Clinical implications of pten loss in prostate cancer

feature-image

Play all audios:

    

KEY POINTS * Large-scale next-generation genetic analyses of prostate cancer emphasize the frequent occurrence and importance of focal genomic deletions inactivating _PTEN_ * Phosphatase and


tensin homologue (PTEN) loss in radical prostatectomy samples is often concurrent with genomic rearrangements involving the ETS family transcription factors * PTEN loss is reproducibly


associated with adverse oncological outcomes by itself or in combination with other biomarkers and helps distinguish indolent tumours from those likely to progress * PTEN might be a useful


prognostic biomarker to distinguish potentially aggressive Grade Group 1 or 2 tumours, which might make patients poor candidates for active surveillance programmes * Robust clinical assays


using immunohistochemistry and fluorescence in situ hybridization (FISH) have been developed to reproducibly measure PTEN protein and gene loss using diagnostic tissue biopsies and


circulating tumour cells from plasma * PTEN loss is associated with suppression of androgen receptor (AR) transcriptional output, and phosphoinositide 3-kinase (PI3K) inhibitors activate AR


signalling, suggesting potential efficacy of combination therapies targeting the PI3K and AR signalling pathways * Emerging studies indicate that PTEN loss is associated with alterations to


cellular interferon responses in the tumour microenvironment — tumours with loss of PTEN are more likely to have an immunosuppressive microenvironment, suggesting that advanced prostate


cancers with PTEN loss might be amenable to immune-based therapies ABSTRACT Genomic aberrations of the _PTEN_ tumour suppressor gene are among the most common in prostate cancer.


Inactivation of _PTEN_ by deletion or mutation is identified in ∼20% of primary prostate tumour samples at radical prostatectomy and in as many as 50% of castration-resistant tumours. Loss


of phosphatase and tensin homologue (PTEN) function leads to activation of the PI3K–AKT (phosphoinositide 3-kinase–RAC-alpha serine/threonine-protein kinase) pathway and is strongly


associated with adverse oncological outcomes, making PTEN a potentially useful genomic marker to distinguish indolent from aggressive disease in patients with clinically localized tumours.


At the other end of the disease spectrum, therapeutic compounds targeting nodes in the PI3K–AKT–mTOR (mechanistic target of rapamycin) signalling pathway are being tested in clinical trials


for patients with metastatic castration-resistant prostate cancer. Knowledge of PTEN status might be helpful to identify patients who are more likely to benefit from these therapies. To


enable the use of PTEN status as a prognostic and predictive biomarker, analytically validated assays have been developed for reliable and reproducible detection of PTEN loss in tumour


tissue and in blood liquid biopsies. The use of clinical-grade assays in tumour tissue has shown a robust correlation between loss of _PTEN_ and its protein as well as a strong association


between PTEN loss and adverse pathological features and oncological outcomes. In advanced disease, assessing PTEN status in liquid biopsies shows promise in predicting response to targeted


therapy. Finally, studies have shown that PTEN might have additional functions that are independent of the PI3K–AKT pathway, including those affecting tumour growth through modulation of the


immune response and tumour microenvironment. Access through your institution Buy or subscribe This is a preview of subscription content, access via your institution ACCESS OPTIONS Access


through your institution Access Nature and 54 other Nature Portfolio journals Get Nature+, our best-value online-access subscription $32.99 / 30 days cancel any time Learn more Subscribe to


this journal Receive 12 print issues and online access $209.00 per year only $17.42 per issue Learn more Buy this article * Purchase on SpringerLink * Instant access to full article PDF Buy


now Prices may be subject to local taxes which are calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in * Learn about institutional subscriptions * Read our FAQs * Contact customer


support SIMILAR CONTENT BEING VIEWED BY OTHERS CLINICAL IMPLICATIONS OF GENOMIC ALTERATIONS IN METASTATIC PROSTATE CANCER Article 15 January 2021 DIFFERENTIAL IMPACT OF TUMOR SUPPRESSOR


GENE (_TP53, PTEN, RB1_) ALTERATIONS AND TREATMENT OUTCOMES IN METASTATIC, HORMONE-SENSITIVE PROSTATE CANCER Article Open access 22 July 2021 EARLY-ONSET METASTATIC AND CLINICALLY ADVANCED


PROSTATE CANCER IS A DISTINCT CLINICAL AND MOLECULAR ENTITY CHARACTERIZED BY INCREASED _TMPRSS2–ERG_ FUSIONS Article 08 January 2021 REFERENCES * Siegel, R. L., Miller, K. D. & Jemal, A.


Cancer statistics, 2017. _CA Cancer J. Clin._ 67, 7–30 (2017). Article  PubMed  Google Scholar  * Tosoian, J. J. _ et al_. Intermediate and longer-term outcomes from a prospective


active-surveillance program for favorable-risk prostate cancer. _J. Clin. Oncol._ 33, 3379–3385 (2015). Article  PubMed  PubMed Central  Google Scholar  * Cancer Genome Atlas Research, N.


The molecular taxonomy of primary prostate cancer. _Cell_ 163, 1011–1025 (2015). * Taylor, B. S. _ et al_. Integrative genomic profiling of human prostate cancer. _Cancer Cell_ 18, 11–22


(2010). Article  CAS  PubMed  PubMed Central  Google Scholar  * Maehama, T. & Dixon, J. E. The tumor suppressor, PTEN/MMAC1, dephosphorylates the lipid second messenger,


phosphatidylinositol 3,4,5-trisphosphate. _J. Biol. Chem._ 273, 13375–13378 (1998). Article  CAS  PubMed  Google Scholar  * Song, M. S., Salmena, L. & Pandolfi, P. P. The functions and


regulation of the PTEN tumour suppressor. _Nat. Rev. Mol. Cell Biol._ 13, 283–296 (2012). Article  CAS  PubMed  Google Scholar  * Li, S. _ et al_. The tumor suppressor PTEN has a critical


role in antiviral innate immunity. _Nat. Immunol._ 17, 241–249 (2016). Article  CAS  PubMed  Google Scholar  * Chen, L. & Guo, D. The functions of tumor suppressor PTEN in innate and


adaptive immunity. _Cell. Mol. Immunol._ 14, 581–589 (2017). Article  CAS  PubMed  PubMed Central  Google Scholar  * Tamura, M. _ et al_. Inhibition of cell migration, spreading, and focal


adhesions by tumor suppressor PTEN. _Science_ 280, 1614–1617 (1998). Article  CAS  PubMed  Google Scholar  * Zhang, S. _ et al_. Combating trastuzumab resistance by targeting SRC, a common


node downstream of multiple resistance pathways. _Nat. Med._ 17, 461–469 (2011). Article  PubMed  CAS  Google Scholar  * Weng, L. P., Brown, J. L. & Eng, C. PTEN coordinates G(1) arrest


by down-regulating cyclin D1 via its protein phosphatase activity and up-regulating p27 via its lipid phosphatase activity in a breast cancer model. _Hum. Mol. Genet._ 10, 599–604 (2001).


