
- Select a language for the TTS:
- UK English Female
- UK English Male
- US English Female
- US English Male
- Australian Female
- Australian Male
- Language selected: (auto detect) - EN
Play all audios:
ABSTRACT Discoveries in fruit flies have greatly contributed to our understanding of neuroscience. The use of an unparalleled wealth of tools, many of which originated between 1910–1960, has
enabled milestone discoveries in nervous system development and function. Such findings have triggered and guided many research efforts in vertebrate neuroscience. After 100 years, fruit
flies continue to be the choice model system for many neuroscientists. The combinational use of powerful research tools will ensure that this model organism will continue to lead to key
discoveries that will impact vertebrate neuroscience. Access through your institution Buy or subscribe This is a preview of subscription content, access via your institution ACCESS OPTIONS
Access through your institution Subscribe to this journal Receive 12 print issues and online access $189.00 per year only $15.75 per issue Learn more Buy this article * Purchase on
SpringerLink * Instant access to full article PDF Buy now Prices may be subject to local taxes which are calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in * Learn about
institutional subscriptions * Read our FAQs * Contact customer support REFERENCES * Morgan, T. H. Sex limited inheritance in _Drosophila_. _Science_ 32, 120–122 (1910). CAS PubMed Google
Scholar * Sturtevant, A. H. _A History of Genetics_ (Cold Spring Harbor Laboratory Press, New York, 1966). Google Scholar * Morgan, T. H. & Bridges, C. B. Sex-linked inheritance in
_Drosophila_. _Carnegie Institute of Washington Publication_ 237, 1–88 (1916). Google Scholar * Poulson, D. F. _Histogenesis, organogenesis and differentiation in the embryo of Drosophila
melanogaster_. (ed. Demerec, M.) (Hafner Publishing Co Ltd, Wiley, New York, 1950). Google Scholar * Campos-Ortega, J. A. Cellular interactions during early neurogenesis of _Drosophila
melanogaster_. _Trends Neurosci._ 11, 400–405 (1988). CAS PubMed Google Scholar * Wharton, K. A., Johansen, K. M., Xu, T. & Artavanis-Tsakonas, S. Nucleotide sequence from the
neurogenic locus notch implies a gene product that shares homology with proteins containing EGF-like repeats. _Cell_ 43, 567–581 (1985). CAS PubMed Google Scholar * Vassin, H., Bremer, K.
A., Knust, E. & Campos-Ortega, J. A. The neurogenic gene Delta of _Drosophila melanogaster_ is expressed in neurogenic territories and encodes a putative transmembrane protein with
EGF-like repeats. _EMBO J._ 6, 3431–3440 (1987). PubMed PubMed Central Google Scholar * Artavanis-Tsakonas, S., Matsuno, K. & Fortini, M. E. Notch signaling. _Science_ 268, 225–232
(1995). CAS PubMed Google Scholar * Artavanis-Tsakonas, S., Rand, M. D. & Lake, R. J. Notch signaling: cell fate control and signal integration in development. _Science_ 284, 770–776
(1999). CAS PubMed Google Scholar * Ellisen, L. W. et al. TAN-1, the human homolog of the _Drosophila_ notch gene, is broken by chromosomal translocations in T lymphoblastic neoplasms.
_Cell_ 66, 649–661 (1991). CAS PubMed Google Scholar * Kopan, R. & Ilagan, M. X. The canonical Notch signaling pathway: unfolding the activation mechanism. _Cell_ 137, 216–233 (2009).
CAS PubMed PubMed Central Google Scholar * Breunig, J. J., Silbereis, J., Vaccarino, F. M., Sestan, N. & Rakic, P. Notch regulates cell fate and dendrite morphology of newborn
neurons in the postnatal dentate gyrus. _Proc. Natl Acad. Sci. USA_ 104, 20558–20563 (2007). CAS PubMed PubMed Central Google Scholar * Pavlopoulos, E., Anezaki, M. & Skoulakis, E.
M. Neuralized is expressed in the alpha/beta lobes of adult _Drosophila_ mushroom bodies and facilitates olfactory long-term memory formation. _Proc. Natl Acad. Sci. USA_ 105, 14674–14679
(2008). CAS PubMed PubMed Central Google Scholar * Roca, C. & Adams, R. H. Regulation of vascular morphogenesis by Notch signaling. _Genes Dev._ 21, 2511–2524 (2007). CAS PubMed
Google Scholar * Weinstein, A. Coincidence of crossing over in _Drosophila melanogaster_ (Ampelophila). _Genetics_ 3, 135–172 (1918). CAS PubMed PubMed Central Google Scholar * Bridges,
C. B. & Morgan, T. H. The third-chromosome group of mutant characters of _Drosophila melanogaster_. _Carnegie Institute of Washington Publication_ 327, 1–251 (1923). Google Scholar *
Lewis, E. B. A gene complex controlling segmentation in _Drosophila_. _Nature_ 276, 565–570 (1978). CAS PubMed Google Scholar * Sanchez-Herrero, E., Vernos, I., Marco, R. & Morata, G.
Genetic organization of _Drosophila_ bithorax complex. _Nature_ 313, 108–113 (1985). CAS PubMed Google Scholar * Kaufman, T. C., Lewis, R. & Wakimoto, B. Cytogenetic analysis of
chromosome 3 in _Drosophila melanogaster_: the homoeotic gene complex in polytene chromosome interval 84a-B. _Genetics_ 94, 115–133 (1980). CAS PubMed PubMed Central Google Scholar *
Garber, R. L., Kuroiwa, A. & Gehring, W. J. Genomic and cDNA clones of the homeotic locus Antennapedia in _Drosophila_. _EMBO J._ 2, 2027–2036 (1983). CAS PubMed PubMed Central Google
Scholar * McGinnis, W., Garber, R. L., Wirz, J., Kuroiwa, A. & Gehring, W. J. A homologous protein-coding sequence in _Drosophila_ homeotic genes and its conservation in other
metazoans. _Cell_ 37, 403–408 (1984). CAS PubMed Google Scholar * Duboule, D. The rise and fall of Hox gene clusters. _Development_ 134, 2549–2560 (2007). CAS PubMed Google Scholar *
Alexander, T., Nolte, C. & Krumlauf, R. Hox genes and segmentation of the hindbrain and axial skeleton. _Annu. Rev. Cell Dev. Biol._ 25, 431–456 (2009). CAS PubMed Google Scholar *
Dasen, J. S. & Jessell, T. M. Hox networks and the origins of motor neuron diversity. _Curr. Top. Dev. Biol._ 88, 169–200 (2009). CAS PubMed Google Scholar * Dupin, E., Creuzet, S.
