol Cell Biol_ 10: 4243–4255. Article  CAS  PubMed  PubMed Central  Google Scholar  *


Grigoriadis AE, Wang ZQ, Cecchini MG, Hofstetter W, Felix R, Fleisch HA _et al_. (1994). c-Fos: a key regulator of osteoclast-macrophage lineage determination and bone remodeling. _Science_


266: 443–448. Article  CAS  PubMed  Google Scholar  * Hess J, Angel P, Schorpp-Kistner M . (2004). AP-1 subunits: quarrel and harmony among siblings. _J Cell Sci_ 117: 5965–5973. Article 


CAS  PubMed  Google Scholar  * Koga K, Takaesu G, Yoshida R, Nakaya M, Kobayashi T, Kinjyo I _et al_. (2009). Cyclic adenosine monophosphate suppresses the transcription of proinflammatory


cytokines via the phosphorylated c-Fos protein. _Immunity_ 30: 372–383. Article  CAS  PubMed  Google Scholar  * Monje P, Marinissen MJ, Gutkind JS . (2003). Phosphorylation of the


carboxyl-terminal transactivation domain of c-Fos by extracellular signal-regulated kinase mediates the transcriptional activation of AP-1 and cellular transformation induced by


platelet-derived growth factor. _Mol Cell Biol_ 23: 7030–7043. Article  CAS  PubMed  PubMed Central  Google Scholar  * Murphy LO, Blenis J . (2006). MAPK signal specificity: the right place


at the right time. _Trends Biochem Sci_ 31: 268–275. Article  CAS  PubMed  Google Scholar  * Murphy LO, Smith S, Chen RH, Fingar DC, Blenis J . (2002). Molecular interpretation of ERK signal


duration by immediate early gene products. _Nat Cell Biol_ 4: 556–564. Article  CAS  PubMed  Google Scholar  * Nakakuki T, Birtwistle MR, Saeki Y, Yumoto N, Ide K, Nagashima T _et al_.


(2010). Ligand-specific c-Fos expression emerges from the spatiotemporal control of ErbB network dynamics. _Cell_ 141: 884–896. Article  CAS  PubMed  PubMed Central  Google Scholar  * Ofir


R, Dwarki VJ, Rashid D, Verma IM . (1990). Phosphorylation of the C terminus of Fos protein is required for transcriptional transrepression of the c-fos promoter. _Nature_ 348: 80–82.


Article  CAS  PubMed  Google Scholar  * Okazaki K, Sagata N . (1995). The Mos/MAP kinase pathway stabilizes c-Fos by phosphorylation and augments its transforming activity in NIH 3T3 cells.


_EMBO J_ 14: 5048–5059. Article  CAS  PubMed  PubMed Central  Google Scholar  * Parfitt AM, Drezner MK, Glorieux FH, Kanis JA, Malluche H, Meunier PJ _et al_. (1987). Bone histomorphometry:


standardization of nomenclature, symbols, and units. Report of the ASBMR Histomorphometry Nomenclature Committee. _J Bone Miner Res_ 2: 595–610. Article  CAS  PubMed  Google Scholar  *


Pellegrino MJ, Stork PJ . (2006). Sustained activation of extracellular signal-regulated kinase by nerve growth factor regulates c-fos protein stabilization and transactivation in PC12


cells. _J Neurochem_ 99: 1480–1493. Article  CAS  PubMed  Google Scholar  * Ray N, Kuwahara M, Takada Y, Maruyama K, Kawaguchi T, Tsubone H _et al_. (2006). c-Fos suppresses systemic


inflammatory response to endotoxin. _Int Immunol_ 18: 671–677. Article  CAS  PubMed  Google Scholar  * Saez E, Rutberg SE, Mueller E, Oppenheim H, Smoluk J, Yuspa SH _et al_. (1995). c-fos


is required for malignant progression of skin tumors. _Cell_ 82: 721–732. Article  CAS  PubMed  Google Scholar  * Sasaki T, Kojima H, Kishimoto R, Ikeda A, Kunimoto H, Nakajima K . (2006).


Spatiotemporal regulation of c-Fos by ERK5 and the E3 ubiquitin ligase UBR1, and its biological role. _Mol Cell_ 24: 63–75. Article  CAS  PubMed  Google Scholar  * Sassone-Corsi P, Sisson


JC, Verma IM . (1988). Transcriptional autoregulation of the proto-oncogene fos. _Nature_ 334: 314–319. Article  CAS  PubMed  Google Scholar  * Shin S, Dimitri CA, Yoon SO, Dowdle W, Blenis


J . (2010). ERK2 but not ERK1 induces epithelial-to-mesenchymal transformation via DEF motif-dependent signaling events. _Mol Cell_ 38: 114–127. Article  CAS  PubMed  PubMed Central  Google


Scholar  * Sibilia M, Fleischmann A, Behrens A, Stingl L, Carroll J, Watt FM _et al_. (2000). The EGF receptor provides an essential survival signal for SOS-dependent skin tumor development.