Article  CAS  PubMed  Google Scholar  * Lindsay, Y. _ et al_. Localization of agonist-sensitive PtdIns(3,4,5)P3 reveals a nuclear pool that is insensitive to PTEN expression. _J. Cell Sci._


119, 5160–5168 (2006). Article  CAS  PubMed  Google Scholar  * Shen, W. H. _ et al_. Essential role for nuclear PTEN in maintaining chromosomal integrity. _Cell_ 128, 157–170 (2007). Article


  CAS  PubMed  Google Scholar  * Bassi, C. _ et al_. Nuclear PTEN controls DNA repair and sensitivity to genotoxic stress. _Science_ 341, 395–399 (2013). Article  CAS  PubMed  PubMed Central


  Google Scholar  * Cairns, P. _ et al_. Frequent inactivation of PTEN/MMAC1 in primary prostate cancer. _Cancer Res._ 57, 4997–5000 (1997). CAS  PubMed  Google Scholar  * Steck, P. A. _ et


al_. Identification of a candidate tumour suppressor gene, MMAC1, at chromosome 10q23.3 that is mutated in multiple advanced cancers. _Nat. Genet._ 15, 356–362 (1997). Article  CAS  PubMed 


Google Scholar  * Suzuki, H. _ et al_. Interfocal heterogeneity of PTEN/MMAC1 gene alterations in multiple metastatic prostate cancer tissues. _Cancer Res._ 58, 204–209 (1998). CAS  PubMed 


Google Scholar  * Berger, M. F. _ et al_. The genomic complexity of primary human prostate cancer. _Nature_ 470, 214–220 (2011). Article  CAS  PubMed  PubMed Central  Google Scholar  *


Barbieri, C. E. _ et al_. Exome sequencing identifies recurrent SPOP, FOXA1 and MED12 mutations in prostate cancer. _Nat. Genet._ 44, 685–689 (2012). Article  CAS  PubMed  PubMed Central 


Google Scholar  * Yoshimoto, M. _ et al_. FISH analysis of 107 prostate cancers shows that PTEN genomic deletion is associated with poor clinical outcome. _Br. J. Cancer_ 97, 678–685 (2007).


Article  CAS  PubMed  PubMed Central  Google Scholar  * Krohn, A. _ et al_. Genomic deletion of PTEN is associated with tumor progression and early PSA recurrence in ERG fusion-positive and


fusion-negative prostate cancer. _Am. J. Pathol._ 181, 401–412 (2012). Article  CAS  PubMed  Google Scholar  * Troyer, D. A. _ et al_. A multicenter study shows PTEN deletion is strongly


associated with seminal vesicle involvement and extracapsular extension in localized prostate cancer. _Prostate_ 75, 1206–1215 (2015). Article  CAS  PubMed  PubMed Central  Google Scholar  *


Feilotter, H. E., Nagai, M. A., Boag, A. H., Eng, C. & Mulligan, L. M. Analysis of PTEN and the 10q23 region in primary prostate carcinomas. _Oncogene_ 16, 1743–1748 (1998). Article 


CAS  PubMed  Google Scholar  * Pesche, S. _ et al_. PTEN/MMAC1/TEP1 involvement in primary prostate cancers. _Oncogene_ 16, 2879–2883 (1998). Article  CAS  PubMed  Google Scholar  * Wang, S.


I., Parsons, R. & Ittmann, M. Homozygous deletion of the PTEN tumor suppressor gene in a subset of prostate adenocarcinomas. _Clin. Cancer Res._ 4, 811–815 (1998). CAS  PubMed  Google


Scholar  * Whang, Y. E. _ et al_. Inactivation of the tumor suppressor PTEN/MMAC1 in advanced human prostate cancer through loss of expression. _Proc. Natl Acad. Sci. USA_ 95, 5246–5250


(1998). Article  CAS  PubMed  PubMed Central  Google Scholar  * Yoshimoto, M. _ et al_. Interphase FISH analysis of PTEN in histologic sections shows genomic deletions in 68% of primary


prostate cancer and 23% of high-grade prostatic intra-epithelial neoplasias. _Cancer Genet. Cytogenet._ 169, 128–137 (2006). Article  CAS  PubMed  Google Scholar  * Verhagen, P. C. _ et al_.


The PTEN gene in locally progressive prostate cancer is preferentially inactivated by bi-allelic gene deletion. _J. Pathol._ 208, 699–707 (2006). Article  CAS  PubMed  Google Scholar  *


McCall, P., Witton, C. J., Grimsley, S., Nielsen, K. V. & Edwards, J. Is PTEN loss associated with clinical outcome measures in human prostate cancer? _Br. J. Cancer_ 99, 1296–1301


(2008). Article  CAS  PubMed  PubMed Central  Google Scholar  * Yoshimoto, M. _ et al_. Absence of TMPRSS2:ERG fusions and PTEN losses in prostate cancer is associated with a favorable


outcome. _Mod. Pathol._ 21, 1451–1460 (2008). Article  CAS  PubMed  Google Scholar  * Attard, G. _ et al_. Characterization of ERG, AR and PTEN gene status in circulating tumor cells from


patients with castration-resistant prostate cancer. _Cancer Res._ 69, 2912–2918 (2009). Article  CAS  PubMed  Google Scholar  * Sircar, K. _ et al_. PTEN genomic deletion is associated with


p-Akt and AR signalling in poorer outcome, hormone refractory prostate cancer. _J. Pathol._ 218, 505–513 (2009). Article  CAS  PubMed  Google Scholar  * Han, B. _ et al_. Fluorescence in


situ hybridization study shows association of PTEN deletion with ERG rearrangement during prostate cancer progression. _Mod. Pathol._ 22, 1083–1093 (2009). Article  CAS  PubMed  PubMed