& Le Douarin, N. M. The contribution of the neural crest to the vertebrate body. _Adv. Exp. Med. Biol._ 589, 96–119 (2006). CAS PubMed Google Scholar * Ghysen, A. &
Dambly-Chaudiere, C. From DNA to form: the achaete-scute complex. _Genes Dev._ 2, 495–501 (1988). Google Scholar * Raffel, D. & Muller, H. J. Position effect and gene divisibility
considered in connection with three strikingly similar scute mutations. _Genetics_ 25, 541–583 (1940). CAS PubMed PubMed Central Google Scholar * Garcia-Bellido, A. & Santamaria, P.
Developmental analysis of the Achaete-Scute system of _Drosophila melanogaster_. _Genetics_ 88, 469–486 (1978). CAS PubMed PubMed Central Google Scholar * Garcia-Bellido, A. Genetic
analysis of the Achaete-Scute system of _Drosophila melanogaster_. _Genetics_ 91, 491–520 (1979). CAS PubMed PubMed Central Google Scholar * Campuzano, S. et al. Molecular genetics of
the achaete-scute gene complex of _D. melanogaster_. _Cell_ 40, 327–338 (1985). CAS PubMed Google Scholar * Cabrera, C. V., Martinez-Arias, A. & Bate, M. The expression of three
members of the achaete-scute gene complex correlates with neuroblast segregation in _Drosophila_. _Cell_ 50, 425–433 (1987). CAS PubMed Google Scholar * Jarman, A. P., Grau, Y., Jan, L.
Y. & Jan, Y. N. atonal is a proneural gene that directs chordotonal organ formation in the _Drosophila_ peripheral nervous system. _Cell_ 73, 1307–1321 (1993). CAS PubMed Google
Scholar * Lo, L. C., Johnson, J. E., Wuenschell, C. W., Saito, T. & Anderson, D. J. Mammalian achaete-scute homolog 1 is transiently expressed by spatially restricted subsets of early
neuroepithelial and neural crest cells. _Genes Dev._ 5, 1524–1537 (1991). CAS PubMed Google Scholar * Bermingham, N. A. et al. Math1: an essential gene for the generation of inner ear
hair cells. _Science_ 284, 1837–1841 (1999). CAS PubMed Google Scholar * Van Keymeulen, A. et al. Epidermal progenitors give rise to Merkel cells during embryonic development and adult
homeostasis. _J. Cell Biol._ 187, 91–100 (2009). CAS PubMed PubMed Central Google Scholar * Maricich, S. M. et al. Merkel cells are essential for light-touch responses. _Science_ 324,
1580–1582 (2009). CAS PubMed PubMed Central Google Scholar * Bertrand, N., Castro, D. S. & Guillemot, F. Proneural genes and the specification of neural cell types. _Nature Rev.
Neurosci._ 3, 517–530 (2002). CAS Google Scholar * Quan, X. J. & Hassan, B. A. From skin to nerve: flies, vertebrates and the first helix. _Cell. Mol. Life Sci._ 62, 2036–2049 (2005).
CAS PubMed Google Scholar * Uemura, T., Shepherd, S., Ackerman, L., Jan, L. Y. & Jan, Y. N. numb, a gene required in determination of cell fate during sensory organ formation in
_Drosophila_ embryos. _Cell_ 58, 349–360 (1989). CAS PubMed Google Scholar * Blochlinger, K., Bodmer, R., Jack, J., Jan, L. Y. & Jan, Y. N. Primary structure and expression of a
product from cut, a locus involved in specifying sensory organ identity in _Drosophila._ _Nature_ 333, 629–635 (1988). Google Scholar * Vaessin, H. et al. prospero is expressed in neuronal
precursors and encodes a nuclear protein that is involved in the control of axonal outgrowth in _Drosophila_. _Cell_ 67, 941–953 (1991). CAS PubMed Google Scholar * Nolo, R., Abbott, L.
A. & Bellen, H. J. Senseless, a Zn finger transcription factor, is necessary and sufficient for sensory organ development in _Drosophila_. _Cell_ 102, 349–362 (2000). CAS PubMed Google
Scholar * Roegiers, F. & Jan, Y. N. Asymmetric cell division. _Curr. Opin. Cell Biol._ 16, 195–205 (2004). CAS PubMed Google Scholar * Wallis, D. et al. The zinc finger
transcription factor Gfi1, implicated in lymphomagenesis, is required for inner ear hair cell differentiation and survival. _Development_ 130, 221–232 (2003). CAS PubMed Google Scholar *
Zhong, W. & Chia, W. Neurogenesis and asymmetric cell division. _Curr. Opin. Neurobiol._ 18, 4–11 (2008). PubMed Google Scholar * Nusslein-Volhard, C. & Wieschaus, E. Mutations
affecting segment number and polarity in _Drosophila_. _Nature_ 287, 795–801 (1980). CAS PubMed Google Scholar * Lewis, E. B., F. Bacher . Methods of feeding ethyl methane sulfonate (EMS)
to _Drosophila_ males. _Dros. Inf. Serv._ 43, 193 (1968). Google Scholar * Jurgens, G., Wieschaus, E., Nusslein-Volhard, C. & Kluding, H. Mutations affecting the pattern of the larval
cuticle in _Drosophila melanogaster_. _Rouxs Arch. Dev. Biol._ 193, 283–295 (1984). CAS Google Scholar * Wieschaus, E., Nüsslein-Volhard, C. & Jürgens, G. Mutations affecting the
pattern of the larval cuticle in _Drosophila melanogaster_. _Rouxs Arch. Dev. Biol._ 193, 296–307 (1984). CAS Google Scholar * Ho, K. S. & Scott, M. P. Sonic hedgehog in the nervous
system: functions, modifications and mechanisms. _Curr. Opin. Neurobiol._ 12, 57–63 (2002). CAS PubMed Google Scholar * Gaiano, N. Strange bedfellows: Reelin and Notch signaling interact
to regulate cell migration in the developing neocortex. _Neuron_ 60, 189–191 (2008). CAS PubMed Google Scholar * Charron, F. & Tessier-Lavigne, M. The Hedgehog, TGF-β/BMP and Wnt
families of morphogens in axon guidance. _Adv. Exp. Med. Biol._ 621, 116–133 (2007). PubMed Google Scholar * Pozniak, C. D. & Pleasure, S. J. A tale of two signals: Wnt and Hedgehog in
dentate neurogenesis. _Sci. STKE_ 2006, pe5 (2006). * Seeger, M., Tear, G., Ferres-Marco, D. & Goodman, C. S. Mutations affecting growth cone guidance in _Drosophila_: genes necessary
