Restoring sensorimotor function through intracortical interfaces: progress and looming challenges

feature-image

Play all audios:

Loading...

KEY POINTS * Brain–machine interface (BMI) control of the kinematics of reaching has progressed dramatically, whereas BMI control of the hand and of the dynamics of movement is still quite


limited. * Conveying somatosensory feedback is critical for BMIs to be clinically viable, but afferent interfaces are still rather primitive. * Biomimicry — that is, attempting to exploit or


reproduce natural patterns of neuronal activity — may be an important design criterion. * Adaptation, the ability of the nervous system to adapt to novel motor and sensory mappings, is also


likely to be crucial. * The lifespan of cortical interfaces is currently inadequate. ABSTRACT The loss of a limb or paralysis resulting from spinal cord injury has devastating consequences


on quality of life. One approach to restoring lost sensory and motor abilities in amputees and patients with tetraplegia is to supply them with implants that provide a direct interface with


the CNS. Such brain–machine interfaces might enable a patient to exert voluntary control over a prosthetic or robotic limb or over the electrically induced contractions of paralysed muscles.


A parallel interface could convey sensory information about the consequences of these movements back to the patient. Recent developments in the algorithms that decode motor intention from


neuronal activity and in approaches to convey sensory feedback by electrically stimulating neurons, using biomimetic and adaptation-based approaches, have shown the promise of invasive


interfaces with sensorimotor cortices, although substantial challenges remain. Access through your institution Buy or subscribe This is a preview of subscription content, access via your


institution ACCESS OPTIONS Access through your institution Subscribe to this journal Receive 12 print issues and online access $189.00 per year only $15.75 per issue Learn more Buy this


article * Purchase on SpringerLink * Instant access to full article PDF Buy now Prices may be subject to local taxes which are calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in


* Learn about institutional subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS BIOMIMETIC COMPUTER-TO-BRAIN COMMUNICATION ENHANCING NATURALISTIC


TOUCH SENSATIONS VIA PERIPHERAL NERVE STIMULATION Article Open access 20 February 2024 CONTINUOUS NEURAL CONTROL OF A BIONIC LIMB RESTORES BIOMIMETIC GAIT AFTER AMPUTATION Article Open


access 01 July 2024 SENSE OF AGENCY FOR INTRACORTICAL BRAIN–MACHINE INTERFACES Article 19 January 2022 REFERENCES * Chapin, J. K., Moxon, K. A., Markowitz, R. S. & Nicolelis, M. A.


Real-time control of a robot arm using simultaneously recorded neurons in the motor cortex. _Nature Neurosci._ 2, 664–670 (1999). Article  CAS  PubMed  Google Scholar  * Carmena, J. M. et


al. Learning to control a brain–machine interface for reaching and grasping by primates. _PLoS Biol._ 1, e42 (2003). Article  CAS  PubMed  PubMed Central  Google Scholar  * Velliste, M.,


Perel, S., Spalding, M. C., Whitford, A. S. & Schwartz, A. B. Cortical control of a prosthetic arm for self-feeding. _Nature_ 453, 1098–1001 (2008). Article  CAS  PubMed  Google Scholar


  * Santhanam, G., Ryu, S. I., Yu, B. M., Afshar, A. & Shenoy, K. V. A high-performance brain–computer interface. _Nature_ 442, 195–198 (2006). Article  CAS  PubMed  Google Scholar  *


Gilja, V. et al. A high-performance neural prosthesis enabled by control algorithm design. _Nature Neurosci._ 15, 1752–1757 (2012). Article  CAS  PubMed  Google Scholar  * Mulliken, G. H.,


Musallam, S. & Andersen, R. A. Decoding trajectories from posterior parietal cortex ensembles. _J. Neurosci._ 28, 12913–12926 (2008). Article  CAS  PubMed  PubMed Central  Google Scholar


  * Li, Z., O'Doherty, J. E., Lebedev, M. A. & Nicolelis, M. A. Adaptive decoding for brain–machine interfaces through Bayesian parameter updates. _Neural Comput._ 23, 3162–3204


(2011). Article  PubMed  PubMed Central  Google Scholar  * Hochberg, L. R. et al. Reach and grasp by people with tetraplegia using a neurally controlled robotic arm. _Nature_ 485, 372–375


(2012). Article  CAS  PubMed  PubMed Central  Google Scholar  * Collinger, J. L. et al. High-performance neuroprosthetic control by an individual with tetraplegia. _Lancet_ 381, 557–564


(2013). THIS STUDY REPRESENTS THE CURRENT STATE OF THE ART OF A TETRAPLEGIC HUMAN CONTROLLING A PROSTHETIC LIMB WITH MANY DOFS. OPTIMAL PERFORMANCE WAS OBTAINED THROUGH A TWO-STAGE


BIOMIMETIC DECODER AND GUIDED, PROGRESSIVE USER ADAPTATION. Article  PubMed  PubMed Central  Google Scholar  * Johansson, R. S. & Flanagan, J. R. Coding and use of tactile signals from


the fingertips in object manipulation tasks. _Nature Rev. Neurosci._ 10, 345–359 (2009). THIS PAPER PROVIDES AN EXCELLENT REVIEW OF HOW TACTILE SIGNALS ARE IMPORTANT FOR MANIPULATING


OBJECTS. Article  CAS  Google Scholar  * London, B. M., Jordan, L. R., Jackson, C. R. & Miller, L. E. Electrical stimulation of the proprioceptive cortex (area 3a) used to instruct a


behaving monkey. _IEEE Trans. Neural Syst. Rehabil. Eng._ 16, 32–36 (2008). Article  PubMed  PubMed Central  Google Scholar  * O'Doherty, J. E., Lebedev, M. A., Li, Z. & Nicolelis,


M. A. Virtual active touch using randomly patterned intracortical microstimulation. _IEEE Trans. Neural Syst. Rehabil. Eng._ 20, 85–93 (2012). Article  PubMed  Google Scholar  * Venkatraman,


S. & Carmena, J. M. Active sensing of target location encoded by cortical microstimulation. _IEEE Trans. Neural Syst. Rehabil. Eng._ 19, 317–3241 (2011). Article  PubMed  Google Scholar


  * Tabot, G. A. et al. Restoring the sense of touch with a prosthetic hand through a brain interface. _Proc. Natl Acad. Sci. USA_ 110, 18279–18284 (2013). THIS STUDY DESCRIBES APPROACHES TO


CONVEY INFORMATION ABOUT CONTACT LOCATION, FORCE AND TIMING THROUGH A BIOMIMETIC STRATEGY OF ICMS APPLIED TO THE SOMATOSENSORY CORTEX. Article  CAS  PubMed  Google Scholar  * Romo, R.,


Hernandez, A., Zainos, A., Brody, C. D. & Lemus, L. Sensing without touching: psychophysical performance based on cortical microstimulation. _Neuron_ 26, 273–278 (2000). Article  CAS 


PubMed  Google Scholar  * Fitzsimmons, N. A., Drake, W., Hanson, T. L., Lebedev, M. A. & Nicolelis, M. A. Primate reaching cued by multichannel spatiotemporal cortical microstimulation.