Central  Google Scholar  * Krohn, A. _ et al_. Heterogeneity and chronology of PTEN deletion and ERG fusion in prostate cancer. _Mod. Pathol._ 27, 1612–1620 (2014). Article  CAS  PubMed 


Google Scholar  * Steurer, S. _ et al_. TMPRSS2-ERG fusions are strongly linked to young patient age in low-grade prostate cancer. _Eur. Urol._ 66, 978–981 (2014). Article  CAS  PubMed 


Google Scholar  * Lotan, T. L. _ et al_. Analytic validation of a clinical-grade PTEN immunohistochemistry assay in prostate cancer by comparison with PTEN FISH. _Mod. Pathol._ 29, 904–914


(2016). Article  CAS  PubMed  PubMed Central  Google Scholar  * Ahearn, T. U. _ et al_. A prospective investigation of PTEN loss and ERG expression in lethal prostate cancer. _J. Natl Cancer


Inst._ 108, djv34 (2016). Google Scholar  * Liu, W. _ et al_. Copy number analysis indicates monoclonal origin of lethal metastatic prostate cancer. _Nat. Med._ 15, 559–565 (2009). Article


  CAS  PubMed  PubMed Central  Google Scholar  * Grasso, C. S. _ et al_. The mutational landscape of lethal castration-resistant prostate cancer. _Nature_ 487, 239–243 (2012). Article  CAS 


PubMed  PubMed Central  Google Scholar  * Robinson, D. _ et al_. Integrative clinical genomics of advanced prostate cancer. _Cell_ 161, 1215–1228 (2015). Article  CAS  PubMed  PubMed Central


  Google Scholar  * Khani, F. _ et al_. Evidence for molecular differences in prostate cancer between African American and Caucasian men. _Clin. Cancer Res._ 20, 4925–4934 (2014). Article 


CAS  PubMed  PubMed Central  Google Scholar  * Tosoian, J. J. _ et al_. Prevalence and prognostic significance of PTEN loss in African-American and European-American men undergoing radical


prostatectomy. _Eur. Urol._ 71, 697–700 (2017). Article  PubMed  Google Scholar  * Lindquist, K. J. _ et al_. Mutational landscape of aggressive prostate tumors in African American men.


_Cancer Res._ 76, 1860–1868 (2016). Article  CAS  PubMed  PubMed Central  Google Scholar  * Huang, F. W. _ et al_. Exome sequencing of African-American prostate cancer reveals


loss-of-function ERF mutations. _Cancer Discov._ 7, 973–983 (2017). Article  CAS  PubMed  PubMed Central  Google Scholar  * Reid, A. H. _ et al_. Novel, gross chromosomal alterations


involving PTEN cooperate with allelic loss in prostate cancer. _Mod. Pathol._ 25, 902–910 (2012). Article  CAS  PubMed  Google Scholar  * Murphy, S. J. _ et al_. Integrated analysis of the


genomic instability of PTEN in clinically insignificant and significant prostate cancer. _Mod. Pathol._ 29, 143–156 (2016). Article  CAS  PubMed  Google Scholar  * Ibeawuchi, C. _ et al_.


Exploring prostate cancer genome reveals simultaneous losses of PTEN, FAS and PAPSS2 in patients with PSA recurrence after radical prostatectomy. _Int. J. Mol. Sci._ 16, 3856–3869 (2015).


Article  CAS  PubMed  PubMed Central  Google Scholar  * Whang, Y. E., Wu, X. Y. & Sawyers, C. L. Identification of a pseudogene that can masquerade as a mutant allele of the PTEN/MMAC1


tumor suppressor gene. _J. Natl Cancer Inst._ 90, 859–861 (1998). Article  CAS  PubMed  Google Scholar  * Zysman, M. A., Chapman, W. B. & Bapat, B. Considerations when analyzing the


methylation status of PTEN tumor suppressor gene. _Am. J. Pathol._ 160, 795–800 (2002). Article  CAS  PubMed  PubMed Central  Google Scholar  * Beltran, H. _ et al_. Targeted next-generation


sequencing of advanced prostate cancer identifies potential therapeutic targets and disease heterogeneity. _Eur. Urol._ 63, 920–926 (2013). Article  CAS  PubMed  Google Scholar  * Bermudez


Brito, M., Goulielmaki, E. & Papakonstanti, E. A. Focus on PTEN Regulation. _Front. Oncol._ 5, 166 (2015). Article  PubMed  PubMed Central  Google Scholar  * Garcia, J. M. _ et al_.


Promoter methylation of the PTEN gene is a common molecular change in breast cancer. _Genes Chromosomes Cancer_ 41, 117–124 (2004). Article  CAS  PubMed  Google Scholar  * Konishi, N. _ et


al_. Heterogeneous methylation and deletion patterns of the INK4a/ARF locus within prostate carcinomas. _Am. J. Pathol._ 160, 1207–1214 (2002). Article  CAS  PubMed  PubMed Central  Google


Scholar  * Tay, Y. _ et al_. Coding-independent regulation of the tumor suppressor PTEN by competing endogenous mRNAs. _Cell_ 147, 344–357 (2011). Article  CAS  PubMed  PubMed Central 


Google Scholar  * Poliseno, L. _ et al_. Identification of the miR-106b∼25 microRNA cluster as a proto-oncogenic PTEN-targeting intron that cooperates with its host gene MCM7 in


transformation. _Sci. Signal._ 3, ra29 (2010). Article  PubMed  PubMed Central  CAS  Google Scholar  * Leslie, N. R. & Foti, M. Non-genomic loss of PTEN function in cancer: not in my


genes. _Trends Pharmacol. Sci._ 32, 131–140 (2011). Article  CAS  PubMed  Google Scholar  * Salmena, L., Carracedo, A. & Pandolfi, P. P. Tenets of PTEN tumor suppression. _Cell_ 133,


403–414 (2008). Article  CAS  PubMed  Google Scholar  * Gundem, G. _ et al_. The evolutionary history of lethal metastatic prostate cancer. _Nature_ 520, 353–357 (2015). Article  CAS  PubMed