for guidance toward or away from the midline. _Neuron_ 10, 409–426 (1993). CAS PubMed Google Scholar * Dickson, B. J. & Gilestro, G. F. Regulation of commissural axon pathfinding by
slit and its Robo receptors. _Annu. Rev. Cell Dev. Biol._ 22, 651–675 (2006). CAS PubMed Google Scholar * Kolodkin, A. L., Matthes, D. J. & Goodman, C. S. The semaphorin genes encode
a family of transmembrane and secreted growth cone guidance molecules. _Cell_ 75, 1389–1399 (1993). CAS PubMed Google Scholar * Luo, Y., Raible, D. & Raper, J. A. Collapsin: a protein
in brain that induces the collapse and paralysis of neuronal growth cones. _Cell_ 75, 217–227 (1993). CAS PubMed Google Scholar * Eichmann, A., Le Noble, F., Autiero, M. & Carmeliet,
P. Guidance of vascular and neural network formation. _Curr. Opin. Neurobiol._ 15, 108–115 (2005). CAS PubMed Google Scholar * Benzer, S. Behavioral mutants of _Drosophila_ isolated by
countercurrent distribution. _Proc. Natl Acad. Sci. USA_ 58, 1112–1119 (1967). CAS PubMed PubMed Central Google Scholar * Konopka, R. J. & Benzer, S. Clock mutants of _Drosophila
melanogaster_. _Proc. Natl Acad. Sci. USA_ 68, 2112–2116 (1971). CAS PubMed PubMed Central Google Scholar * Bargiello, T. A., Jackson, F. R. & Young, M. W. Restoration of circadian
behavioural rhythms by gene transfer in _Drosophila_. _Nature_ 312, 752–754 (1984). CAS PubMed Google Scholar * Reddy, P. et al. Molecular analysis of the period locus in _Drosophila
melanogaster_ and identification of a transcript involved in biological rhythms. _Cell_ 38, 701–710 (1984). CAS PubMed Google Scholar * Zehring, W. A. et al. P-element transformation with
period locus DNA restores rhythmicity to mutant, arrhythmic _Drosophila melanogaster_. _Cell_ 39, 369–376 (1984). CAS PubMed Google Scholar * Bargiello, T. A. & Young, M. W.
Molecular genetics of a biological clock in _Drosophila_. _Proc. Natl Acad. Sci. USA_ 81, 2142–2146 (1984). CAS PubMed PubMed Central Google Scholar * Sun, Z. S. et al. RIGUI, a putative
mammalian ortholog of the _Drosophila_ period gene. _Cell_ 90, 1003–1011 (1997). CAS PubMed Google Scholar * Sehgal, A., Price, J. L., Man, B. & Young, M. W. Loss of circadian
behavioral rhythms and per RNA oscillations in the _Drosophila_ mutant timeless. _Science_ 263, 1603–1606 (1994). CAS PubMed Google Scholar * Vitaterna, M. H. et al. Mutagenesis and
mapping of a mouse gene, Clock, essential for circadian behavior. _Science_ 264, 719–725 (1994). CAS PubMed PubMed Central Google Scholar * King, D. P. et al. The mouse Clock mutation
behaves as an antimorph and maps within the W19H deletion, distal of Kit. _Genetics_ 146, 1049–1060 (1997). CAS PubMed PubMed Central Google Scholar * Takahashi, J. S., Hong, H. K., Ko,
C. H. & McDearmon, E. L. The genetics of mammalian circadian order and disorder: implications for physiology and disease. _Nature Rev. Genet._ 9, 764–775 (2008). CAS PubMed Google
Scholar * Quinn, W. G., Harris, W. A. & Benzer, S. Conditioned behavior in _Drosophila melanogaster_. _Proc. Natl Acad. Sci. USA_ 71, 708–712 (1974). CAS PubMed PubMed Central Google
Scholar * Dudai, Y., Jan, Y. N., Byers, D., Quinn, W. G. & Benzer, S. dunce, a mutant of _Drosophila_ deficient in learning. _Proc. Natl Acad. Sci. USA_ 73, 1684–1688 (1976). CAS
PubMed PubMed Central Google Scholar * Byers, D., Davis, R. L. & Kiger, J. A., Jr. Defect in cyclic AMP phosphodiesterase due to the dunce mutation of learning in _Drosophila
melanogaster_. _Nature_ 289, 79–81 (1981). CAS PubMed Google Scholar * Davis, R. L. & Kiger, J. A., Jr. Dunce mutants of _Drosophila melanogaster_: mutants defective in the cyclic AMP
phosphodiesterase enzyme system. _J. Cell Biol._ 90, 101–107 (1981). CAS PubMed Google Scholar * Chen, C. N., Denome, S. & Davis, R. L. Molecular analysis of cDNA clones and the
corresponding genomic coding sequences of the _Drosophila_ dunce+ gene, the structural gene for cAMP phosphodiesterase. _Proc. Natl Acad. Sci. USA_ 83, 9313–9317 (1986). CAS PubMed PubMed
Central Google Scholar * Livingstone, M. S., Sziber, P. P. & Quinn, W. G. Loss of calcium/calmodulin responsiveness in adenylate cyclase of rutabaga, a _Drosophila_ learning mutant.
_Cell_ 37, 205–215 (1984). CAS PubMed Google Scholar * McGuire, S. E., Deshazer, M. & Davis, R. L. Thirty years of olfactory learning and memory research in _Drosophila melanogaster_.
_Prog. Neurobiol._ 76, 328–347 (2005). CAS PubMed Google Scholar * Kandel, E. R. & Schwartz, J. H. Molecular biology of learning: modulation of transmitter release. _Science_ 218,
433–443 (1982). CAS PubMed Google Scholar * Alberini, C. M. Genes to remember. _J. Exp. Biol._ 202, 2887–2891 (1999). CAS PubMed Google Scholar * Barco, A., Bailey, C. H. & Kandel,
E. R. Common molecular mechanisms in explicit and implicit memory. _J. Neurochem._ 97, 1520–1533 (2006). CAS PubMed Google Scholar * Yu, D., Ponomarev, A. & Davis, R. L. Altered
representation of the spatial code for odors after olfactory classical conditioning; memory trace formation by synaptic recruitment. _Neuron_ 42, 437–449 (2004). CAS PubMed Google Scholar
* Pak, W. L., Grossfield, J. & White, N. V. Nonphototactic mutants in a study of vision of _Drosophila_. _Nature_ 222, 351–354 (1969). CAS PubMed Google Scholar * Pak, W. L.,
Grossfield, J. & Arnold, K. S. Mutants of the visual pathway of _Drosophila melanogaster_. _Nature_ 227, 518–520 (1970). CAS PubMed Google Scholar * Cosens, D. J. & Manning, A.