_J. Neurosci._ 27, 5593–5602 (2007). Article  CAS  PubMed  PubMed Central  Google Scholar  * Dadarlat, M. C., O'Doherty, J. E. & Sabes, P. N. Multisensory integration of vision and


intracortical microstimulation for sensory substitution and augmentation. _Soc. Neurosci. Abstr._ 792.12 (2012). * Weber, D. J. et al. Limb-state information encoded by peripheral and


central somatosensory neurons: Implications for an afferent interface. _IEEE Trans. Neural Syst. Rehabil. Eng._ 19, 501–513 (2011). Article  PubMed  PubMed Central  Google Scholar  *


Tomlinson, T., Ruiz Torres, R. & Miller, L. E. Multi-electrode stimulation in somatosensory area 2 induces a natural sensation of limb movement. _Soc. Neurosci. Abstr._ 835.03 (2013). *


O'Doherty, J. E. et al. Active tactile exploration using a brain-machine-brain interface. _Nature_ 479, 228–231 (2011). THIS STUDY WAS THE FIRST TO DESCRIBE A BIDIRECTIONAL BMI IN WHICH


A CURSOR WAS CONTROLLED BY SIGNALS FROM THE MOTOR CORTEX WHILE STIMULATION WAS DELIVERED TO THE SOMATOSENSORY CORTEX TO SIGNAL THE CONSEQUENCES OF THOSE MOVEMENTS. THE MONKEY HAD TO LEARN


THE MAPPING OF THE AFFERENT INTERFACE. Article  CAS  PubMed  PubMed Central  Google Scholar  * Ethier, C., Oby, E. R., Bauman, M. J. & Miller, L. E. Restoration of grasp following


paralysis through brain-controlled stimulation of muscles. _Nature_ 485, 368–371 (2012). MONKEYS WERE ABLE TO GRASP AND MOVE OBJECTS DESPITE TEMPORARY PARALYSIS OF FOREARM FLEXOR MUSCLES IN


THIS STUDY, WHICH USED A BIOMIMETIC DECODER TO EVOKE ELECTRICALLY INDUCED MUSCLE CONTRACTIONS CONTROLLED IN REAL-TIME BY PREDICTIONS OF MUSCLE ACTIVITY. Article  CAS  PubMed  PubMed Central


  Google Scholar  * Suminski, A. J., Willett, F. R., Fagg, A. H., Bodenhamer, M. & Hatsopoulos, N. G. Continuous decoding of intended movements with a hybrid kinetic and kinematic brain


machine interface. _Conf. Proc. IEEE Eng. Med. Biol. Soc._ 2011, 5802–5806 (2011). PubMed  Google Scholar  * Chhatbar, P. Y. & Francis, J. T. Towards a naturalistic brain–machine


interface: hybrid torque and position control allows generalization to novel dynamics. _PLoS ONE_ 8, e52286 (2013). Article  CAS  PubMed  PubMed Central  Google Scholar  * Serruya, M. D.,


Hatsopoulos, N. G., Paninski, L., Fellows, M. R. & Donoghue, J. P. Instant neural control of a movement signal. _Nature_ 416, 141–142 (2002). THIS CLASSIC STUDY WAS THE FIRST TO ACHIEVE


CONTINUOUS CONTROL OF TWO-DIMENSIONAL CURSOR MOVEMENT USING INTRACORTICAL RECORDINGS OF NEURAL ACTIVITY. Article  CAS  PubMed  Google Scholar  * Wessberg, J. et al. Real-time prediction of


hand trajectory by ensembles of cortical neurons in primates. _Nature_ 408, 361–365 (2000). Article  CAS  PubMed  Google Scholar  * Taylor, D. M., Tillery, S. I. & Schwartz, A. B. Direct


cortical control of 3D neuroprosthetic devices. _Science_ 296, 1829–1832 (2002). Article  CAS  PubMed  Google Scholar  * Ganguly, K. & Carmena, J. M. Emergence of a stable cortical map


for neuroprosthetic control. _PLoS Biol._ 7, e1000153 (2009). GIVEN SEVERAL DAYS OF PRACTICE, MONKEYS BECAME AS PROFICIENT IN USING A DECODER WITH SCRAMBLED INPUTS AS THEY HAD BEEN IN ITS


ORIGINAL, BIOMIMETIC STATE. THEY COULD READILY SWITCH BETWEEN THE TWO DECODERS. CHANGES IN NEURAL TUNING TRACKED THE BEHAVIOURAL IMPROVEMENT. Article  CAS  PubMed  PubMed Central  Google


Scholar  * Jarosiewicz, B. et al. Functional network reorganization during learning in a brain–computer interface paradigm. _Proc. Natl Acad. Sci. USA_ 105, 19486–19491 (2008). THIS STUDY


EMULATES THE CLASSIC 'VISUAL ROTATION' STUDIES BY SYSTEMATICALLY (RATHER THAN RANDOMLY) REMAPPING THE DECODER OUTPUT. IT REVEALS A COMBINATION OF GLOBAL AND LOCAL ADAPTIVE CHANGES


IN NEURAL TUNING. Article  CAS  PubMed  Google Scholar  * Ganguly, K., Dimitrov, D. F., Wallis, J. D. & Carmena, J. M. Reversible large-scale modification of cortical networks during


neuroprosthetic control. _Nature Neurosci._ 14, 662–667 (2011). Article  CAS  PubMed  Google Scholar  * Fetz, E. E. & Baker, M. A. Operantly conditioned patterns on precentral unit


activity and correlated responses in adjacent cells and contralateral muscles. _J. Neurophysiol._ 36, 179–204 (1973). THIS PAPER EXTENDS EARLIER WORK ON THE CONDITIONING OF SINGLE NEURONS IN


M1 BY SHOWING THAT MONKEYS CAN LEARN TO CONTROL THE DISCHARGE OF DIFFERENT NEURONS INDEPENDENTLY, EVEN THAT OF ADJACENT PAIRS OF NEURONS. Article  CAS  PubMed  Google Scholar  * Chase, S.


M., Kass, R. E. & Schwartz, A. B. Behavioral and neural correlates of visuomotor adaptation observed through a brain–computer interface in primary motor cortex. _J. Neurophysiol._ 108,


624–644 (2012). Article  PubMed  PubMed Central  Google Scholar  * Millán, J. R. & Carmena, J. M. Invasive or noninvasive: understanding brain–machine interface technology. _IEEE Eng.


Med. Biol. Mag._ 29, 16–19 (2010). Article  Google Scholar  * Barrese, J. C. et al. Failure mode analysis of silicon-based intracortical microelectrode arrays in non-human primates. _J.


Neural Eng._ 10, 066014 (2013). Article  PubMed  PubMed Central  Google Scholar  * Hwang, E. J. & Andersen, R. A. The utility of multichannel local field potentials for brain–machine


interfaces. _J. Neural Eng._ 10, 046005 (2013). Article  PubMed  PubMed Central  Google Scholar  * Schalk, G. et al. Two-dimensional movement control using electrocorticographic signals in


humans. _J. Neural Eng._ 5, 75–84 (2008). Article  CAS  PubMed  PubMed Central  Google Scholar  * Wolpaw, J. R. & McFarland, D. J. Control of a two-dimensional movement signal by a


noninvasive brain–computer interface in humans. _Proc. Natl Acad. Sci. USA_ 101, 17849–17854 (2004). Article  CAS  PubMed  Google Scholar  * Flint, R. D., Wright, Z. A., Scheid, M. R. &


Slutzky, M. W. Long term, stable brain machine interface performance using local field potentials and multiunit spikes. _J. Neural Eng._ 10, 056005 (2013). Article  PubMed  PubMed Central 


Google Scholar  * Mehring, C. et al. Inference of hand movements from local field potentials in monkey motor cortex. _Nature Neurosci._ 6, 1253–1254 (2003). Article  CAS  PubMed  Google


Scholar  * Bansal, A. K., Vargas-Irwin, C. E., Truccolo, W. & Donoghue, J. P. Relationships among low-frequency local field potentials, spiking activity, and three-dimensional reach and


grasp kinematics in primary motor and ventral premotor cortices. _J. Neurophysiol._ 105, 1603–1619 (2011). Article  PubMed  PubMed Central  Google Scholar  * Stark, E. & Abeles, M.


