Β-catenin directly displaces groucho/tle repressors from tcf/lef in wnt-mediated transcription activation

feature-image

Play all audios:

Loading...

ABSTRACT Wnt growth factors mediate cell fate determination during embryogenesis and in the renewal of tissues in the adult. Wnts act by stabilizing cellular levels of the transcriptional


coactivator β-catenin, which forms complexes with sequence-specific DNA-binding Tcf/Lef transcription factors. In the absence of nuclear β-catenin, Tcf/Lefs act as transcriptional repressors


by binding to Groucho/TLE proteins. The molecular basis of the switch from transcriptional repression to activation during Wnt signaling has not been clear, in particular whether factors


other than β-catenin are required to disrupt the interaction between Groucho/TLE and Tcf/Lef. Using highly purified proteins, we demonstrate that β-catenin displaces Groucho/TLE from Tcf/Lef


by binding to a previously unidentified second, low-affinity binding site on Lef-1 that includes sequences just N-terminal to the DNA-binding domain, and that overlaps the


Groucho/TLE-binding site. Access through your institution Buy or subscribe This is a preview of subscription content, access via your institution ACCESS OPTIONS Access through your


institution Subscribe to this journal Receive 12 print issues and online access $209.00 per year only $17.42 per issue Learn more Buy this article * Purchase on SpringerLink * Instant access


to full article PDF Buy now Prices may be subject to local taxes which are calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in * Learn about institutional subscriptions * Read


our FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS RNF2 REGULATES WNT/SS-CATENIN SIGNALING VIA TCF7L1 DESTABILIZATION Article Open access 13 November 2023


PROMOTER-PROXIMAL CTCF BINDING PROMOTES DISTAL ENHANCER-DEPENDENT GENE ACTIVATION Article 04 January 2021 RSPO2 INHIBITS TCF3 PHOSPHORYLATION TO ANTAGONIZE WNT SIGNALING DURING VERTEBRATE


ANTEROPOSTERIOR AXIS SPECIFICATION Article Open access 28 June 2021 REFERENCES * Cadigan, K.M. & Nusse, R. Wnt signaling: a common theme in animal development. _Genes Dev._ 11, 3286–3305


(1997). Article  CAS  PubMed  Google Scholar  * Bienz, M. & Clevers, H. Linking colorectal cancer to Wnt signaling. _Cell_ 103, 311–320 (2000). Article  CAS  PubMed  Google Scholar  *


Nusse, R. WNT targets: Repression and activation. _Trends Genet._ 15, 1–3 (1999). Article  CAS  PubMed  Google Scholar  * Hecht, A. & Kemler, R. Curbing the nuclear activities of


β-catenin. _EMBO Rep._ 1, 24–28 (2000). Article  CAS  PubMed  PubMed Central  Google Scholar  * Aberle, H., Bauer, A., Stappert, J., Kispert, A. & Kemler, R. β-catenin is a target for


the ubiquitin-proteasome pathway. _EMBO J._ 16, 3797–3804 (1997). Article  CAS  PubMed  PubMed Central  Google Scholar  * Amit, S. et al. Axin-mediated CKI phosphorylation of β-catenin at


Ser 45: a molecular switch for the Wnt pathway. _Genes Dev._ 16, 1066–1076 (2002). Article  CAS  PubMed  PubMed Central  Google Scholar  * Behrens, J. et al. Functional interaction of an


Axin homolog, conductin, with β-catenin, APC, and GSK3β. _Science_ 280, 596–599 (1998). Article  CAS  PubMed  Google Scholar  * Hart, M.J., de los Santos, R., Albert, I.N., Rubinfeld, B.


& Polakis, P. Downregulation of β-catenin by human Axin and its association with the APC tumor suppressor, β-catenin, and GSK3β. _Curr. Biol._ 8, 573–581 (1998). Article  CAS  PubMed 


Google Scholar  * Orford, K., Crockett, C., Jensen, J.P., Weissman, A.M. & Byers, S.W. Serine phosphorylation-regulated ubiquitination and degradation of β-catenin. _J. Biol. Chem._ 272,


24735–24738 (1997). Article  CAS  PubMed  Google Scholar  * Rubinfeld, B. et al. Binding of GSK3β to the APC–β-catenin complex and regulation of complex assembly. _Science_ 272, 1023–1026


(1996). Article  CAS  PubMed  Google Scholar  * Behrens, J. et al. Functional interaction of β-catenin with the transcription factor LEF-1. _Nature_ 382, 638–642 (1996). Article  CAS  PubMed