Abnormal electroretinogram from a _Drosophila_ mutant. _Nature_ 224, 285–287 (1969). CAS PubMed Google Scholar * Minke, B., Wu, C. & Pak, W. L. Induction of photoreceptor voltage
noise in the dark in _Drosophila_ mutant. _Nature_ 258, 84–87 (1975). CAS PubMed Google Scholar * Zuker, C. S. The biology of vision of _Drosophila_. _Proc. Natl Acad. Sci. USA_ 93,
571–576 (1996). CAS PubMed PubMed Central Google Scholar * Levis, R., Bingham, P. M. & Rubin, G. M. Physical map of the white locus of _Drosophila melanogaster_. _Proc. Natl Acad.
Sci. USA_ 79, 564–568 (1982). CAS PubMed PubMed Central Google Scholar * Zipursky, S. L. & Rubin, G. M. Determination of neuronal cell fate: lessons from the R7 neuron of
_Drosophila_. _Annu. Rev. Neurosci._ 17, 373–397 (1994). CAS PubMed Google Scholar * Rubin, G. M. & Spradling, A. C. Genetic transformation of _Drosophila_ with transposable element
vectors. _Science_ 218, 348–353 (1982). CAS PubMed Google Scholar * Montell, C., Jones, K., Hafen, E. & Rubin, G. Rescue of the _Drosophila_ phototransduction mutation trp by germline
transformation. _Science_ 230, 1040–1043 (1985). CAS PubMed Google Scholar * Montell, C. Visual transduction in _Drosophila_. _Annu. Rev. Cell Dev. Biol._ 15, 231–268 (1999). CAS PubMed
Google Scholar * Wes, P. D. et al. TRPC1, a human homolog of a _Drosophila_ store-operated channel. _Proc. Natl Acad. Sci. USA_ 92, 9652–9656 (1995). CAS PubMed PubMed Central Google
Scholar * Venkatachalam, K. & Montell, C. TRP channels. _Annu. Rev. Biochem._ 76, 387–417 (2007). CAS PubMed PubMed Central Google Scholar * Minke, B. & Cook, B. TRP channel
proteins and signal transduction. _Physiol. Rev._ 82, 429–472 (2002). CAS PubMed Google Scholar * Dong, X. P. et al. The type IV mucolipidosis-associated protein TRPML1 is an
endolysosomal iron release channel. _Nature_ 455, 992–996 (2008). CAS PubMed PubMed Central Google Scholar * Landouré, G. et al. Mutations in TRPV4 cause Charcot-Marie-Tooth disease type
2C. _Nature Genet._ 42, 170–174 (2009). PubMed Google Scholar * Deng, H. X. et al. Scapuloperoneal spinal muscular atrophy and CMT2C are allelic disorders caused by alterations in TRPV4.
_Nature Genet._ 42, 165–169 (2009). PubMed Google Scholar * Auer-Grumbach, M. et al. Alterations in the ankyrin domain of TRPV4 cause congenital distal SMA, scapuloperoneal SMA and HMSN2C.
_Nature Genet._ 42, 160–164 (2009). PubMed Google Scholar * Kaplan, W. D. & Trout, W. E., 3rd. The behavior of four neurological mutants of _Drosophila_. _Genetics_ 61, 399–409
(1969). CAS PubMed PubMed Central Google Scholar * Jan, L. Y. & Jan, Y. N. Properties of the larval neuromuscular junction in _Drosophila melanogaster_. _J. Physiol._ 262, 189–214
(1976). CAS PubMed PubMed Central Google Scholar * Jan, Y. N., Jan, L. Y. & Dennis, M. J. Two mutations of synaptic transmission in _Drosophila_. _Proc. R. Soc. Lond. B Biol. Sci._
198, 87–108 (1977). CAS PubMed Google Scholar * Ganetzky, B. & Wu, C. F. Indirect suppression involving behavioral mutants with altered nerve excitability in _Drosophila_ melanogster.
_Genetics_ 100, 597–614 (1982). CAS PubMed PubMed Central Google Scholar * Wu, C. F., Ganetzky, B., Haugland, F. N. & Liu, A. X. Potassium currents in _Drosophila_: different
components affected by mutations of two genes. _Science_ 220, 1076–1078 (1983). CAS PubMed Google Scholar * Baumann, A. et al. Molecular organization of the maternal effect region of the
Shaker complex of _Drosophila_: characterization of an I(A) channel transcript with homology to vertebrate Na channel. _EMBO J._ 6, 3419–3429 (1987). CAS PubMed PubMed Central Google
Scholar * Kamb, A., Iverson, L. E. & Tanouye, M. A. Molecular characterization of Shaker, a _Drosophila_ gene that encodes a potassium channel. _Cell_ 50, 405–413 (1987). CAS PubMed
Google Scholar * Papazian, D. M., Schwarz, T. L., Tempel, B. L., Jan, Y. N. & Jan, L. Y. Cloning of genomic and complementary DNA from Shaker, a putative potassium channel gene from
_Drosophila_. _Science_ 237, 749–753 (1987). CAS PubMed Google Scholar * Tempel, B. L., Papazian, D. M., Schwarz, T. L., Jan, Y. N. & Jan, L. Y. Sequence of a probable potassium
channel component encoded at Shaker locus of _Drosophila_. _Science_ 237, 770–775 (1987). CAS PubMed Google Scholar * Salkoff, L. et al. An essential 'set' of K+ channels
conserved in flies, mice and humans. _Trends Neurosci._ 15, 161–166 (1992). CAS PubMed Google Scholar * Ganetzky, B. & Wu, C. F. Neurogenetic analysis of potassium currents in
_Drosophila_: synergistic effects on neuromuscular transmission in double mutants. _J. Neurogenet._ 1, 17–28 (1983). CAS PubMed Google Scholar * Warmke, J., Drysdale, R. & Ganetzky,
B. A distinct potassium channel polypeptide encoded by the _Drosophila_ eag locus. _Science_ 252, 1560–1562 (1991). CAS PubMed Google Scholar * Warmke, J. W. & Ganetzky, B. A family
of potassium channel genes related to eag in _Drosophila_ and mammals. _Proc. Natl Acad. Sci. USA_ 91, 3438–3442 (1994). CAS PubMed PubMed Central Google Scholar * Curran, M. E. et al. A
molecular basis for cardiac arrhythmia: HERG mutations cause long QT syndrome. _Cell_ 80, 795–803 (1995). CAS PubMed Google Scholar * Jan, L. Y. & Jan, Y. N. Cloned potassium
channels from eukaryotes and prokaryotes. _Annu. Rev. Neurosci._ 20, 91–123 (1997). CAS PubMed Google Scholar * Jentsch, T. J. Neuronal KCNQ potassium channels: physiology and role in
disease. _Nature Rev. Neurosci._ 1, 21–30 (2000). CAS Google Scholar * Featherstone, D. E., Chen, K. & Broadie, K. Harvesting and preparing _Drosophila_ embryos for
electrophysiological recording and other procedures. _J. Vis. Exp._ 20 May 2009 (doi: 10.3791/1347). * Brent, J., Werner, K. & McCabe, B. D. _Drosophila_ larval NMJ immunohistochemistry.