Predicting movement from multiunit activity. _J. Neurosci._ 27, 8387–8394 (2007). Article  CAS  PubMed  PubMed Central  Google Scholar  * Chestek, C. A. et al. Long-term stability of neural


prosthetic control signals from silicon cortical arrays in rhesus macaque motor cortex. _J. Neural Eng._ 8, 045005 (2011). Article  PubMed  PubMed Central  Google Scholar  * Sellers, E.,


McFarland, D., Vaughan, T. & Wolpaw, J. in _Brain–Computer Interfaces: Revolutionizing Human–Computer Interaction_ (eds Graimann, B., Allison, B. & Pfurtscheller, G.) 97–111


(Springer, 2010). Google Scholar  * Wahnoun, R., He, J. & Helms Tillery, S. I. Selection and parameterization of cortical neurons for neuroprosthetic control. _J. Neural Eng._ 3, 162–171


(2006). Article  PubMed  Google Scholar  * Hochberg, L. R. et al. Neuronal ensemble control of prosthetic devices by a human with tetraplegia. _Nature_ 442, 164–171 (2006). THIS STUDY WAS


THE FIRST IN WHICH A PARALYSED HUMAN PATIENT ACHIEVED CONTINUOUS, TWO-DIMENSIONAL CONTROL OF A CURSOR THROUGH AN INTRACORTICAL BRAIN INTERFACE. Article  CAS  PubMed  Google Scholar  * Tkach,


D., Reimer, J. & Hatsopoulos, N. G. Congruent activity during action and action observation in motor cortex. _J. Neurosci._ 27, 13241–13250 (2007). Article  CAS  PubMed  PubMed Central


  Google Scholar  * Rizzolatti, G. & Craighero, L. The mirror-neuron system. _Annu. Rev. Neurosci._ 27, 169–192 (2004). Article  CAS  PubMed  Google Scholar  * di Pellegrino, G., Fadiga,


L., Fogassi, L., Gallese, V. & Rizzolatti, G. Understanding motor events: a neurophysiological study. _Exp. Brain Res._ 91, 176–180 (1992). Article  CAS  PubMed  Google Scholar  *


Cheney, P. D. & Fetz, E. E. Corticomotoneuronal cells contribute to long-latency stretch reflexes in the rhesus monkey. _J. Physiol._ 349, 249–272 (1984). Article  CAS  PubMed  PubMed


Central  Google Scholar  * Asanuma, H. Functional role of sensory inputs to the motor cortex. _Prog. Neurobiol._ 16, 241–262 (1981). Article  CAS  PubMed  Google Scholar  * Fetz, E. E.,


Perlmutter, S. I., Prut, Y., Seki, K. & Votaw, S. Roles of primate spinal interneurons in preparation and execution of voluntary hand movement. _Brain Res. Rev._ 40, 53–65 (2002).


Article  CAS  PubMed  Google Scholar  * Johannes, M. S. et al. An overview of the developmental process for the modular prosthetic limb. _Johns Hopkins Apl. Tech. Digest_ 30, 207–216 (2011).


Google Scholar  * Landgren, S., Phillips, C. G. & Porter, R. Cortical fields of origin of the monosynaptic pyramidal pathways to some alpha motoneurones of the baboon's hand and


forearm. _J. Physiol._ 161, 112–125 (1962). Article  CAS  PubMed  PubMed Central  Google Scholar  * Schieber, M. H. & Hibbard, L. S. How somatotopic is the motor cortex hand area?


_Science_ 261, 489–492 (1993). Article  CAS  PubMed  Google Scholar  * Maier, M. A., Bennett, K. M. B., Hepp-Reymond, M. C. & Lemon, R. N. Contribution of the monkey corticomotoneuronal


system to the control of force in precision grip. _J. Neurophysiol._ 69, 772–785 (1993). Article  CAS  PubMed  Google Scholar  * Hendrix, C. M., Mason, C. R. & Ebner, T. J. Signaling of


grasp dimension and grasp force in dorsal premotor cortex and primary motor cortex neurons during reach to grasp in the monkey. _J. Neurophysiol._ 102, 132–145 (2009). Article  PubMed 


PubMed Central  Google Scholar  * Townsend, B. R., Subasi, E. & Scherberger, H. Grasp movement decoding from premotor and parietal cortex. _J. Neurosci._ 31, 14386–14398 (2011). Article


  CAS  PubMed  PubMed Central  Google Scholar  * Carpaneto, J. et al. Continuous decoding of grasping tasks for a prospective implantable cortical neuroprosthesis. _J. Neuroeng. Rehabil._ 9,


84 (2012). Article  PubMed  PubMed Central  Google Scholar  * Egan, J., Baker, J., House, P. A. & Greger, B. Decoding dexterous finger movements in a neural prosthesis model approaching


real-world conditions. _IEEE Trans. Neural Syst. Rehabil. Eng._ 20, 836–844 (2012). Article  PubMed  Google Scholar  * Aggarwal, V., Mollazadeh, M., Davidson, A. G., Schieber, M. H. &


Thakor, N. V. State-based decoding of hand and finger kinematics using neuronal ensemble and LFP activity during dexterous reach-to-grasp movements. _J. Neurophysiol._ 109, 3067–3081 (2013).


Article  PubMed  PubMed Central  Google Scholar  * Vargas-Irwin, C. E. et al. Decoding complete reach and grasp actions from local primary motor cortex populations. _J. Neurosci._ 30,


9659–9669 (2010). Article  CAS  PubMed  PubMed Central  Google Scholar  * Santello, M., Flanders, M. & Soechting, J. F. Postural hand synergies for tool use. _J. Neurosci._ 18,


10105–10115 (1998). Article  CAS  PubMed  Google Scholar  * Thakur, P. H., Bastian, A. J. & Hsiao, S. S. Multidigit movement synergies of the human hand in an unconstrained haptic


exploration task. _J. Neurosci._ 28, 1271–1281 (2008). Article  CAS  PubMed  PubMed Central  Google Scholar  * Todorov, E. & Ghahramani, Z. Analysis of the synergies underlying complex


hand manipulation. _Conf. Proc. IEEE Eng. Med. Biol. Soc._ 6, 4637–4640 (2004). CAS  PubMed  Google Scholar  * Thompson, D., Blain-Moraes, S. & Huggins, J. Performance assessment in


brain-computer interface-based augmentative and alternative communication. _BioMed Eng. Online_ 12, 43 (2013). Article  PubMed  PubMed Central  Google Scholar  * Yuan, P. et al. A study of


the existing problems of estimating the information transfer rate in online brain–computer interfaces. _J. Neural Eng._ 10, 026014 (2013). Article  PubMed  Google Scholar  * Hogan, N. Active


control of mechanical impedance by coactivation of antagonist muscles. _IEEE Trans. Automat. Control_ 29, 681–690 (1984). Article  Google Scholar  * Evarts, E. V. Relation of pyramidal


tract activity to force exerted during voluntary movement. _J. Neurophysiol._ 31, 14–27 (1968). Article  CAS  PubMed  Google Scholar  * Smith, A. M., Hepp-Reymond, M. C. & Wyss, U. R.