  PubMed Central  Google Scholar  * Haffner, M. C. _ et al_. Tracking the clonal origin of lethal prostate cancer. _J. Clin. Invest._ 123, 4918–4922 (2013). Article  CAS  PubMed  PubMed


Central  Google Scholar  * Bismar, T. A. _ et al_. PTEN genomic deletion is an early event associated with ERG gene rearrangements in prostate cancer. _BJU Int._ 107, 477–485 (2011). Article


  PubMed  Google Scholar  * Gumuskaya, B. _ et al_. Assessing the order of critical alterations in prostate cancer development and progression by IHC: further evidence that PTEN loss occurs


subsequent to ERG gene fusion. _Prostate Cancer Prostat. Dis._ 16, 209–215 (2013). Article  CAS  Google Scholar  * Lotan, T. L. _ et al_. PTEN loss as determined by clinical-grade


immunohistochemistry assay is associated with worse recurrence-free survival in prostate cancer. _Eur. Urol. Focus_ 2, 180–188 (2016). Article  PubMed  PubMed Central  Google Scholar  *


Lotan, T. L. _ et al_. Cytoplasmic PTEN protein loss distinguishes intraductal carcinoma of the prostate from high-grade prostatic intraepithelial neoplasia. _Mod. Pathol._ 26, 587–603


(2013). Article  CAS  PubMed  Google Scholar  * Morais, C. L. _ et al_. Utility of PTEN and ERG immunostaining for distinguishing high-grade PIN from intraductal carcinoma of the prostate on


needle biopsy. _Am. J. Surg. Pathol._ 39, 169–178 (2015). Article  PubMed  PubMed Central  Google Scholar  * Morais, C. L. _ et al_. ERG and PTEN status of isolated high-grade PIN occurring


in cystoprostatectomy specimens without invasive prostatic adenocarcinoma. _Hum. Pathol._ 55, 117–125 (2016). Article  PubMed  PubMed Central  Google Scholar  * Trotman, L. C. _ et al_.


Pten dose dictates cancer progression in the prostate. _PLOS Biol._ 1, E59 (2003). Article  PubMed  PubMed Central  Google Scholar  * Di Cristofano, A., Pesce, B., Cordon-Cardo, C. &


Pandolfi, P. P. Pten is essential for embryonic development and tumour suppression. _Nat. Genet._ 19, 348–355 (1998). Article  CAS  PubMed  Google Scholar  * Stambolic, V. _ et al_. High


incidence of breast and endometrial neoplasia resembling human Cowden syndrome in pten+/− mice. _Cancer Res._ 60, 3605–3611 (2000). CAS  PubMed  Google Scholar  * Podsypanina, K. _ et al_.


Mutation of Pten/Mmac1 in mice causes neoplasia in multiple organ systems. _Proc. Natl Acad. Sci. USA_ 96, 1563–1568 (1999). Article  CAS  PubMed  PubMed Central  Google Scholar  * Wang, S.


_ et al_. Prostate-specific deletion of the murine Pten tumor suppressor gene leads to metastatic prostate cancer. _Cancer Cell_ 4, 209–221 (2003). Article  CAS  PubMed  Google Scholar  *


Chen, Z. _ et al_. Crucial role of p53-dependent cellular senescence in suppression of Pten-deficient tumorigenesis. _Nature_ 436, 725–730 (2005). Article  CAS  PubMed  PubMed Central 


Google Scholar  * Shen, M. M. & Abate-Shen, C. Pten inactivation and the emergence of androgen-independent prostate cancer. _Cancer Res._ 67, 6535–6538 (2007). Article  CAS  PubMed 


Google Scholar  * Jiao, J. _ et al_. Murine cell lines derived from Pten null prostate cancer show the critical role of PTEN in hormone refractory prostate cancer development. _Cancer Res._


67, 6083–6091 (2007). Article  CAS  PubMed  Google Scholar  * Mulholland, D. J. _ et al_. Cell autonomous role of PTEN in regulating castration-resistant prostate cancer growth. _Cancer


Cell_ 19, 792–804 (2011). Article  CAS  PubMed  PubMed Central  Google Scholar  * Carver, B. S. _ et al_. Reciprocal feedback regulation of PI3K and androgen receptor signaling in


PTEN-deficient prostate cancer. _Cancer Cell_ 19, 575–586 (2011). Article  CAS  PubMed  PubMed Central  Google Scholar  * Choucair, K. _ et al_. PTEN genomic deletion predicts prostate


cancer recurrence and is associated with low AR expression and transcriptional activity. _BMC Cancer_ 12, 543 (2012). Article  CAS  PubMed  PubMed Central  Google Scholar  * Bismar, T. A. _


et al_. Interactions and relationships of PTEN, ERG, SPINK1 and AR in castration-resistant prostate cancer. _Histopathology_ 60, 645–652 (2012). Article  PubMed  Google Scholar  * Grabowska,


M. M. _ et al_. Mouse models of prostate cancer: picking the best model for the question. _Cancer Metastasis Rev._ 33, 377–397 (2014). Article  CAS  PubMed  PubMed Central  Google Scholar 


* Carver, B. S. _ et al_. Aberrant ERG expression cooperates with loss of PTEN to promote cancer progression in the prostate. _Nat. Genet._ 41, 619–624 (2009). Article  CAS  PubMed  PubMed


Central  Google Scholar  * King, J. C. _ et al_. Cooperativity of TMPRSS2-ERG with PI3-kinase pathway activation in prostate oncogenesis. _Nat. Genet._ 41, 524–526 (2009). Article  CAS 


PubMed  PubMed Central  Google Scholar  * Chen, Y. _ et al_. ETS factors reprogram the androgen receptor cistrome and prime prostate tumorigenesis in response to PTEN loss. _Nat. Med._ 19,


1023–1029 (2013). Article  CAS  PubMed  PubMed Central  Google Scholar  * Kim, J. _ et al_. A mouse model of heterogeneous, c-MYC-initiated prostate cancer with loss of Pten and p53.