_J. Vis. Exp._ 28 March 2009 (doi: 10.3791/1108). * Bellen, H., Budnik, V. _The_ _Neuromuscular Junction_ (ed. W. Sullivan, M. A.a.R. S. H.) (Cold Spring Harbor Laboratory Press, New York,
2000). Google Scholar * Koh, T. W. et al. Eps15 and Dap160 control synaptic vesicle membrane retrieval and synapse development. _J. Cell Biol._ 178, 309–322 (2007). CAS PubMed PubMed
Central Google Scholar * Littleton, J. T., Stern, M., Perin, M. & Bellen, H. J. Calcium dependence of neurotransmitter release and rate of spontaneous vesicle fusions are altered in
_Drosophila_ synaptotagmin mutants. _Proc. Natl Acad. Sci. USA_ 91, 10888–10892 (1994). CAS PubMed PubMed Central Google Scholar * Littleton, J. T., Stern, M., Schulze, K., Perin, M.
& Bellen, H. J. Mutational analysis of _Drosophila_ synaptotagmin demonstrates its essential role in Ca(2+)-activated neurotransmitter release. _Cell_ 74, 1125–1134 (1993). CAS PubMed
Google Scholar * DiAntonio, A., Parfitt, K. D. & Schwarz, T. L. Synaptic transmission persists in synaptotagmin mutants of _Drosophila_. _Cell_ 73, 1281–1290 (1993). CAS PubMed Google
Scholar * Poodry, C. A., Hall, L. & Suzuki, D. T. Developmental properties of Shibire: a pleiotropic mutation affecting larval and adult locomotion and development. _Dev. Biol._ 32,
373–386 (1973). CAS PubMed Google Scholar * van der Bliek, A. M. & Meyerowitz, E. M. Dynamin-like protein encoded by the _Drosophila_ shibire gene associated with vesicular traffic.
_Nature_ 351, 411–414 (1991). CAS PubMed Google Scholar * Poodry, C. A. & Edgar, L. Reversible alteration in the neuromuscular junctions of _Drosophila melanogaster_ bearing a
temperature-sensitive mutation, shibire. _J. Cell Biol._ 81, 520–527 (1979). CAS PubMed Google Scholar * Koenig, J. H., Kosaka, T. & Ikeda, K. The relationship between the number of
synaptic vesicles and the amount of transmitter released. _J. Neurosci._ 9, 1937–1942 (1989). CAS PubMed PubMed Central Google Scholar * Richmond, J. E. & Broadie, K. S. The synaptic
vesicle cycle: exocytosis and endocytosis in _Drosophila_ and _C. elegans_. _Curr. Opin. Neurobiol._ 12, 499–507 (2002). CAS PubMed Google Scholar * Schwarz, T. L. Transmitter release at
the neuromuscular junction. _Int. Rev. Neurobiol._ 75, 105–144 (2006). CAS PubMed Google Scholar * Sudhof, T. C. The synaptic vesicle cycle. _Annu. Rev. Neurosci._ 27, 509–547 (2004).
PubMed Google Scholar * Bellen, H. J. et al. The BDGP gene disruption project: single transposon insertions associated with 40% of _Drosophila_ genes. _Genetics_ 167, 761–781 (2004).
Google Scholar * Venken, K. J. & Bellen, H. J. Emerging technologies for gene manipulation in _Drosophila melanogaster_. _Nature Rev. Genet._ 6, 167–178 (2005). CAS PubMed Google
Scholar * Venken, K. J. & Bellen, H. J. Transgenesis upgrades for _Drosophila melanogaster_. _Development_ 134, 3571–3584 (2007). CAS PubMed Google Scholar * Hobert, O. The impact of
whole genome sequencing on model system genetics: get ready for the ride. _Genetics_ 184, 317–319 (2010). CAS PubMed PubMed Central Google Scholar * Rong, Y. S. et al. Targeted
mutagenesis by homologous recombination in _D. melanogaster_. _Genes Dev._ 16, 1568–1581 (2002). CAS PubMed PubMed Central Google Scholar * Dietzl, G. et al. A genome-wide transgenic
RNAi library for conditional gene inactivation in _Drosophila_. _Nature_ 448, 151–156 (2007). CAS PubMed Google Scholar * Ni, J. Q. et al. A _Drosophila_ resource of transgenic RNAi lines
for neurogenetics. _Genetics_ 182, 1089–1100 (2009). CAS PubMed PubMed Central Google Scholar * Venken, K. J., He, Y., Hoskins, R. A. & Bellen, H. J. P[acman]: a BAC transgenic
platform for targeted insertion of large DNA fragments in _D. melanogaster_. _Science_ 314, 1747–1751 (2006). CAS PubMed Google Scholar * Groth, A. C. & Calos, M. P. Phage integrases:
biology and applications. _J. Mol. Biol._ 335, 667–678 (2004). CAS PubMed Google Scholar * Golic, K. G. & Lindquist, S. The FLP recombinase of yeast catalyzes site-specific
recombination in the _Drosophila_ genome. _Cell_ 59, 499–509 (1989). CAS PubMed Google Scholar * Golic, K. G. Site-specific recombination between homologous chromosomes in _Drosophila_.
_Science_ 252, 958–961 (1991). CAS PubMed Google Scholar * Brand, A. H. & Perrimon, N. Targeted gene expression as a means of altering cell fates and generating dominant phenotypes.
_Development_ 118, 401–415 (1993). CAS PubMed Google Scholar * Lee, T. & Luo, L. Mosaic analysis with a repressible cell marker (MARCM) for _Drosophila_ neural development . _Trends
Neurosci._ 24, 251–254 (2001). CAS PubMed Google Scholar * Venken, K. J. et al. Versatile P[acman] BAC libraries for transgenesis studies in _Drosophila melanogaster_. _Nature Methods_ 6,
431–434 (2009). CAS PubMed PubMed Central Google Scholar * Broadie, K. & Bate, M. Activity-dependent development of the neuromuscular synapse during _Drosophila_ embryogenesis.
_Neuron_ 11, 607–619 (1993). CAS PubMed Google Scholar * Broadie, K. in _Drosophila Protocols_ (eds Sullivan, W., Ashburner, M. & Hawley, S.) 273–296 (Cold Spring Harbor Laboratory
Press, Cold Spring Harbor, New York, 2000). Google Scholar * Howlett, I. C. & Tanouye, M. A. Neurocircuit assays for seizures in epilepsy mutants of _Drosophila_. _J. Vis. Exp._ 15
April 2009 (doi: 10.3791/1121). * Nitz, D. A., van Swinderen, B., Tononi, G. & Greenspan, R. J. Electrophysiological correlates of rest and activity in _Drosophila melanogaster_. _Curr.