Relation of activity in precentral cortical neurons to force and rate of force change during isometric contractions of finger muscles. _Exp. Brain Res._ 23, 315–332 (1975). Article  CAS 


PubMed  Google Scholar  * Kalaska, J. F., Cohen, D. A. D., Hyde, M. L. & Prud'homme, M. A comparison of movement direction-related versus load direction-related activity in primate


motor cortex, using a two-dimensional reaching task. _J. Neurosci._ 9, 2080–2102 (1989). Article  CAS  PubMed  Google Scholar  * Boline, J. & Ashe, J. On the relations between single


cell activity in the motor cortex and the direction and magnitude of three-dimensional dynamic isometric force. _Exp. Brain Res._ 167, 148–159 (2005). Article  PubMed  Google Scholar  *


Cheney, P. D. & Fetz, E. E. Functional classes of primate corticomotorneuronal cells and their relation to active force. _J. Neurophysiol._ 44, 773–791 (1980). Article  CAS  PubMed 


Google Scholar  * Hepp-Reymond, M. C., Wyss, U. R. & Anner, R. Neuronal coding of static force in the primate motor cortex. _J. Physiol. Paris_ 74, 287–291 (1978). CAS  PubMed  Google


Scholar  * Humphrey, D. R., Schmidt, E. M. & Thompson, W. D. Predicting measures of motor performance from multiple cortical spike trains. _Science_ 170, 758–761 (1970). THIS CLASSIC


STUDY WAS THE FIRST TO MAKE REAL-TIME PREDICTIONS OF MOVEMENT-RELATED PARAMETERS USING SINGLE-UNIT RECORDINGS FROM MULTIPLE NEURONS IN THE MOTOR CORTEX. Article  CAS  PubMed  Google Scholar


  * Fagg, A. H., Ojakangas, G. W., Miller, L. E. & Hatsopoulos, N. G. Kinetic trajectory decoding using motor cortical ensembles. _IEEE Trans. Neural Syst. Rehabil. Eng._ 17, 487–496


(2009). Article  PubMed  Google Scholar  * Oby, E. R. et al. in _Statistical Signal Processing for Neuroscience and Neurotechnology_ (ed. O'Weiss, K. G.) 369–406 (Academic Press,


Elsevier, 2010). Book  Google Scholar  * Humphrey, D. R. & Reed, D. J. in _Motor Control Mechanisms in Health and Disease_ (ed. Desmedt, J. E.) 347–372 (Raven, 1983). Google Scholar  *


Burdet, E., Osu, R., Franklin, D. W., Milner, T. E. & Kawato, M. The central nervous system stabilizes unstable dynamics by learning optimal impedance. _Nature_ 414, 446–449 (2001).


Article  CAS  PubMed  Google Scholar  * Franklin, D., Burdet, E., Osu, R., Kawato, M. & Milner, T. Functional significance of stiffness in adaptation of multijoint arm movements to


stable and unstable dynamics. _Exp. Brain Res._ 151, 145–157 (2003). Article  PubMed  Google Scholar  * Gribble, P. L., Mullin, L. I., Cothros, N. & Mattar, A. Role of cocontraction in


arm movement accuracy. _J. Neurophysiol._ 89, 2396–2405 (2003). Article  PubMed  Google Scholar  * Kim, H. K. et al. The muscle activation method: an approach to impedance control of


brain-machine interfaces through a musculoskeletal model of the arm. _IEEE Trans. Biomed. Eng._ 54, 1520–1529 (2007). Article  PubMed  Google Scholar  * Pohlmeyer, E. A., Solla, S. A.,


Perreault, E. J. & Miller, L. E. Prediction of upper limb muscle activity from motor cortical discharge during reaching. _J. Neural Eng._ 4, 369–379 (2007). Article  PubMed  PubMed


Central  Google Scholar  * Santucci, D. M., Kralik, J. D., Lebedev, M. A. & Nicolelis, M. A. Frontal and parietal cortical ensembles predict single-trial muscle activity during reaching


movements in primates. _Eur. J. Neurosci._ 22, 1529–1540 (2005). Article  PubMed  Google Scholar  * Flint, R. D., Ethier, C., Oby, E. R., Miller, L. E. & Slutzky, M. W. Local field


potentials allow accurate decoding of muscle activity. _J. Neurophysiol._ 108, 18–24 (2012). Article  PubMed  PubMed Central  Google Scholar  * Pohlmeyer, E. A. et al. Toward the restoration


of hand use to a paralyzed monkey: brain-controlled functional electrical stimulation of forearm muscles. _PLoS ONE_ 4, e5924 (2009). Article  CAS  PubMed  PubMed Central  Google Scholar  *


Moritz, C. T., Perlmutter, S. I. & Fetz, E. E. Direct control of paralysed muscles by cortical neurons. _Nature_ 456, 639–642 (2008). Article  CAS  PubMed  PubMed Central  Google


Scholar  * Xerri, C., Merzenich, M. M., Jenkins, W. & Santucci, S. Representational plasticity in cortical area 3b paralleling tactual-motor skill acquisition in adult monkeys. _Cereb.


Cortex_ 9, 264–276 (1999). Article  CAS  PubMed  Google Scholar  * Qi, H. X., Chen, L. M. & Kaas, J. H. Reorganization of somatosensory cortical areas 3b and 1 after unilateral section


of dorsal columns of the spinal cord in squirrel monkeys. _J. Neurosci._ 31, 13662–13675 (2011). Article  CAS  PubMed  PubMed Central  Google Scholar  * Shadmehr, R. & Mussa-Ivaldi, F.


A. Adaptive representation of dynamics during learning of a motor task. _J. Neurosci._ 14, 3208–3224 (1994). Article  CAS  PubMed  Google Scholar  * Krakauer, J. W., Pine, Z. M., Ghilardi,


M. F. & Ghez, C. Learning of visuomotor transformations for vectorial planning of reaching trajectories. _J. Neurosci._ 20, 8916–8924 (2000). Article  CAS  PubMed  Google Scholar  *


Cunningham, H. A. Aiming error under transformed spatial mappings suggests a structure for visual-motor maps. _J. Exp. Psychol. Hum. Percept. Perform._ 15, 493–506 (1989). Article  CAS 


PubMed  Google Scholar  * Ostry, D. J., Darainy, M., Mattar, A. A., Wong, J. & Gribble, P. L. Somatosensory plasticity and motor learning. _J. Neurosci._ 30, 5384–5393 (2010). Article 


CAS  PubMed  PubMed Central  Google Scholar  * Cressman, E. K. & Henriques, D. Y. P. Sensory recalibration of hand position following visuomotor adaptation. _J. Neurophysiol._ 102,


3505–3518 (2009). Article  PubMed  Google Scholar  * Nasir, S. M., Darainy, M. & Ostry, D. J. Sensorimotor adaptation changes the neural coding of somatosensory stimuli. _J.