_Oncogene_ 31, 322–332 (2012). Article  CAS  PubMed  Google Scholar  * Couto, S. S. _ et al_. Simultaneous haploinsufficiency of Pten and Trp53 tumor suppressor genes accelerates


tumorigenesis in a mouse model of prostate cancer. _Differentiation_ 77, 103–111 (2009). Article  CAS  PubMed  Google Scholar  * Ku, S. Y. _ et al_. Rb1 and Trp53 cooperate to suppress


prostate cancer lineage plasticity, metastasis, and antiandrogen resistance. _Science_ 355, 78–83 (2017). Article  CAS  PubMed  PubMed Central  Google Scholar  * Tan, H. L. _ et al_. Rb loss


is characteristic of prostatic small cell neuroendocrine carcinoma. _Clin. Cancer Res._ 20, 890–903 (2014). Article  CAS  PubMed  Google Scholar  * Aparicio, A. M. _ et al_. Combined tumor


suppressor defects characterize clinically defined aggressive variant prostate cancers. _Clin. Cancer Res._ 22, 1520–1530 (2016). Article  CAS  PubMed  Google Scholar  * Hubbard, G. K. _ et


al_. Combined MYC activation and Pten loss are sufficient to create genomic instability and lethal metastatic prostate cancer. _Cancer Res._ 76, 283–292 (2016). Article  CAS  PubMed  Google


Scholar  * Blattner, M. _ et al_. SPOP mutation drives prostate tumorigenesis in vivo through coordinate regulation of PI3K/mTOR and AR signaling. _Cancer Cell_ 31, 436–451 (2017). Article 


CAS  PubMed  PubMed Central  Google Scholar  * Zhao, D. _ et al_. Synthetic essentiality of chromatin remodelling factor CHD1 in PTEN-deficient cancer. _Nature_ 542, 484–488 (2017). Article


  CAS  PubMed  PubMed Central  Google Scholar  * Moschini, M. _ et al_. Low-risk prostate cancer: identification, management, and outcomes. _Eur. Urol._ 72, 238–249 (2017). Article  PubMed 


Google Scholar  * Bruinsma, S. M. _ et al_. Active surveillance for prostate cancer: a narrative review of clinical guidelines. _Nat. Rev. Urol._ 13, 151–167 (2016). Article  CAS  PubMed 


Google Scholar  * Barrett, T. & Haider, M. A. The emerging role of MRI in prostate cancer active surveillance and ongoing challenges. _AJR Am. J. Roentgenol._ 208, 131–139 (2017).


Article  PubMed  Google Scholar  * Ma, T. M. _ et al_. The role of multiparametric magnetic resonance imaging/ultrasound fusion biopsy in active surveillance. _Eur. Urol._ 71, 174–180


(2017). Article  PubMed  Google Scholar  * Epstein, J. I. _ et al_. The 2014 International Society of Urological Pathology (ISUP) Consensus Conference on Gleason Grading of Prostatic


Carcinoma: definition of grading patterns and proposal for a new grading system. _Am. J. Surg. Pathol._ 40, 244–252 (2016). Article  PubMed  Google Scholar  * Epstein, J. I. _ et al_. A


contemporary prostate cancer grading system: a validated alternative to the Gleason score. _Eur. Urol._ 69, 428–435 (2016). Article  PubMed  Google Scholar  * Ross, A. E., D'Amico, A.


V. & Freedland, S. J. Which, when and why? Rational use of tissue-based molecular testing in localized prostate cancer. _Prostate Cancer Prostat. Dis._ 19, 1–6 (2016). Article  CAS 


Google Scholar  * Lotan, T. L. _ et al_. PTEN protein loss by immunostaining: analytic validation and prognostic indicator for a high risk surgical cohort of prostate cancer patients. _Clin.


Cancer Res._ 17, 6563–6573 (2011). Article  CAS  PubMed  PubMed Central  Google Scholar  * Wang, Y. & Dai, B. PTEN genomic deletion defines favorable prognostic biomarkers in localized


prostate cancer: a systematic review and meta-analysis. _Int. J. Clin. Exp. Med._ 8, 5430–5437 (2015). CAS  PubMed  PubMed Central  Google Scholar  * Reid, A. H. _ et al_. Molecular


characterisation of ERG, ETV1 and PTEN gene loci identifies patients at low and high risk of death from prostate cancer. _Br. J. Cancer_ 102, 678–684 (2010). Article  CAS  PubMed  PubMed


Central  Google Scholar  * Trock, B. J. _ et al_. PTEN loss and chromosome 8 alterations in Gleason grade 3 prostate cancer cores predicts the presence of un-sampled grade 4 tumor:


implications for active surveillance. _Mod. Pathol._ 29, 764–771 (2016). Article  CAS  PubMed  PubMed Central  Google Scholar  * Lotan, T. L. _ et al_. PTEN loss is associated with upgrading


of prostate cancer from biopsy to radical prostatectomy. _Mod. Pathol._ 28, 128–137 (2015). Article  CAS  PubMed  Google Scholar  * Picanco-Albuquerque, C. G. _ et al_. In prostate cancer


needle biopsies, detections of PTEN loss by fluorescence in situ hybridization (FISH) and by immunohistochemistry (IHC) are concordant and show consistent association with upgrading.


_Virchows Arch._ 468, 607–617 (2016). Article  CAS  PubMed  Google Scholar  * Guedes, L. B., Tosoian, J. J., Hicks, J., Ross, A. E. & Lotan, T. L. PTEN loss in Gleason score 3 + 4 = 7


prostate biopsies is associated with nonorgan confined disease at radical prostatectomy. _J. Urol._ 197, 1054–1059 (2017). Article  PubMed  Google Scholar  * Lokman, U., Erickson, A. M.,


Vasarainen, H., Rannikko, A. S. & Mirtti, T. PTEN loss but not ERG expression in diagnostic biopsies is associated with increased risk of progression and adverse surgical findings in men


with prostate cancer on active surveillance. _Eur. Urol. Focus_ https://doi.org/10.1016/j.euf.2017.03.004 (2017). Article  PubMed  Google Scholar  * Mithal, P. _ et al_. PTEN loss in biopsy


tissue predicts poor clinical outcomes in prostate cancer. _Int. J. Urol._ 21, 1209–1214 (2014). Article  CAS  PubMed  Google Scholar  * Shah, R. B., Bentley, J., Jeffery, Z. & DeMarzo,


A. M. Heterogeneity of PTEN and ERG expression in prostate cancer on core needle biopsies: implications for cancer risk stratification and biomarker sampling. _Hum. Pathol._ 46, 698–706


(2015). Article  CAS  PubMed  Google Scholar  * Wobker, S. E. & Epstein, J. I. Differential diagnosis of intraductal lesions of the prostate. _Am. J. Surg. Pathol._ 40, e67–e82 (2016).