Biol._ 12, 1934–1940 (2002). CAS PubMed Google Scholar * Gu, H. et al. Cav2-type calcium channels encoded by cac regulate AP-independent neurotransmitter release at cholinergic synapses
in adult _Drosophila_ brain. _J. Neurophysiol._ 101, 42–53 (2009). CAS PubMed Google Scholar * Rohrbough, J. & Broadie, K. Electrophysiological analysis of synaptic transmission in
central neurons of _Drosophila_ larvae. _J. Neurophysiol._ 88, 847–860 (2002). PubMed Google Scholar * Mamiya, A., Beshel, J., Xu, C. & Zhong, Y. Neural representations of airflow in
_Drosophila_ mushroom body. _PLoS ONE_ 3, e4063 (2008). PubMed PubMed Central Google Scholar * Pfeiffer, B. D. et al. Tools for neuroanatomy and neurogenetics in _Drosophila_. _Proc. Natl
Acad. Sci. USA_ 105, 9715–9720 (2008). CAS PubMed PubMed Central Google Scholar * Sweeney, S. T., Broadie, K., Keane, J., Niemann, H. & O'Kane, C. J. Targeted expression of
tetanus toxin light chain in _Drosophila_ specifically eliminates synaptic transmission and causes behavioral defects. _Neuron_ 14, 341–351 (1995). CAS PubMed Google Scholar * Kitamoto,
T. Targeted expression of temperature-sensitive dynamin to study neural mechanisms of complex behavior in _Drosophila_. _J. Neurogenet._ 16, 205–228 (2002). CAS PubMed Google Scholar *
Ren, D. et al. A prokaryotic voltage-gated sodium channel. _Science_ 294, 2372–2375 (2001). CAS PubMed Google Scholar * Luan, H. et al. Functional dissection of a neuronal network
required for cuticle tanning and wing expansion in _Drosophila_. _J. Neurosci._ 26, 573–584 (2006). CAS PubMed PubMed Central Google Scholar * Miesenbock, G. The optogenetic catechism.
_Science_ 326, 395–399 (2009). PubMed Google Scholar * Shaw, P. J., Cirelli, C., Greenspan, R. J. & Tononi, G. Correlates of sleep and waking in _Drosophila melanogaster_. _Science_
287, 1834–1837 (2000). CAS PubMed Google Scholar * Harbison, S. T., Mackay, T. F. & Anholt, R. R. Understanding the neurogenetics of sleep: progress from _Drosophila_. _Trends Genet._
25, 262–269 (2009). CAS PubMed PubMed Central Google Scholar * Cirelli, C. The genetic and molecular regulation of sleep: from fruit flies to humans. _Nature Rev. Neurosci._ 10, 549–560
(2009). CAS Google Scholar * Koh, K. et al. Identification of SLEEPLESS, a sleep-promoting factor. _Science_ 321, 372–376 (2008). CAS PubMed PubMed Central Google Scholar * Wu, M. N.
et al. SLEEPLESS, a Ly-6/neurotoxin family member, regulates the levels, localization and activity of Shaker. _Nature Neurosci._ 13, 69–75 (2010). CAS PubMed Google Scholar * Cirelli, C.
et al. Reduced sleep in _Drosophila_ Shaker mutants. _Nature_ 434, 1087–1092 (2005). CAS PubMed Google Scholar * Axel, R. Scents and sensibility: a molecular logic of olfactory perception
(Nobel lecture). _Angew. Chem. Int. Ed Engl._ 44, 6110–6127 (2005). PubMed Google Scholar * Anderson, D. J. Profile of David J. Anderson. Interview by Kaspar D. Mossman. _Proc. Natl Acad.
Sci. USA_ 106, 17623–17625 (2009). PubMed Google Scholar * Lozano, A. M., Lang, A. E., Hutchison, W. D. & Dostrovsky, J. O. New developments in understanding the etiology of
Parkinson's disease and in its treatment. _Curr. Opin. Neurobiol._ 8, 783–790 (1998). CAS PubMed Google Scholar * Polymeropoulos, M. H. et al. Mutation in the alpha-synuclein gene
identified in families with Parkinson's disease. _Science_ 276, 2045–2047 (1997). CAS PubMed Google Scholar * Kitada, T. et al. Mutations in the parkin gene cause autosomal recessive
juvenile parkinsonism. _Nature_ 392, 605–608 (1998). CAS PubMed Google Scholar * Valente, E. M. et al. Hereditary early-onset Parkinson's disease caused by mutations in PINK1.