  Google Scholar  * Brunner, E., Peter, O., Schweizer, L. & Basler, K. _pangolin_ encodes a Lef-1 homologue that acts downstream of Armadillo to transduce the Wingless signal in


_Drosophila_. _Nature_ 385, 829–833 (1997). Article  CAS  PubMed  Google Scholar  * Molenaar, M. et al. XTcf-3 transcription factor mediates β-catenin-induced axis formation in _Xenopus_


embryos. _Cell_ 86, 391–399 (1996). Article  CAS  PubMed  Google Scholar  * van de Wetering, M. et al. Armadillo coactivates transcription driven by the product of the _Drosophila_ segment


polarity gene _dTCF_. _Cell_ 88, 789–799 (1997). Article  CAS  PubMed  Google Scholar  * Korinek, V. et al. Constitutive transcriptional activation by a β-catenin–Tcf complex in APC−/− colon


carcinoma. _Science_ 275, 1784–1787 (1997). Article  CAS  PubMed  Google Scholar  * Morin, P.J. et al. Activation of β-catenin–Tcf signaling in colon cancer by mutations in β-catenin or


APC. _Science_ 275, 1787–1790 (1997). Article  CAS  PubMed  Google Scholar  * Rubinfeld, B., Albert, I., Porfiri, E., Munemitsu, S. & Polakis, P. Loss of β-catenin regulation by the APC


tumor suppressor protein correlates with loss of structure due to common somatic mutations of the gene. _Cancer Res._ 57, 4624–4630 (1997). CAS  PubMed  Google Scholar  * Rubinfeld, B. et


al. Stabilization of β-catenin by genetic defects in melanoma cell lines. _Science_ 275, 1790–1792 (1997). Article  CAS  PubMed  Google Scholar  * Polakis, P. Wnt signaling and cancer.


_Genes Dev._ 14, 1837–1851 (2000). CAS  PubMed  Google Scholar  * Hurlstone, A. & Clevers, H. T-cell factors: turn-ons and turn-offs. _EMBO J._ 21, 2303–2311 (2002). Article  CAS  PubMed


  PubMed Central  Google Scholar  * Townsley, F.M., Thompson, B., Bienz, M. Pygopus residues required for its binding to Legless are critical for transcription and development. _J. Biol.


Chem._ 279, 5177–5183 (2004). Article  CAS  PubMed  Google Scholar  * Parker, D.S., Jemison, J., Cadigan K.M. Pygopus, a nuclear PHD-finger protein required for Wingless signaling in


_Drosophila_. _Development_ 11, 2565–2576 (2002). Google Scholar  * Thompson, B., Townsley, F., Rosin-Arbesfeld, R., Musisi, H. & Bienz, M. A new nuclear component of the Wnt signalling


pathway. _Nat. Cell Biol._ 4, 367–373 (2002). Article  CAS  PubMed  Google Scholar  * Kramps, T. et al. Wnt/Wingless signaling requires BCL9/Legless-mediated recrutiment of pygopus to the


nuclear β-catenin–TCF complex. _Cell_ 109, 47–60 (2002). Article  CAS  PubMed  Google Scholar  * Hecht, A., Litterst, C.M., Huber, O. & Kemler, R. Functional characterization of multiple


transactivating elements in β-catenin, some of which interact with the TATA-binding protein _in vitro_. _J. Biol. Chem._ 274, 18017–18025 (1999). Article  CAS  PubMed  Google Scholar  *


Hsu, S.-C., Galceran, J. & Grosschedl, R. Modulation of transcriptional regulation by LEF-1 in response to Wnt-1 signaling and association with β-catenin. _Mol. Cell. Biol._ 18,


4807–4818 (1998). Article  CAS  PubMed  PubMed Central  Google Scholar  * Hecht, A., Vleminckx, K., Stemmler, M.P., van Roy, F. & Kemler, R. The p300/CBP acetyltransferases function as


transcriptional coactivators of β-catenin in vertebrates. _EMBO J._ 19, 1839–1850 (2000). Article  CAS  PubMed  PubMed Central  Google Scholar  * Daniels, D.L. & Weis, W.I. ICAT inhibits


β-catenin binding to Tcf/Lef-family transcription factors and the general coactivator p300 using independent structural modules. _Mol. Cell_ 10, 573–584 (2002). Article  CAS  PubMed  Google