Article  PubMed  Google Scholar  * Epstein, J. I. & Herawi, M. Prostate needle biopsies containing prostatic intraepithelial neoplasia or atypical foci suspicious for carcinoma:


implications for patient care. _J. Urol._ 175, 820–834 (2006). Article  PubMed  Google Scholar  * Tosoian, J. J., Alam, R., Ball, M. W., Carter, H. B. & Epstein, J. I. Managing


high-grade prostatic intraepithelial neoplasia (HGPIN) and atypical glands on prostate biopsy. _Nat. Rev. Urol._ 15, 55–66 (2018). Article  PubMed  Google Scholar  * Guo, C. C. &


Epstein, J. I. Intraductal carcinoma of the prostate on needle biopsy: histologic features and clinical significance. _Mod. Pathol._ 19, 1528–1535 (2006). Article  PubMed  Google Scholar  *


Robinson, B. D. & Epstein, J. I. Intraductal carcinoma of the prostate without invasive carcinoma on needle biopsy: emphasis on radical prostatectomy findings. _J. Urol._ 184, 1328–1333


(2010). Article  PubMed  Google Scholar  * Hickman, R. A. _ et al_. Atypical intraductal cribriform proliferations of the prostate exhibit similar molecular and clinicopathologic


characteristics as intraductal carcinoma of the prostate. _Am. J. Surg. Pathol._ 41, 550–556 (2017). Article  PubMed  Google Scholar  * De Marzo, A. M., Haffner, M. C., Lotan, T. L.,


Yegnasubramanian, S. & Nelson, W. G. Premalignancy in prostate cancer: rethinking what we know. _Cancer Prev. Res._ 9, 648–656 (2016). Article  CAS  Google Scholar  * Pettersson, A. _ et


al_. The TMPRSS2:ERG rearrangement, ERG expression, and prostate cancer outcomes: a cohort study and meta-analysis. _Cancer Epidemiol. Biomarkers Prev._ 21, 1497–1509 EPI-12-0042 (2012).


Article  PubMed  PubMed Central  Google Scholar  * Leinonen, K. A. _ et al_. Loss of PTEN is associated with aggressive behavior in ERG-positive prostate cancer. _Cancer Epidemiol.


Biomarkers Prev._ 22, 2333–2344 (2013). Article  CAS  PubMed  PubMed Central  Google Scholar  * Fontugne, J. _ et al_. Recurrent prostate cancer genomic alterations predict response to


brachytherapy treatment. _Cancer Epidemiol. Biomarkers Prev._ 23, 594–600 (2014). Article  CAS  PubMed  PubMed Central  Google Scholar  * Lahdensuo, K. _ et al_. Loss of PTEN expression in


ERG-negative prostate cancer predicts secondary therapies and leads to shorter disease-specific survival time after radical prostatectomy. _Mod. Pathol._ 29, 1565–1574 (2016). Article  CAS 


PubMed  Google Scholar  * Yoshimoto, M. _ et al_. PTEN genomic deletions that characterize aggressive prostate cancer originate close to segmental duplications. _Genes Chromosomes Cancer_


51, 149–160 (2012). Article  CAS  PubMed  Google Scholar  * Yoshimoto, M. _ et al_. Incorporation of flanking probes reduces truncation losses for fluorescence in situ hybridization analysis


of recurrent genomic deletions in tumor sections [abstract]. _Cancer Res._ 73, 63 (2014). Google Scholar  * Sangale, Z. _ et al_. A robust immunohistochemical assay for detecting PTEN


expression in human tumors. _Appl. Immunohistochem_. _Mol. Morphol._ 19, 173–183 (2011). CAS  Google Scholar  * Chaux, A. _ et al_. Loss of PTEN expression is associated with increased risk


of recurrence after prostatectomy for clinically localized prostate cancer. _Mod. Pathol._ 25, 1543–1549 (2012). Article  CAS  PubMed  PubMed Central  Google Scholar  * Punnoose, E. A. _ et


al_. PTEN loss in circulating tumour cells correlates with PTEN loss in fresh tumour tissue from castration-resistant prostate cancer patients. _Br. J. Cancer_ 113, 1225–1233 (2015). Article


  CAS  PubMed  PubMed Central  Google Scholar  * Wyatt, A. W. _ et al_. Genomic alterations in cell-free DNA and enzalutamide resistance in castration-resistant prostate cancer. _JAMA


Oncol._ 2, 1598–1606 (2016). Article  PubMed  PubMed Central  Google Scholar  * Xia, Y. _ et al_. Copy number variations in urine cell free DNA as biomarkers in advanced prostate cancer.


_Oncotarget_ 7, 35818–35831 (2016). Article  PubMed  PubMed Central  Google Scholar  * Wyatt, A. W. _ et al_. Concordance of circulating tumor DNA and matched metastatic tissue biopsy in


prostate cancer. _J. Natl Cancer Inst._ 110, 78–86 (2017). Google Scholar  * US National Library of Medicine. _ClinicalTrials.gov_ https://clinicaltrials.gov/ct2/show/NCT03236688 (2017). *


US National Library of Medicine. _ClinicalTrials.gov_ https://clinicaltrials.gov/ct2/show/NCT02438007 (2017). * US National Library of Medicine. _ClinicalTrials.gov_


https://clinicaltrials.gov/ct2/show/NCT03050866 (2017). * US National Library of Medicine. _ClinicalTrials.gov_ https://clinicaltrials.gov/ct2/show/NCT02853097 (2017). * US National Library


of Medicine. _ClinicalTrials.gov_ https://clinicaltrials.gov/ct2/show/NCT02269982 (2018). * Ferraldeschi, R. _ et al_. PTEN protein loss and clinical outcome from castration-resistant


prostate cancer treated with abiraterone acetate. _Eur. Urol._ 67, 795–802 (2015). Article  CAS  PubMed  PubMed Central  Google Scholar  * Edlind, M. P. & Hsieh, A. C. PI3K-AKT-mTOR


signaling in prostate cancer progression and androgen deprivation therapy resistance. _Asian J. Androl._ 16, 378–386 (2014). Article  CAS  PubMed  PubMed Central  Google Scholar  * Dillon,