_Science_ 304, 1158–1160 (2004). CAS PubMed Google Scholar * Greene, J. C. et al. Mitochondrial pathology and apoptotic muscle degeneration in _Drosophila_ parkin mutants. _Proc. Natl
Acad. Sci. USA_ 100, 4078–4083 (2003). CAS PubMed PubMed Central Google Scholar * Pesah, Y. et al. _Drosophila_ parkin mutants have decreased mass and cell size and increased sensitivity
to oxygen radical stress. _Development_ 131, 2183–2194 (2004). CAS PubMed Google Scholar * Orr, H. T. & Zoghbi, H. Y. Trinucleotide repeat disorders. _Annu. Rev. Neurosci._ 30,
575–621 (2007). CAS PubMed Google Scholar * Lessing, D. & Bonini, N. M. Maintaining the brain: insight into human neurodegeneration from _Drosophila melanogaster_ mutants. _Nature
Rev. Genet._ 10, 359–370 (2009). CAS PubMed Google Scholar * Botas, J. _Drosophila_ researchers focus on human disease. _Nature Genet._ 39, 589–591 (2007). CAS PubMed Google Scholar *
Vosshall, L. B. & Stocker, R. F. Molecular architecture of smell and taste in _Drosophila_. _Annu. Rev. Neurosci._ 30, 505–533 (2007). CAS PubMed Google Scholar * Iliadi, K. G. The
genetic basis of emotional behavior: has the time come for a _Drosophila_ model? _J. Neurogenet._ 23, 136–146 (2009). CAS PubMed Google Scholar * Kernan, M. J. Mechanotransduction and
auditory transduction in _Drosophila_. _Pflugers Arch._ 454, 703–720 (2007). CAS PubMed Google Scholar * Fotowat, H., Fayyazuddin, A., Bellen, H. J. & Gabbiani, F. A novel neuronal
pathway for visually guided escape in _Drosophila melanogaster_. _J. Neurophysiol._ 102, 875–885 (2009). PubMed PubMed Central Google Scholar * Manoli, D. S., Meissner, G. W. & Baker,
B. S. Blueprints for behavior: genetic specification of neural circuitry for innate behaviors. _Trends Neurosci._ 29, 444–451 (2006). CAS PubMed Google Scholar * Dickson, B. J. Wired for
sex: the neurobiology of _Drosophila_ mating decisions. _Science_ 322, 904–909 (2008). CAS PubMed Google Scholar * Muller, H. J. Genetic variability, twin hybrids and constant hybrids,
in a case of balanced lethal factors. _Genetics_ 3, 422–499 (1918). CAS PubMed PubMed Central Google Scholar * Muller, H. J. Artificial transmutation of the gene. _Science_ 66, 84–87
(1927). CAS PubMed Google Scholar * Bridges, C. B. Salivary chromosome maps with a key to the banding of the chromosomes of _Drosophila melanogaster_. _J. Hered._ 26, 60–64 (1935). Google
Scholar * Stern, C. Somatic crossing over and segregation in _Drosophila melanogaster_. _Genetics_ 21, 625–730 (1936). CAS PubMed PubMed Central Google Scholar * Fuccillo, M., Joyner,
A. L. & Fishell, G. Morphogen to mitogen: the multiple roles of hedgehog signalling in vertebrate neural development. _Nature Rev. Neurosci._ 7, 772–783 (2006). CAS Google Scholar *
Kunes, S. Axonal signals in the assembly of neural circuitry. _Curr. Opin. Neurobiol._ 10, 58–62 (2000). CAS PubMed Google Scholar * Doe, C. Q. Neural stem cells: balancing self-renewal
with differentiation. _Development_ 135, 1575–1587 (2008). CAS PubMed Google Scholar * Ciani, L. & Salinas, P. C. WNTs in the vertebrate nervous system: from patterning to neuronal
connectivity. _Nature Rev. Neurosci._ 6, 351–362 (2005). CAS Google Scholar * Legent, K. & Treisman, J. E. Wingless signaling in _Drosophila_ eye development. _Methods Mol. Biol._ 469,
141–161 (2008). CAS PubMed PubMed Central Google Scholar * Inestrosa, N. C. & Arenas, E. Emerging roles of Wnts in the adult nervous system. _Nature Rev. Neurosci._ 11, 77–86
(2010). CAS Google Scholar * Korkut, C. & Budnik, V. WNTs tune up the neuromuscular junction. _Nature Rev. Neurosci._ 10, 627–634 (2009). CAS Google Scholar * Liu, A. &
Niswander, L. A. Bone morphogenetic protein signalling and vertebrate nervous system development. _Nature Rev. Neurosci._ 6, 945–954 (2005). CAS Google Scholar * Kaphingst, K. & Kunes,
S. Pattern formation in the visual centers of the _Drosophila_ brain: wingless acts via decapentaplegic to specify the dorsoventral axis. _Cell_ 78, 437–448 (1994). CAS PubMed Google
Scholar * Yoshida, S. et al. DPP signaling controls development of the lamina glia required for retinal axon targeting in the visual system of _Drosophila_. _Development_ 132, 4587–4598
(2005). CAS PubMed Google Scholar * Parker, L., Ellis, J. E., Nguyen, M. Q. & Arora, K. The divergent TGF-beta ligand Dawdle utilizes an activin pathway to influence axon guidance in
_Drosophila_. _Development_ 133, 4981–4991 (2006). CAS PubMed Google Scholar * Serpe, M. & O'Connor, M. B. The metalloprotease tolloid-related and its TGF-b-like substrate Dawdle
regulate _Drosophila_ motoneuron axon guidance. _Development_ 133, 4969–4979 (2006). CAS PubMed Google Scholar * Keshishian, H. & Kim, Y. S. Orchestrating development and function:
retrograde BMP signaling in the _Drosophila_ nervous system. _Trends Neurosci._ 27, 143–147 (2004). CAS PubMed Google Scholar * James, D., Levine, A. J., Besser, D. &
Hemmati-Brivanlou, A. TGFb/activin/nodal signaling is necessary for the maintenance of pluripotency in human embryonic stem cells. _Development_ 132, 1273–1282 (2005). CAS PubMed Google
Scholar * Ogawa, K. et al. Activin-Nodal signaling is involved in propagation of mouse embryonic stem cells. _J. Cell Sci._ 120, 55–65 (2007). CAS PubMed Google Scholar * Louvi, A. &
Artavanis-Tsakonas, S. Notch signalling in vertebrate neural development. _Nature Rev. Neurosci._ 7, 93–102 (2006). CAS Google Scholar * Bardin, A. J., Le Borgne, R. & Schweisguth, F.
Asymmetric localization and function of cell-fate determinants: a fly's view. _Curr. Opin. Neurobiol._ 14, 6–14 (2004). CAS PubMed Google Scholar * Carthew, R. W. Pattern formation
in the _Drosophila_ eye. _Curr. Opin. Genet. Dev._ 17, 309–313 (2007). CAS PubMed PubMed Central Google Scholar * Le Gall, M., De Mattei, C. & Giniger, E. Molecular separation of two
signaling pathways for the receptor, Notch. _Dev. Biol._ 313, 556–567 (2008). CAS PubMed Google Scholar * de Bivort, B. L., Guo, H. F. & Zhong, Y. Notch signaling is required for
activity-dependent synaptic plasticity at the _Drosophila_ neuromuscular junction. _J. Neurogenet._ 23, 395–404 (2009). PubMed PubMed Central Google Scholar * Hou, J., Tamura, T. &
Kidokoro, Y. Delayed synaptic transmission in _Drosophila cacophony_ null embryos. _J. Neurophysiol._ 100, 2833–2842 (2008). PubMed Google Scholar * Xue, M. et al. Tilting the balance
between facilitatory and inhibitory functions of mammalian and _Drosophila_ Complexins orchestrates synaptic vesicle exocytosis. _Neuron_ 64, 367–380 (2009). CAS PubMed PubMed Central
Google Scholar * Bronk, P. et al. The multiple functions of cysteine-string protein analyzed at _Drosophila_ nerve terminals. _J. Neurosci._ 25, 2204–2214 (2005). CAS PubMed PubMed
Central Google Scholar * Ohyama, T. et al. Huntingtin-interacting protein 14, a palmitoyl transferase required for exocytosis and targeting of CSP to synaptic vesicles. _J. Cell Biol._
179, 1481–1496 (2007). CAS PubMed PubMed Central Google Scholar * Schulze, K. L. et al. rop, a _Drosophila_ homolog of yeast Sec1 and vertebrate n-Sec1/Munc-18 proteins, is a negative
regulator of neurotransmitter release _in vivo_. _Neuron_ 13, 1099–1108 (1994). CAS PubMed Google Scholar * Ly, C. V., Yao, C. K., Verstreken, P., Ohyama, T. & Bellen, H. J.