Neurophysiol._ 109, 2077–2085 (2013). Article  PubMed  PubMed Central  Google Scholar  * Lebedev, M. A. et al. Cortical ensemble adaptation to represent velocity of an artificial actuator


controlled by a brain-machine interface. _J. Neurosci._ 25, 4681–4693 (2005). Article  CAS  PubMed  PubMed Central  Google Scholar  * Fetz, E. E. & Finocchio, D. V. Operant conditioning


of specific patterns of neural and muscular activity. _Science_ 174, 431–435 (1971). Article  CAS  PubMed  Google Scholar  * Moritz, C. T. & Fetz, E. E. Volitional control of single


cortical neurons in a brain-machine interface. _J. Neural Eng._ 8, 025017 (2011). Article  PubMed  PubMed Central  Google Scholar  * Kennedy, P. R., Bakay, R. A., Moore, M. M., Adams, K.


& Goldwaithe, J. Direct control of a computer from the human central nervous system. _IEEE Trans. Rehabil. Eng._ 8, 198–202 (2000). Article  CAS  PubMed  Google Scholar  * Ochoa, J.


& Torebjork, E. Sensations evoked by intraneural microstimulation of single mechanoreceptor units innervating the human hand. _J. Physiol._ 342, 633–654 (1983). Article  CAS  PubMed 


PubMed Central  Google Scholar  * Wheat, H. E., Goodwin, A. W. & Browning, A. S. Tactile resolution: peripheral neural mechanisms underlying the human capacity to determine positions of


objects contacting the fingerpad. _J. Neurosci._ 15, 5582–5595 (1995). Article  CAS  PubMed  Google Scholar  * Knibestol, M. Stimulus-response functions of slowly adapting mechanoreceptors


in the human glabrous skin area. _J. Physiol._ 245, 63–80 (1975). Article  CAS  PubMed  PubMed Central  Google Scholar  * Macefield, V. G., Hager-Ross, C. & Johansson, R. S. Control of


grip force during restraint of an object held between finger and thumb: responses of cutaneous afferents from the digits. _Exp. Brain Res._ 108, 155–171 (1996). CAS  PubMed  Google Scholar 


* Goodwin, A. W. & Wheat, H. E. Sensory signals in neural populations underlying tactile perception and manipulation. _Annu. Rev. Neurosci._ 27, 53–77 (2004). Article  CAS  PubMed 


Google Scholar  * Johansson, R. S. & Westling, G. Roles of glabrous skin receptors and sensorimotor memory in automatic control of precision grip when lifting rougher or more slippery


objects. _Exp. Brain Res._ 56, 550–564 (1984). Article  CAS  PubMed  Google Scholar  * Monzée, J., Lamarre, Y. & Smith, A. M. The effects of digital anesthesia on force control using a


precision grip. _J. Neurophysiol._ 89, 672–683 (2003). Article  PubMed  Google Scholar  * Brochier, T., Boudreau, M. J., Paré, M. & Smith, A. M. The effects of muscimol inactivation of


small regions of motor and somatosensory cortex on independent finger movements and force control in the precision grip. _Exp. Brain Res._ 128, 31–40 (1999). Article  CAS  PubMed  Google


Scholar  * Sainburg, R. L., Ghilardi, M. F., Poizner, H. & Ghez, C. Control of limb dynamics in normal subjects and patients without proprioception. _J. Neurophysiol._ 73, 820–835


(1995). Article  CAS  PubMed  Google Scholar  * Botvinick, M. & Cohen, J. Rubber hands “feel” touch that eyes see. _Nature_ 391, 756 (1998). Article  CAS  PubMed  Google Scholar  *


Dunbar, R. I. The social role of touch in humans and primates: behavioural function and neurobiological mechanisms. _Neurosci. Biobehav. Rev._ 34, 260–268 (2010). Article  CAS  PubMed 


Google Scholar  * Blabe, C. et al. Assessing the brain–machine interface priiorities from the perspective of spinal cord injury participants. _Soc. Neurosci. Abstr._ 584.14 (2012). *


Penfield, W. & Boldrey, E. Somatic motor and sensory representation in the cerebral cortex of man as studied by electrical stimulation. _Brain_ 60, 389–443 (1937). Article  Google


Scholar  * Rasmussen, T. & Penfield, W. The human sensorimotor cortex as studied by electrical stimulation. _Fed. Proc._ 6, 184 (1947). CAS  PubMed  Google Scholar  * Romo, R.,


Hernandez, A., Zainos, A. & Salinas, E. Somatosensory discrimination based on cortical microstimulation. _Nature_ 392, 387–390 (1998). IN THIS LANDMARK STUDY, MONKEYS WERE TRAINED TO


DISCRIMINATE THE FREQUENCIES OF SEQUENTIAL MECHANICAL VIBRATIONS APPLIED TO THE FINGERTIP. THEY WERE THEN ABLE TO DISCRIMINATE THE FREQUENCY OF ICMS PULSE TRAINS DELIVERED TO S1 WHEN


SUBSTITUTED FOR ONE OR BOTH OF THE MECHANICAL STIMULI. Article  CAS  PubMed  Google Scholar  * Fridman, G., Blair, H., Blaisdell, A. & Judy, J. Perceived intensity of somatosensory


cortical electrical stimulation. _Exp. Brain Res._ 203, 499–515 (2010). Article  PubMed  PubMed Central  Google Scholar  * Semprini, M., Bennicelli, L. & Vato, A. A parametric study of


intracortical microstimulation in behaving rats for the development of artificial sensory channels. _Conf. Proc. IEEE Eng. Med. Biol. Soc._ 2012, 799–802 (2012). PubMed  Google Scholar  *


Zaaimi, B., Ruiz-Torres, R., Solla, S. A. & Miller, L. E. Multi-electrode stimulation in somatosensory cortex increases probability of detection. _J. Neural Engineer._ 10, 056013 (2013).


Article  Google Scholar  * O'Connor, D. H. et al. Neural coding during active somatosensation revealed using illusory touch. _Nature Neurosci._ 16, 958–965 (2013). Article  CAS  PubMed


  Google Scholar  * Ramachandran, V. S. & Hirstein, W. The perception of phantom limbs. The D. O. Hebb lecture. _Brain_ 121, 1603–1630 (1998). THIS PAPER PROVIDES AN OVERVIEW OF THE


PHENOMENON OF THE PHANTOM LIMB, WHICH IN TURN SHEDS LIGHT ON HOW SOMATOSENSORY REPRESENTATIONS EVOLVE AFTER DEAFFERENTATION. Article  PubMed  Google Scholar  * Berg, J. A. et al. Behavioral


demonstration of a somatosensory neuroprosthesis. _IEEE Trans. Neural Syst. Rehabil. Eng._ 21, 500–507 (2013). Article  CAS  PubMed  Google Scholar  * Pei, Y. C., Hsiao, S. S., Craig, J. C.