_Cell_ 102: 211–220. Article  CAS  PubMed  Google Scholar  * Takada Y, Ray N, Ikeda E, Kawaguchi T, Kuwahara M, Wagner EF _et al_. (2010). Fos proteins suppress dextran sulfate


sodium-induced colitis through inhibition of NF-kappaB. _J Immunol_ 184: 1014–1021. Article  CAS  PubMed  Google Scholar  * Tratner I, Ofir R, Verma IM . (1992). Alteration of a cyclic


AMP-dependent protein kinase phosphorylation site in the c-Fos protein augments its transforming potential. _Mol Cell Biol_ 12: 998–1006. Article  CAS  PubMed  PubMed Central  Google Scholar


  * Wang ZQ, Liang J, Schellander K, Wagner EF, Grigoriadis AE . (1995). c-fos-induced osteosarcoma formation in transgenic mice: cooperativity with c-jun and the role of endogenous c-fos.


_Cancer Res_ 55: 6244–6251. CAS  PubMed  Google Scholar  * Wang ZQ, Ovitt C, Grigoriadis AE, Mohle-Steinlein U, Ruther U, Wagner EF . (1992). Bone and haematopoietic defects in mice lacking


c-fos. _Nature_ 360: 741–745. Article  CAS  PubMed  Google Scholar  * Yang X, Matsuda K, Bialek P, Jacquot S, Masuoka HC, Schinke T _et al_. (2004). ATF4 is a substrate of RSK2 and an


essential regulator of osteoblast biology; implication for Coffin-Lowry Syndrome. _Cell_ 117: 387–398. Article  CAS  PubMed  Google Scholar  * Zenz R, Scheuch H, Martin P, Frank C, Eferl R,


Kenner L _et al_. (2003). c-Jun regulates eyelid closure and skin tumor development through EGFR signaling. _Dev Cell_ 4: 879–889. Article  CAS  PubMed  Google Scholar  Download references


ACKNOWLEDGEMENTS We are very grateful to Drs K Matsuo, Y Takada and R Khokha for critical comments and helpful suggestions, Drs F Mulero and RP Marshall for help with micro-computed


tomography, U Moehle-Steinlein, E Andres, HC Theussl and V Komnenovic for technical assistance. The project was initiated at the IMP, which is funded by Boehringer Ingelheim (BI). EFW is


funded by the BBVA-Foundation and by an ERC advanced Grant. Part of this work was funded by an EMBO postdoctoral fellowship to LB and the NoE Cells into Organs (LSHM-CT-2003-504468) program


of the European Community. AUTHOR INFORMATION Author notes * R Zenz Present address: 5Current address: Ludwig Boltzmann Institute for Cancer Research, Vienna, Austria., * M O Reschke:


Currrent address: Division of Genetics, Beth Israel Deaconess Medical Center, Boston, MA, USA. AUTHORS AND AFFILIATIONS * Genes, Development and Disease Group, F-BBVA Cancer Cell Biology


programme, National Cancer Research Centre (CNIO), Madrid, Spain L Bakiri, M O Reschke, H A Gefroh, M H Idarraga, K Polzer, R Zenz, G Schett & E F Wagner * Research Institute of


Molecular Pathology (IMP), Vienna, Austria M H Idarraga * Department of Internal Medicine 3, University of Erlangen-Nurenberg, Erlangen, Germany K Polzer & G Schett Authors * L Bakiri


View author publications You can also search for this author inPubMed Google Scholar * M O Reschke View author publications You can also search for this author inPubMed Google Scholar * H A


Gefroh View author publications You can also search for this author inPubMed Google Scholar * M H Idarraga View author publications You can also search for this author inPubMed Google


Scholar * K Polzer View author publications You can also search for this author inPubMed Google Scholar * R Zenz View author publications You can also search for this author inPubMed Google


Scholar * G Schett View author publications You can also search for this author inPubMed Google Scholar * E F Wagner View author publications You can also search for this author inPubMed 


Google Scholar CORRESPONDING AUTHOR Correspondence to E F Wagner. ETHICS DECLARATIONS COMPETING INTERESTS The authors declare no conflict of interest. ADDITIONAL INFORMATION Supplementary


Information accompanies the paper on the Oncogene website SUPPLEMENTARY INFORMATION SUPPLEMENTARY FIGURES 1–5 (PDF 2252 KB) SUPPLEMENTARY FIGURE LEGENDS (DOC 27 KB) RIGHTS AND PERMISSIONS


Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Bakiri, L., Reschke, M., Gefroh, H. _et al._ Functions of Fos phosphorylation in bone homeostasis, cytokine response and


tumourigenesis. _Oncogene_ 30, 1506–1517 (2011). https://doi.org/10.1038/onc.2010.542 Download citation * Received: 16 August 2010 * Revised: 20 September 2010 * Accepted: 10 October 2010 *


Published: 29 November 2010 * Issue Date: 31 March 2011 * DOI: https://doi.org/10.1038/onc.2010.542 SHARE THIS ARTICLE Anyone you share the following link with will be able to read this


content: Get shareable link Sorry, a shareable link is not currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative


KEYWORDS * AP-1 * Fos * knock-in * mouse * phosphorylation