L. M. & Miller, T. W. Therapeutic targeting of cancers with loss of PTEN function. _Curr. Drug Targets_ 15, 65–79 (2014). Article  CAS  PubMed  PubMed Central  Google Scholar  * Thomas,


C. _ et al_. Synergistic targeting of PI3K/AKT pathway and androgen receptor axis significantly delays castration-resistant prostate cancer progression in vivo. _Mol. Cancer Ther._ 12,


2342–2355 (2013). Article  CAS  PubMed  Google Scholar  * Marques, R. B. _ et al_. High efficacy of combination therapy using PI3K/AKT inhibitors with androgen deprivation in prostate cancer


preclinical models. _Eur. Urol._ 67, 1177–1185 (2015). Article  CAS  PubMed  Google Scholar  * Schwartz, S. _ et al_. Feedback suppression of PI3Kalpha signaling in PTEN-mutated tumors is


relieved by selective inhibition of PI3Kbeta. _Cancer Cell_ 27, 109–122 (2015). Article  CAS  PubMed  Google Scholar  * Armstrong, A. J. _ et al_. Phase II trial of the PI3 kinase inhibitor


buparlisib (BKM-120) with or without enzalutamide in men with metastatic castration resistant prostate cancer. _Eur. J. Cancer_ 81, 228–236 (2017). Article  CAS  PubMed  PubMed Central 


Google Scholar  * Wei, X. X. _ et al_. A phase I study of abiraterone acetate combined with BEZ235, a dual PI3K/mTOR inhibitor, in metastatic castration resistant prostate cancer. _Oncol._


22, e503–e543 (2017). Article  CAS  Google Scholar  * Massard, C. _ et al_. Phase Ib dose-finding study of abiraterone acetate plus buparlisib (BKM120) or dactolisib (BEZ235) in patients


with castration-resistant prostate cancer. _Eur. J. Cancer_ 76, 36–44 (2017). Article  CAS  PubMed  Google Scholar  * Chow, H. _ et al_. A phase 2 clinical trial of everolimus plus


bicalutamide for castration-resistant prostate cancer. _Cancer_ 122, 1897–1904 (2016). Article  CAS  PubMed  Google Scholar  * US National Library of Medicine. _ClinicalTrials.gov_


https://clinicaltrials.gov/ct2/show/NCT02106507 (2017). * US National Library of Medicine. _ClinicalTrials.gov_ https://clinicaltrials.gov/ct2/show/NCT02125084 (2017). * Baselga, J. _ et


al_. Everolimus in postmenopausal hormone-receptor-positive advanced breast cancer. _N. Engl. J. Med._ 366, 520–529 (2012). Article  CAS  PubMed  Google Scholar  * US National Library of


Medicine. _ClinicalTrials.gov_ https://clinicaltrials.gov/ct2/show/NCT02833883 (2017). * US National Library of Medicine. _ClinicalTrials.gov_ https://clinicaltrials.gov/ct2/show/NCT01485861


(2018). * de Bono, J. S. _ et al_. PTEN loss as a predictive biomarker for the Akt inhibitor ipatasertib combined with abiraterone acetate in patients with metastatic castration-resistant


prostate cancer (mCRPC). _Ann. Oncol._ 27, 718O (2016). Google Scholar  * Fruman, D. A. _ et al_. The PI3K pathway in human disease. _Cell_ 170, 605–635 (2017). Article  CAS  PubMed  PubMed


Central  Google Scholar  * Jia, S. _ et al_. Essential roles of PI(3)K-p110beta in cell growth, metabolism and tumorigenesis. _Nature_ 454, 776–779 (2008). Article  CAS  PubMed  PubMed


Central  Google Scholar  * US National Library of Medicine. _ClinicalTrials.gov_ https://clinicaltrials.gov/ct2/show/NCT01884285 (2018). * US National Library of Medicine.


_ClinicalTrials.gov_ https://clinicaltrials.gov/ct2/show/NCT02215096 (2018). * Mateo, J. _ et al_. DNA repair in prostate cancer: biology and clinical implications. _Eur. Urol._ 71, 417–425


(2017). Article  CAS  PubMed  Google Scholar  * Mateo, J. _ et al_. DNA-repair defects and olaparib in metastatic prostate cancer. _N. Engl. J. Med._ 373, 1697–1708 (2015). Article  CAS 


PubMed  PubMed Central  Google Scholar  * Gonzalez-Billalabeitia, E. _ et al_. Vulnerabilities of PTEN-TP53-deficient prostate cancers to compound PARP-PI3K inhibition. _Cancer Discov._ 4,


896–904 (2014). Article  CAS  PubMed  PubMed Central  Google Scholar  * van de Ven, A. L. _ et al_. Nanoformulation of olaparib amplifies PARP inhibition and sensitizes PTEN/TP53-deficient


prostate cancer to radiation. _Mol. Cancer Ther._ 16, 1279–1289 (2017). Article  CAS  PubMed  PubMed Central  Google Scholar  * Hopkins, B. D. _ et al_. A secreted PTEN phosphatase that


enters cells to alter signaling and survival. _Science_ 341, 399–402 (2013). Article  CAS  PubMed  PubMed Central  Google Scholar  * Wang, H. _ et al_. Relevance and therapeutic possibility


of PTEN-long in renal cell carcinoma. _PLOS One_ 10, e114250 (2015). Article  PubMed  PubMed Central  CAS  Google Scholar  * Drake, C. G. Immunotherapy for prostate cancer: an emerging


treatment modality. _Urol. Clin. North Am._ 37, 121–129 (2010). Article  PubMed  PubMed Central  Google Scholar  * De Marzo, A. M. _ et al_. Inflammation in prostate carcinogenesis. _Nat.


Rev. Cancer_ 7, 256–269 (2007). Article  CAS  PubMed  PubMed Central  Google Scholar  * Strasner, A. & Karin, M. Immune infiltration and prostate cancer. _Front. Oncol._ 5, 128 (2015).


Article  PubMed  PubMed Central  Google Scholar  * Gannon, P. O. _ et al_. Characterization of the intra-prostatic immune cell infiltration in androgen-deprived prostate cancer patients. _J.