& Bensmaia, S. J. Shape invariant coding of motion direction in somatosensory cortex. _PLoS Biol._ 8, e1000305 (2010). Article  CAS  PubMed  PubMed Central  Google Scholar  * Bensmaia,


S. J., Denchev, P. V., Dammann, J. F., Craig, J. C. & Hsiao, S. S. The representation of stimulus orientation in the early stages of somatosensory processing. _J. Neurosci._ 28, 776–786


(2008). Article  CAS  PubMed  PubMed Central  Google Scholar  * Costanzo, R. M. & Gardner, E. P. Multiple-joint neurons in somatosensory cortex of awake monkeys. _Brain Res._ 214,


321–333 (1981). Article  CAS  PubMed  Google Scholar  * Prud'homme, M. J. L. & Kalaska, J. F. Proprioceptive activity in primate primary somatosensory cortex during active arm


reaching movements. _J. Neurophysiol._ 72, 2280–2301 (1994). Article  CAS  PubMed  Google Scholar  * London, B. M. & Miller, L. E. Responses of somatosensory area 2 neurons to actively


and passively generated limb movements. _J. Neurophysiol._ 109, 1505–1513 (2013). Article  CAS  PubMed  Google Scholar  * Histed, M. H., Bonin, V. & Reid, R. C. Direct activation of


sparse, distributed populations of cortical neurons by electrical microstimulation. _Neuron_ 63, 508–522 (2009). Article  CAS  PubMed  PubMed Central  Google Scholar  * Logothetis, N. K. et


al. The effects of electrical microstimulation on cortical signal propagation. _Nature Neurosci._ 13, 1283–1291 (2010). Article  CAS  PubMed  Google Scholar  * Mountcastle, V. B. &


Powell, T. P. Central nervous mechanisms subserving position sense and kinesthesis. _Bull. Johns Hopkins Hosp._ 105, 173–200 (1959). CAS  PubMed  Google Scholar  * Diester, I. et al. An


optogenetic toolbox designed for primates. _Nature Neurosci._ 14, 387–397 (2011). Article  CAS  PubMed  Google Scholar  * Cardin, J. A. et al. Targeted optogenetic stimulation and recording


of neurons _in vivo_ using cell-type-specific expression of Channelrhodopsin-2. _Nature Protoc._ 5, 247–254 (2010). Article  CAS  Google Scholar  * Thomson, E. E., Carra, R. & Nicolelis,


M. A. Perceiving invisible light through a somatosensory cortical prosthesis. _Nature Commun._ 4, 1482 (2013). Article  CAS  Google Scholar  * Marasco, P. D., Schultz, A. E. & Kuiken,


T. A. Sensory capacity of reinnervated skin after redirection of amputated upper limb nerves to the chest. _Brain_ 132, 1441–1448 (2009). Article  PubMed  PubMed Central  Google Scholar  *


Marasco, P. D., Kim, K., Colgate, J. E., Peshkin, M. A. & Kuiken, T. A. Robotic touch shifts perception of embodiment to a prosthesis in targeted reinnervation amputees. _Brain_ 134,


747–758 (2011). Article  PubMed  PubMed Central  Google Scholar  * Shokur, S. et al. Expanding the primate body schema in sensorimotor cortex by virtual touches of an avatar. _Proc. Natl


Acad. Sci. USA_ 110, 15121–15126 (2013). Article  CAS  PubMed  Google Scholar  * Ince, N. F. et al. High accuracy decoding of movement target direction in non-human primates based on common


spatial patterns of local field potentials. _PLoS ONE_ 5, e14384 (2010). Article  CAS  PubMed  PubMed Central  Google Scholar  * Rickert, J. et al. Encoding of movement direction in


different frequency ranges of motor cortical local field potentials. _J. Neurosci._ 25, 8815–8824 (2005). Article  CAS  PubMed  PubMed Central  Google Scholar  * Andersen, R. A., Musallam,


S. & Pesaran, B. Selecting the signals for a brain-machine interface. _Curr. Opin. Neurobiol._ 14, 720–726 (2004). Article  CAS  PubMed  Google Scholar  * Markowitz, D. A., Wong, Y. T.,


Gray, C. M. & Pesaran, B. Optimizing the decoding of movement goals from local field potentials in macaque cortex. _J. Neurosci._ 31, 18412–18422 (2011). Article  CAS  PubMed  PubMed


Central  Google Scholar  * Pesaran, B., Pezaris, J. S., Sahani, M., Mitra, P. P. & Andersen, R. A. Temporal structure in neuronal activity during working memory in macaque parietal


cortex. _Nature Neurosci._ 5, 805–811 (2002). Article  CAS  PubMed  Google Scholar  * Dangi, S., Orsborn, A. L., Moorman, H. G. & Carmena, J. M. Design and analysis of closed-loop


decoder adaptation algorithms for brain–machine interfaces. _Neural Comput._ 25, 1693–1731 (2013). Article  PubMed  Google Scholar  * Buzsáki, G., Anastassiou, C. A. & Koch, C. The


origin of extracellular fields and currents — EEG, ECoG, LFP and spikes. _Nature Rev. Neurosci._ 13, 407–420 (2012). Article  CAS  Google Scholar  * Kim, S. P. et al. Divide-and-conquer


approach for brain machine interfaces: nonlinear mixture of competitive linear models. _Neural Netw._ 16, 865–871 (2003). Article  PubMed  Google Scholar  * Kim, S. P. et al. A comparison of


optimal MIMO linear and nonlinear models for brain-machine interfaces. _J. Neural Eng._ 3, 145–161 (2006). Article  PubMed  Google Scholar  * Shoham, S. et al. Statistical encoding model


for a primary motor cortical brain-machine interface. _IEEE Trans. Biomed. Eng._ 52, 1312–1322 (2005). Article  PubMed  Google Scholar  * Yu, B. M. et al. Mixture of trajectory models for


neural decoding of goal-directed movements. _J. Neurophysiol._ 97, 3763–3780 (2007). Article  PubMed  Google Scholar  * Yu, B., Cunningham, J., Shenoy, K. & Sahani, M. in _Neural


Information Processing; Lecture Notes in Computer Science_ Vol. 4984 (eds Ishikawa, M., Doya, K., Miyamoto, H. & Yamakawa, T.) 586–595 (Springer, 2008). Book  Google Scholar  * Palmer,


S. S. & Fetz, E. E. Discharge properties of prima te forearm motor units during isometric muscle activity. _J. Neurophysiol._ 54, 1178–1193 (1985). Article  CAS  PubMed  Google Scholar 


* Sergio, L. E., Hamel-Paquet, C. & Kalaska, J. F. Motor cortex neural correlates of output kinematics and kinetics during isometric-force and arm-reaching tasks. _J. Neurophysiol._ 94,


2353–2378 (2005). Article  PubMed  Google Scholar  * Fetz, E. E. Are movement parameters recognizably coded in activity of single neurons? _Behav. Brain Sci._ 15, 679–690 (1992). Google


Scholar  * Phillips, C. G. Laying the ghost of 'muscles versus movements'. _Can. J. Neurol. Sci._ 2, 209–218 (1975). Article  CAS  PubMed  Google Scholar  * Scott, S. H. &


Kalaska, J. F. Reaching movements with similar hand paths but different arm orientations. I. Activity of individual cells in motor cortex. _J. Neurophysiol._ 77, 826–852 (1997). Article  CAS


  PubMed  Google Scholar  * Caminiti, R., Johnson, P. B. & Urbano, A. Making arm movements within different parts of space: dynamic aspects in the primate motor cortex. _J. Neurosci._


10, 2039–2058 (1990). Article  CAS  PubMed  Google Scholar  * Kakei, S., Hoffman, D. S. & Strick, P. L. Muscle and movement representations in the primary motor cortex. _Science_ 285,


2136–2139 (1999). Article  CAS  PubMed  Google Scholar  * Oby, E. R., Ethier, C. & Miller, L. E. Movement representation in the primary motor cortex and its contribution to generalizable


EMG predictions. _J. Neurophysiol._ 109, 666–678 (2013). Article  PubMed  Google Scholar  * Cherian, A., Krucoff, M. O. & Miller, L. E. Motor cortical prediction of EMG: evidence that a


kinetic brain-machine interface may be robust across altered movement dynamics. _J. Neurophysiol._ 106, 564–575 (2011). Article  CAS  PubMed  PubMed Central  Google Scholar  * Gupta, R.