straightjacket is required for the synaptic stabilization of cacophony, a voltage-gated calcium channel a1 subunit. _J. Cell Biol._ 181, 157–170 (2008). CAS PubMed PubMed Central Google
Scholar * Vilinsky, I., Stewart, B. A., Drummond, J., Robinson, I. & Deitcher, D. L. A _Drosophila SNAP-25_ null mutant reveals context-dependent redundancy with SNAP-24 in
neurotransmission. _Genetics_ 162, 259–271 (2002). CAS PubMed PubMed Central Google Scholar * Broadie, K. et al. Syntaxin and synaptobrevin function downstream of vesicle docking in
_Drosophila_. _Neuron_ 15, 663–673 (1995). CAS PubMed Google Scholar * Schulze, K. L., Broadie, K., Perin, M. S. & Bellen, H. J. Genetic and electrophysiological studies of
_Drosophila_ syntaxin-1A demonstrate its role in nonneuronal secretion and neurotransmission. _Cell_ 80, 311–320 (1995). CAS PubMed Google Scholar * Wu, M. N. et al. Syntaxin 1A interacts
with multiple exocytic proteins to regulate neurotransmitter release _in vivo_. _Neuron_ 23, 593–605 (1999). CAS PubMed Google Scholar * Aravamudan, B., Fergestad, T., Davis, W. S.,
Rodesch, C. K. & Broadie, K. _Drosophila_ UNC-13 is essential for synaptic transmission. _Nature Neurosci._ 2, 965–971 (1999). CAS PubMed Google Scholar * Hiesinger, P. R. et al. The
v-ATPase V0 subunit a1 is required for a late step in synaptic vesicle exocytosis in _Drosophila_. _Cell_ 121, 607–620 (2005). CAS PubMed PubMed Central Google Scholar * Zhang, B. et al.
Synaptic vesicle size and number are regulated by a clathrin adaptor protein required for endocytosis. _Neuron_ 21, 1465–1475 (1998). CAS PubMed Google Scholar * Kasprowicz, J. et al.
Inactivation of clathrin heavy chain inhibits synaptic recycling but allows bulk membrane uptake. _J. Cell Biol._ 182, 1007–1016 (2008). CAS PubMed PubMed Central Google Scholar *
Heerssen, H., Fetter, R. D. & Davis, G. W. Clathrin dependence of synaptic-vesicle formation at the _Drosophila_ neuromuscular junction. _Curr. Biol._ 18, 401–409 (2008). CAS PubMed
PubMed Central Google Scholar * Koh, T. W., Verstreken, P. & Bellen, H. J. Dap160/intersectin acts as a stabilizing scaffold required for synaptic development and vesicle endocytosis.
_Neuron_ 43, 193–205 (2004). CAS PubMed Google Scholar * Ramaswami, M., Rao, S., van der Bliek, A., Kelly, R. B. & Krishnan, K. S. Genetic studies on dynamin function in _Drosophila_.
_J. Neurogenet._ 9, 73–87 (1993). CAS PubMed Google Scholar * Verstreken, P. et al. Endophilin mutations block clathrin-mediated endocytosis but not neurotransmitter release. _Cell_ 109,
101–112 (2002). CAS PubMed Google Scholar * Yao, C. K. et al. A synaptic vesicle-associated Ca2+ channel promotes endocytosis and couples exocytosis to endocytosis. _Cell_ 138, 947–960
(2009). CAS PubMed PubMed Central Google Scholar * Phillips, A. M., Ramaswami, M. & Kelly, L. E. Stoned. _Traffic_ 11, 16–24. * Verstreken, P. et al. Synaptojanin is recruited by
endophilin to promote synaptic vesicle uncoating. _Neuron_ 40, 733–748 (2003). CAS PubMed Google Scholar * Verstreken, P. et al. Tweek, an evolutionarily conserved protein, is required
for synaptic vesicle recycling. _Neuron_ 63, 203–215 (2009). CAS PubMed PubMed Central Google Scholar Download references ACKNOWLEDGEMENTS We would like to thank B. Ganetzky, S.
Yamamoto, M. Rasband, N. Giagtzoglou, M. Xue, J. Kiger, H. Dierick, K. Cook, K. Schulze and B. Hassan for reading the manuscript. We apologize to all our colleagues whose work was not cited
because of space constraints. HJB is an investigator of the Howard Hughes Medical Institute, HT is supported by the Amyotrophic Lateral Sclerosis Association and CT is supported by a T32
from the National Institute of Neurological Disorders. AUTHOR INFORMATION AUTHORS AND AFFILIATIONS * and is at the Department of Neuroscience, Hugo J. Bellen is Director of the the Program
in Developmental Biology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA., Hugo J. Bellen * Chao Tong and Hiroshi Tsuda are at the Department of Molecular and Human
Genetics, Hugo J. Bellen, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA., Hugo J. Bellen, Chao Tong & Hiroshi Tsuda * Hugo J. Bellen and Hiroshi Tsuda are at
the Howard Hughes Medical Institute, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA., Hugo J. Bellen & Hiroshi Tsuda Authors * Hugo J. Bellen View author
publications You can also search for this author inPubMed Google Scholar * Chao Tong View author publications You can also search for this author inPubMed Google Scholar * Hiroshi Tsuda View
author publications You can also search for this author inPubMed Google Scholar CORRESPONDING AUTHOR Correspondence to Hugo J. Bellen. ETHICS DECLARATIONS COMPETING INTERESTS The authors
declare no competing financial interests. RELATED LINKS RELATED LINKS DATABASES OMIM CADASIL familial advanced sleep phase syndrome hereditary motor and sensory neuropathy type IIC LQT
syndrome mucolipidosis type IV disease Parkinson's disease FURTHER INFORMATION Hugo J. Bellen's homepage RIGHTS AND PERMISSIONS Reprints and permissions ABOUT THIS ARTICLE CITE
THIS ARTICLE Bellen, H., Tong, C. & Tsuda, H. 100 years of _Drosophila_ research and its impact on vertebrate neuroscience: a history lesson for the future. _Nat Rev Neurosci_ 11,
514–522 (2010). https://doi.org/10.1038/nrn2839 Download citation * Published: 09 April 2010 * Issue Date: July 2010 * DOI: https://doi.org/10.1038/nrn2839 SHARE THIS ARTICLE Anyone you
share the following link with will be able to read this content: Get shareable link Sorry, a shareable link is not currently available for this article. Copy to clipboard Provided by the
Springer Nature SharedIt content-sharing initiative