Scholar  * Takemaru, K. & Moon, R.T. The transcriptional coactivator CBP interacts with β-catenin to activate gene expression. _J. Cell Biol._ 149, 249–254 (2000). Article  CAS  PubMed


  PubMed Central  Google Scholar  * Tutter, A.V., Fryer, C.J. & Jones, K.A. Chromatin-specific regulation of LEF-1-β-catenin transcription activation and inhibition _in vitro_. _Genes


Dev._ 15, 3342–3354 (2001). Article  CAS  PubMed  PubMed Central  Google Scholar  * Goodman, R.H. & Smolik, S. CBP/p300 in cell growth, transformation, and development. _Genes Dev._ 14,


1553–1577 (2000). CAS  PubMed  Google Scholar  * Barker, N. et al. The chromatin remodelling factor Brg-1 interacts with β-catenin to promote target gene activation. _EMBO J._ 20, 4935–4943


(2001). Article  CAS  PubMed  PubMed Central  Google Scholar  * Billin, A.N., Thirlwell, H. & Ayer, D.E. β-catenin-histone deacetylase interactions regulate the transition of LEF1 from a


transcriptional repressor to an activator. _Mol. Cell. Biol._ 20, 6882–6890 (2000). Article  CAS  PubMed  PubMed Central  Google Scholar  * Brantjes, H., Roose, J., van de Wetering, M.


& Clevers, H. All Tcf HMG box transcription factors interact with Groucho-related co-repressors. _Nucleic Acids Res._ 29, 1410–1419 (2001). Article  CAS  PubMed  PubMed Central  Google


Scholar  * Cavallo, R.A. et al. _Drosophila_ Tcf and Groucho interact to repress Wingless signalling activity. _Nature_ 395, 604–608 (1998). Article  CAS  PubMed  Google Scholar  * Roose, J.


et al. The _Xenopus_ Wnt effector XTcf-3 interacts with Groucho-related transcriptional repressors. _Nature_ 395, 608–612 (1998). Article  CAS  PubMed  Google Scholar  * Chen, G. &


Courey, A.J. Groucho/TLE family proteins and transcriptional repression. _Gene_ 249, 1–16 (2000). Article  CAS  PubMed  Google Scholar  * Courey, A.J. & Jia, S. Transcriptional


repression: the long and short of it. _Genes Dev._ 15, 2786–2796 (2001). CAS  PubMed  Google Scholar  * Fisher, A.L. & Caudy, M. Groucho proteins: transcriptional corepressors for


specific subsets of DNA-binding transcription factors in vertebrates and invertebrates. _Genes Dev._ 12, 1931–1940 (1998). Article  CAS  PubMed  Google Scholar  * Narlikar, G.J., Fan, H.-Y.


& Kingston, R.E. Cooperation between complexes that regulate chromatin structure and transcription. _Cell_ 108, 475–487 (2002). Article  CAS  PubMed  Google Scholar  * Waltzer, L. &


Bienz, M. _Drosophila_ CBP represses the transcription factor TCF to antagonize Wingless signalling. _Nature_ 395, 521–525 (1998). Article  CAS  PubMed  Google Scholar  * Stifani, S.,


Blaumueller, C.M., Redhead, N.J., Hill, R.E. & Artavanis-Tsakonas, S. Human homologs of a _Drosophila_ enhancer of split gene product define a novel family of nuclear proteins. _Nat.


Genet._ 2, 119–127 (1992). Article  CAS  PubMed  Google Scholar  * Pinto, M. & Lobe, C.G. Products of the grg (Groucho-related gene) family can dimerize through the amino-terminal Q


domain. _J. Biol. Chem._ 271, 33026-33031 (1996). * Chen, G., Nguyen, P.H., Courey, A.J. A role for groucho tetramerization in transcriptional repression. _Mol. Cell. Biol._ 18, 7259–7268


(1998). Article  CAS  PubMed  PubMed Central  Google Scholar  * Song, H., Hasson, P., Paroush, Z., Courey, A.J. Groucho oligomerization is required for repression _in vivo_. _Mol. Cell.