& Ashe, J. Lack of adaptation to random conflicting force fields of variable magnitude. _J. Neurophysiol._ 97, 738–745 (2007). Article  PubMed  Google Scholar  * Hatsopoulos, N., Joshi,


J. & O'Leary, J. G. Decoding continuous and discrete motor behaviors using motor and premotor cortical ensembles. _J. Neurophysiol._ 92, 1165–1174 (2004). Article  PubMed  Google


Scholar  * Hauschild, M., Mulliken, G. H., Fineman, I., Loeb, G. E. & Andersen, R. A. Cognitive signals for brain–machine interfaces in posterior parietal cortex include continuous 3D


trajectory commands. _Proc. Natl Acad. Sci. USA_ 109, 17075–17080 (2012). Article  CAS  PubMed  Google Scholar  * Pesaran, B., Nelson, M. J. & Andersen, R. A. Dorsal premotor neurons


encode the relative position of the hand, eye, and goal during reach planning. _Neuron_ 51, 125–134 (2006). Article  CAS  PubMed  PubMed Central  Google Scholar  * Musallam, S., Corneil, B.


D., Greger, B., Scherberger, H. & Andersen, R. A. Cognitive control signals for neural prosthetics. _Science_ 305, 258–262 (2004). Article  CAS  PubMed  Google Scholar  * Ganguly, K.


& Carmena, J. M. Neural correlates of skill acquisition with a cortical brain-machine interface. _J. Motor Behav._ 42, 355–360 (2010). Article  Google Scholar  * Heliot, R., Venkatraman,


S. & Carmena, J. M. Decoder remapping to counteract neuron loss in brain-machine interfaces. _Conf. Proc. IEEE Eng. Med. Biol. Soc._ 2010, 1670–1673 (2010). PubMed  Google Scholar  *


Orsborn, A. L., Dangi, S., Moorman, H. G. & Carmena, J. M. Closed-loop decoder adaptation on intermediate time-scales facilitates rapid BMI performance improvements independent of


decoder initialization conditions. _IEEE Trans. Neural Syst. Rehabil. Eng._ 20, 468–477 (2012). Article  PubMed  Google Scholar  * Fishbach, A., Roy, S., Bastianen, C., Miller, L. &


Houk, J. Kinematic properties of on-line error corrections in the monkey. _Exp. Brain Res._ 164, 442–457 (2005). Article  PubMed  Google Scholar  * Danziger, Z., Fishbach, A. &


Mussa-Ivaldi, F. A. Learning algorithms for human–machine interfaces. _IEEE Trans. Biomed. Eng._ 56, 1502–1511 (2009). Article  PubMed  PubMed Central  Google Scholar  * Mahmoudi, B. &


Sanchez, J. C. A. Symbiotic brain-machine interface through value-based decision making. _PLoS ONE_ 6, e14760 (2011). Article  CAS  PubMed  PubMed Central  Google Scholar  * Mahmoudi, B.,


Pohlmeyer, E. A., Prins, N. W., Geng, S. & Sanchez, J. C. Towards autonomous neuroprosthetic control using Hebbian reinforcement learning. _J. Neural Eng._ 10, 066005 (2013). Article 


PubMed  Google Scholar  * Judy, J. W. Neural interfaces for upper-limb prosthesis control: opportunities to improve long-term reliability. _IEEE Pulse_ 3, 57–60 (2012). Article  PubMed 


Google Scholar  * Perge, J. A. et al. Intra-day signal instabilities affect decoding performance in an intracortical neural interface system. _J. Neural Eng._ 10, 036004 (2013). Article 


PubMed  PubMed Central  Google Scholar  * Polikov, V. S., Tresco, P. A. & Reichert, W. M. Response of brain tissue to chronically implanted neural electrodes. _J. Neurosci. Methods_ 148,


1–18 (2005). Article  PubMed  Google Scholar  * Prasad, A. et al. Comprehensive characterization and failure modes of tungsten microwire arrays in chronic neural implants. _J. Neural Eng._


9, 056015 (2012). Article  PubMed  Google Scholar  * McCreery, D., Pikov, V. & Troyk, P. Neuronal loss due to prolonged controlled-current stimulation with chronically implanted


microelectrodes in the cat cerebral cortex. _J. Neural Eng._ 7, 036005 (2010). Article  PubMed  PubMed Central  Google Scholar  * Parker, R. A., Davis, T. S., House, P. A., Normann, R. A.


& Greger, B. The functional consequences of chronic, physiologically effective intracortical microstimulation. _Prog. Brain Res._ 194, 145–165 (2011). Article  PubMed  Google Scholar  *


Chen, K. H. et al. The effect of chronic intracortical microstimulation on the electrode–tissue interface. _J. Neural Eng._ 11, 026004 (2014). Article  PubMed  Google Scholar  * Kane, S. et


al. Electrical performance of penetrating microelectrodes chronically implanted in cat cortex. _IEEE Trans. Biomed. Eng._ 60, 2153–2160 (2013). Article  PubMed  Google Scholar  * Cogan, S.


F. Neural stimulation and recording electrodes. _Annu. Rev. Biomed. Eng._ 10, 275–309 (2008). Article  CAS  PubMed  Google Scholar  * Simeral, J. D. et al. Some preliminary longitudinal


findings from five trial participants using the BrainGate neural interface system. _Soc. Neurosci. Abstr._ 142.04 (2011). * Grill, W. M., Norman, S. E. & Bellamkonda, R. V. Implanted


neural interfaces: biochallenges and engineered solutions. _Annu. Rev. Biomed. Eng._ 11, 1–24 (2009). Article  CAS  PubMed  Google Scholar  * Reichert, W. M. _Indwelling Neural Implants:


Strategies for Contending with the In Vivo Environment_ (CRC, 2010). Google Scholar  * Sridharan, A., Rajan, S. D. & Muthuswamy, J. Long-term changes in the material properties of brain


tissue at the implant–tissue interface. _J. Neural Eng._ 10, 066001 (2013). Article  PubMed  PubMed Central  Google Scholar  * Harris, J. P. et al. _In vivo_ deployment of mechanically


adaptive nanocomposites for intracortical microelectrodes. _J. Neural Eng._ 8, 046010 (2011). Article  CAS  PubMed  PubMed Central  Google Scholar  * Ware, T., Simon, D., Rennaker, R. L.


& Voit, W. Smart polymers for neural interfaces. _Polymer Rev._ 53, 108–129 (2013). Article  CAS  Google Scholar  * Capadona, J. R., Tyler, D. J., Zorman, C. A., Rowan, S. J. &


Weder, C. Mechanically adaptive nanocomposites for neural interfacing. _MRS Bull._ 37, 581–589 (2012). Article  CAS  Google Scholar  * Lind, G., Linsmeier, C. E., Thelin, J. &


Schouenborg, J. Gelatine-embedded electrodes—a novel biocompatible vehicle allowing implantation of highly flexible microelectrodes. _J. Neural Engineer._ 7, 046005 (2010). Article  Google


Scholar  * Khodagholy, D. et al. Highly conformable conducting polymer electrodes for _in vivo_ recordings. _Adv. Mater._ 23, H268–H272 (2011). Article  CAS  PubMed  Google Scholar  * Kim,


T., Branner, A., Gulati, T. & Giszter, S. F. Braided multi-electrode probes: mechanical compliance characteristics and recordings from spinal cords. _J. Neural Eng._ 10, 045001 (2013).