Immunol. Methods_ 348, 9–17 (2009). Article  CAS  PubMed  Google Scholar  * Si, T. G., Wang, J. P. & Guo, Z. Analysis of circulating regulatory T cells (CD4+CD25+CD127-) after


cryosurgery in prostate cancer. _Asian J. Androl._ 15, 461–465 (2013). Article  CAS  PubMed  PubMed Central  Google Scholar  * Peng, W. _ et al_. Loss of PTEN promotes resistance to T


cell-mediated immunotherapy. _Cancer Discov._ 6, 202–216 (2016). Article  CAS  PubMed  Google Scholar  * Moussavi, M. _ et al_. Oncolysis of prostate cancers induced by vesicular stomatitis


virus in PTEN knockout mice. _Cancer Res._ 70, 1367–1376 (2010). Article  CAS  PubMed  Google Scholar  * Champion, B. R., Fisher, K. & Seymour, L. A. PTENtial cause for the selectivity


of oncolytic viruses? _Nat. Immunol._ 17, 225–226 (2016). Article  CAS  PubMed  Google Scholar  * Pencik, J. _ et al_. STAT3 regulated ARF expression suppresses prostate cancer metastasis.


_Nat. Commun._ 6, 7736 (2015). Article  CAS  PubMed  Google Scholar  * Yu, H., Pardoll, D. & Jove, R. STATs in cancer inflammation and immunity: a leading role for STAT3. _Nat. Rev.


Cancer_ 9, 798–809 (2009). Article  CAS  PubMed  PubMed Central  Google Scholar  * Toso, A. _ et al_. Enhancing chemotherapy efficacy in Pten-deficient prostate tumors by activating the


senescence-associated antitumor immunity. _Cell Rep._ 9, 75–89 (2014). Article  CAS  PubMed  Google Scholar  * Cuzick, J. _ et al_. Prognostic value of PTEN loss in men with conservatively


managed localised prostate cancer. _Br. J. Cancer_ 108, 2582–2589 (2013). Article  CAS  PubMed  PubMed Central  Google Scholar  * Lotan, T. L. _ et al_. PTEN loss detection in prostate


cancer: comparison of PTEN immunohistochemistry and PTEN FISH in a large retrospective prostatectomy cohort. _Oncotarget_ 8, 65566–65576 (2017). Article  PubMed  PubMed Central  Google


Scholar  Download references ACKNOWLEDGEMENTS Funding for this research was provided in part by a Transformative Impact Award from the Congressionally Directed Medical Research


Program–Prostate Cancer Research Program (CDMRP-PCRP) (W81XWH-13-2-0070, H.I.S. and T.L.L.). T.L.L. was additionally supported by the NIH and National Cancer Institute (NCI) P30 Cancer


Center Support Grant CA006973 and the Patrick Walsh Prostate Cancer Research Fund. H.I.S. was additionally supported by NIH and NCI Prostate SPORE Grant P50-CA92629, NIH and NCI P30 Cancer


Center Support Grant CA008748, and the Prostate Cancer Foundation. T.J. and D.M.B. were funded by Prostate Cancer Canada and the Movember Foundation (Grant #T2014-01-PRONTO). T.J. was


supported by a Transformative Pathology Fellowship funded by the Ontario Institute for Cancer Research through funding provided by the Government of Ontario. AUTHOR INFORMATION AUTHORS AND


AFFILIATIONS * Division of Cancer Biology and Genetics, Cancer Research Institute, Queen's University, Kingston, Ontario, Canada Tamara Jamaspishvili & David M. Berman * Department


of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada Tamara Jamaspishvili & David M. Berman * Department of Urology, Johns Hopkins University,


Baltimore, MD, USA Ashley E. Ross * Department of Medicine, Genitourinary Oncology Service, Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York, NY, USA Howard


I. Scher * Department of Pathology, Johns Hopkins University, Baltimore, MD, USA Angelo M. De Marzo & Tamara L. Lotan * Department of Oncology, Johns Hopkins University, Baltimore, MD,


USA Angelo M. De Marzo & Tamara L. Lotan * Department of Pathology and Legal Medicine, University of Sao Paulo, Campus Universitario Monte Alegre, Ribeirão Preto, Brazil Jeremy A. Squire


Authors * Tamara Jamaspishvili View author publications You can also search for this author inPubMed Google Scholar * David M. Berman View author publications You can also search for this


author inPubMed Google Scholar * Ashley E. Ross View author publications You can also search for this author inPubMed Google Scholar * Howard I. Scher View author publications You can also


search for this author inPubMed Google Scholar * Angelo M. De Marzo View author publications You can also search for this author inPubMed Google Scholar * Jeremy A. Squire View author


publications You can also search for this author inPubMed Google Scholar * Tamara L. Lotan View author publications You can also search for this author inPubMed Google Scholar CONTRIBUTIONS


All authors researched data for the article, took part in discussions of the content, and wrote the manuscript. T.J., D.M.B., H.I.S., A.M.D.M., J.A.S., and T.L.L. reviewed and edited the


manuscript before submission. CORRESPONDING AUTHOR Correspondence to Tamara L. Lotan. ETHICS DECLARATIONS COMPETING INTERESTS T.L.L. has received research support from Ventana Medical


Systems. D.M.B. has received financial support from Myriad Genetics and Metamark Genetics. POWERPOINT SLIDES POWERPOINT SLIDE FOR FIG. 1 POWERPOINT SLIDE FOR FIG. 2 POWERPOINT SLIDE FOR FIG.


3 POWERPOINT SLIDE FOR FIG. 4 POWERPOINT SLIDE FOR FIG. 5 POWERPOINT SLIDE FOR FIG. 6 POWERPOINT SLIDE FOR TABLE 1 RIGHTS AND PERMISSIONS Reprints and permissions ABOUT THIS ARTICLE CITE


THIS ARTICLE Jamaspishvili, T., Berman, D., Ross, A. _et al._ Clinical implications of _PTEN_ loss in prostate cancer. _Nat Rev Urol_ 15, 222–234 (2018).


https://doi.org/10.1038/nrurol.2018.9 Download citation * Published: 20 February 2018 * Issue Date: April 2018 * DOI: https://doi.org/10.1038/nrurol.2018.9 SHARE THIS ARTICLE Anyone you


share the following link with will be able to read this content: Get shareable link Sorry, a shareable link is not currently available for this article. Copy to clipboard Provided by the


Springer Nature SharedIt content-sharing initiative