Biol._ 24, 4341–4350 (2004). Article  CAS  PubMed  PubMed Central  Google Scholar  * Graham, T.A., Ferkey, D.M., Mao, F., Kimelman, D. & Xu, W. Tcf4 can specifically recognize β-catenin


using alternative conformations. _Nat. Struct. Biol._ 8, 1048–1052 (2001). Article  CAS  PubMed  Google Scholar  * Graham, T.A., Weaver, C., Mao, F., Kimmelman, D. & Xu, W. Crystal


structure of a β-catenin/Tcf complex. _Cell_ 103, 885–896 (2000). Article  CAS  PubMed  Google Scholar  * Poy, F., Lepourcelet, M., Shivdasani, R.A. & Eck, M.J. Structure of a human


Tcf4–β-catenin complex. _Nat. Struct. Biol._ 8, 1053–1057 (2001). Article  CAS  PubMed  Google Scholar  * van de Wetering, M., Oosterwegel, M., Dooijes, D., Clevers, H. Identification and


cloning of TCF-1, a T cell-specific transcription factor containing a sequence-specific HMG box. _EMBO J._ 10, 123–132 (1991). Article  CAS  PubMed  PubMed Central  Google Scholar  * Love,


J.J., Li, X., Chung, J., Dyson, H.J., Wright, P.E. The Lef-1 high mobility group domain undergoes a disorder-to-order transition upon formation of a complex with cognate DNA. _Biochemistry_


43, 8725–8734 (2004). Article  CAS  PubMed  Google Scholar  * Schweizer, L., Nellen, D., Basler, K. Requirements for Pangolin/dTCF in _Drosophila_ Wingless signaling. _Proc. Natl. Acad. Sci.


USA_ 100, 5846–5851 (2003). Article  CAS  PubMed  PubMed Central  Google Scholar  * Roose, J. et al. Synergy between tumor suppressor _APC_ and the β-catenin-Tcf4 target _Tcf1_. _Science_


285, 1923–1926 (1999). Article  CAS  PubMed  Google Scholar  * Huber, A.H., Nelson, W.J. & Weis, W.I. Three-dimensional structure of the armadillo repeat region of β-catenin. _Cell_ 90,


871–882 (1997). Article  CAS  PubMed  Google Scholar  * Yang, W., Steitz, T.A. Crystal structure of the site-specific recombinase γ δ resolvase complexes with a 34bp cleavage site. _Cell_


82, 193–207 (1995). Article  CAS  PubMed  Google Scholar  * Love, J.J. et al. Structural basis for DNA bending by the architectural transcription factor LEF-1. _Nature_ 376, 791–795 (1995).


Article  CAS  PubMed  Google Scholar  Download references ACKNOWLEDGEMENTS We thank M. Boulanger for assistance with the MALLS analysis, H.-J. Choi for the ITC data, S. Frydman for technical


assistance and S. Stifani for TLE cDNAs. The tryptic peptide mapping was carried out by the Protein and Nucleic Acid Facility at Stanford University School of Medicine and mass spectrometry


was done at the Molecular Structure Facility at University of California, Davis. This work was supported by grant GM56169 from the US National Institutes of Health to W.I.W. AUTHOR


INFORMATION AUTHORS AND AFFILIATIONS * Departments of Structural Biology and of Molecular & Cellular Physiology, Stanford University School of Medicine, Stanford University School of


Medicine, 299 Campus Drive West, Stanford, 94305-5126, California, USA Danette L Daniels & William I Weis Authors * Danette L Daniels View author publications You can also search for


this author inPubMed Google Scholar * William I Weis View author publications You can also search for this author inPubMed Google Scholar CORRESPONDING AUTHOR Correspondence to William I


Weis. ETHICS DECLARATIONS COMPETING INTERESTS The authors declare no competing financial interests. SUPPLEMENTARY INFORMATION SUPPLEMENTARY FIG. 1 MALLS analysis. (PDF 336 kb) SUPPLEMENTARY


FIG. 2 ITC data. (PDF 164 kb) SUPPLEMENTARY TABLE 1 MALLS molecular mass. (PDF 60 kb) RIGHTS AND PERMISSIONS Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Daniels, D., Weis,


W. β-catenin directly displaces Groucho/TLE repressors from Tcf/Lef in Wnt-mediated transcription activation. _Nat Struct Mol Biol_ 12, 364–371 (2005). https://doi.org/10.1038/nsmb912


Download citation * Received: 04 October 2004 * Accepted: 08 February 2005 * Published: 13 March 2005 * Issue Date: 01 April 2005 * DOI: https://doi.org/10.1038/nsmb912 SHARE THIS ARTICLE


Anyone you share the following link with will be able to read this content: Get shareable link Sorry, a shareable link is not currently available for this article. Copy to clipboard Provided


by the Springer Nature SharedIt content-sharing initiative