Article  PubMed  PubMed Central  Google Scholar  * Rousche, P. J. et al. Flexible polyimide-based intracortical electrode arrays with bioactive capability. _IEEE Trans. Biomed. Eng._ 48,


361–371 (2001). Article  CAS  PubMed  Google Scholar  * Moxon, K. A. et al. Nanostructured surface modification of ceramic-based microelectrodes to enhance biocompatibility for a direct


brain-machine interface. _IEEE Trans. Biomed. Eng._ 51, 881–889 (2004). Article  PubMed  Google Scholar  * Kim, D.-H. & Martin, D. C. Sustained release of dexamethasone from hydrophilic


matrices using PLGA nanoparticles for neural drug delivery. _Biomaterials_ 27, 3031–3037 (2006). Article  CAS  PubMed  Google Scholar  * Cho, Y. & Ben Borgens, R. Electrically controlled


release of the nerve growth factor from a collagen-carbon nanotube composite for supporting neuronal growth. _J. Mater. Chem. B_ 1, 4166–4170 (2013). Article  CAS  Google Scholar  * Keefer,


E. W., Botterman, B. R., Romero, M. I., Rossi, A. F. & Gross, G. W. Carbon nanotube coating improves neuronal recordings. _Nature Nanotechnol._ 3, 434–439 (2008). Article  CAS  Google


Scholar  * Kotov, N. A. et al. Nanomaterials for Neural Interfaces. _Adv. Mater._ 21, 3970–4004 (2009). Article  CAS  Google Scholar  * Stauffer, W. R. & Cui, X. T. Polypyrrole doped


with 2 peptide sequences from laminin. _Biomaterials_ 27, 2405–2413 (2006). Article  CAS  PubMed  Google Scholar  * Malarkey, E. & Parpura, V. in _Brain Edema XIV Vol. 106 Acta


Neurochirurgica Supplementum_ (eds Czernicki, Z. et al.) 337–341 (Springer, 2010). Google Scholar  * Kenney, C. et al. Short-term and long-term safety of deep brain stimulation in the


treatment of movement disorders. _J. Neurosurg._ 106, 621–625 (2007). Article  PubMed  Google Scholar  * Rizk, M. et al. A fully implantable 96-channel neural data acquisition system. _J.


Neural Eng._ 6, 026002 (2009). Article  PubMed  PubMed Central  Google Scholar  * Zhang, F., Aghagolzadeh, M. & Oweiss, K. A. Fully implantable, programmable and multimodal


neuroprocessor for wireless, cortically controlled brain-machine interface applications. _J. Signal Process. Syst._ 69, 351–361 (2012). Article  PubMed  Google Scholar  * Borton, D. A., Yin,


M., Aceros, J. & Nurmikko, A. An implantable wireless neural interface for recording cortical circuit dynamics in moving primates. _J. Neural Eng._ 10, 026010 (2013). Article  PubMed 


PubMed Central  Google Scholar  * Harrison, R. R. The design of integrated circuits to observe brain activity. _Proc. IEEE_ 96, 1203–1216 (2008). Article  Google Scholar  Download references


ACKNOWLEDGEMENTS The authors gratefully thank J. Yau, H. Saal, A. Suminski and K. Otto for their comments on a previous version of the manuscript. The authors also thank G. Tabot for


designing figure 1. S.J.B.is supported by US Defense Advanced Research Projects Agency (DARPA) contract #N66001-10-C-4056, US National Science Foundation (NSF) grant IOS-1150209 and US


National Institutes of Health (NIH) grant 082865. L.E.M. is supported by grants from the US NIH (NS053603, NS048845) and the US NSF (0932263), with additional funding from the Chicago


Community Trust through the Searle Program for Neurological Restoration. AUTHOR INFORMATION AUTHORS AND AFFILIATIONS * Department of Organismal Biology and Anatomy, and Committee on


Computational Neuroscience, University of Chicago, Chicago, 60637, Illinois, USA Sliman J. Bensmaia * Department of Physical Medicine and Rehabilitation, and Department of Physiology,


Feinberg School of Medicine, Northwestern University, Chicago, 60611, Illinois, USA Lee E. Miller * Department of Biomedical Engineering, Northwestern University, Evanston, 60208, Illinois,


USA Lee E. Miller Authors * Sliman J. Bensmaia View author publications You can also search for this author inPubMed Google Scholar * Lee E. Miller View author publications You can also


search for this author inPubMed Google Scholar CORRESPONDING AUTHOR Correspondence to Lee E. Miller. ETHICS DECLARATIONS COMPETING INTERESTS The authors declare no competing financial


interests. POWERPOINT SLIDES POWERPOINT SLIDE FOR FIG. 1 POWERPOINT SLIDE FOR FIG. 2 POWERPOINT SLIDE FOR FIG. 3 POWERPOINT SLIDE FOR FIG. 4 POWERPOINT SLIDE FOR FIG. 5 GLOSSARY * Degree of


freedom (DOF). The number of signals required to control a device. The DOF is determined approximately by the number of parameters that defines its configuration. * Decoders A set of (often


linear) coefficients used to transform a large number of signals recorded from the brain into a small number of control signals. A decoder might also be used simply to classify the brain


signals into two or more clusters that could be used to control the state of a limb. * Offline analysis A test of decoder performance, typically using signals previously recorded from an


able-bodied subject, enabling comparison of the decoder's 'predictions' with the actual movement-related signals. * Impedance In electricity, the opposition to alternating


current by an electric circuit. In limb movement, a measure of how much the limb resists motion when subjected to a force. * Redundant A limb having more degrees of freedom (for example,


muscles or joint rotations) than are minimally necessary to position and orient its end point. Redundancy conveys flexibility but also requires more complex control algorithms. *


Actor–critic A reinforcement learning approach that consists of having an 'actor' perform an action based on the state of the system and a 'critic' evaluate the


consequences of that action. The probability of performing that action given the state is then modified based on the consequences. * Online control Actual predictions made with a decoder in


real-time, allowing the user to control a robotic limb or the motion of a cursor. * Ballistic A preprogrammed movement that is sufficiently rapid that it cannot be modified by online sensory


feedback. * Proprioception The sense of the relative position and motion of parts of the body (particularly limbs) and of the effort deployed in movement. * Flutter Low-frequency (∼5–50 Hz)


oscillations. * Verisimilitude In the context of sensory brain–machine interfaces, the similarity to naturally occurring percepts. * Percutaneous Literally, 'by way of the skin'.


In this context, an interface that penetrates the skin in order to convey signals to and from the nervous system. RIGHTS AND PERMISSIONS Reprints and permissions ABOUT THIS ARTICLE CITE THIS


ARTICLE Bensmaia, S., Miller, L. Restoring sensorimotor function through intracortical interfaces: progress and looming challenges. _Nat Rev Neurosci_ 15, 313–325 (2014).


https://doi.org/10.1038/nrn3724 Download citation * Published: 17 April 2014 * Issue Date: May 2014 * DOI: https://doi.org/10.1038/nrn3724 SHARE THIS ARTICLE Anyone you share the following


link with will be able to read this content: Get shareable link Sorry, a shareable link is not currently available for this article. Copy to clipboard Provided by the Springer Nature


SharedIt content-sharing initiative