Glycans and neural cell interactions

feature-image

Play all audios:

Loading...

KEY POINTS * Glycans (chains of monosaccharides) are becoming increasingly recognized as participants in neural cell interactions in the developing and adult nervous system. They are


involved in diverse functions that depend on cell recognition, such as cell migration, neurite outgrowth and fasciculation, synapse formation and stabilization, and modulation of synaptic


efficacy. * The addition of monosaccharides in different configurations to ceramide leads to the formation of various glycolipids. Glycoproteins, proteoglycans and mucins carry glycans that


are covalently attached to protein backbones in various linkages. There are two broad groups of glycoproteins — _N_-glycans and _O_-glycans — which differ in their nature of the linkage to


the protein backbone. * Polysialic acid is carried by the neural cell adhesion molecule NCAM. It decreases homophilic NCAM-mediated interactions and is an important ingredient in NCAM's


functions: for instance, it enhances migration of neural stem cells, promotes neurite outgrowth and is involved in regenerative processes after trauma and synaptic plasticity during


learning and memory. * Oligomannosides are usually transient biosynthetic appendices of _N_-linked carbohydrates on glycoproteins en route to the cell surface and the extracellular matrix.


In most tissues, oligomannosides are eliminated during the processing of sugars to yield mature _N_-glycans, but predominantly in the brain, they are carried to the cell surface on


recognition molecules. * In the nervous system, myelin-associated glycoprotein (MAG) was the first molecule that was shown to bind α2,3-linked sialic acid. MAG is involved not only in myelin


formation, but also in myelin maintenance. It has received particular attention because it enhances _in vitro_ neurite outgrowth at early developmental stages, but inhibits neurite


outgrowth in the adult. * The human natural killer cell glycan HNK1 is found on glycolipids and glycoproteins, and it is the target epitope for auto-antibodies in severe peripheral


neuropathies. Several receptors for HNK1 with roles in development have been identified in the nervous system, and HNK1 has also been implicated in synaptic plasticity and motor neuron


regeneration. * Glycosaminoglycans are long repeating linear polymers of disaccharides. The main glycosaminoglycans in the brain are chondroitin sulphates and heparan sulphates, which are


carried by different protein backbones. Chondroitin sulphate proteoglycans and hyaluronan (a large polymer consisting of alternating glucuronic acid and _N_-acetylglucosamine residues) are


localized in perineuronal nets, which are believed to be crucial for regulating synaptic efficacy. * Chondroitin sulphate is a repellent for growth cones, acting as a molecular barrier,


particularly in choice situations. Removal of chondroitin sulphate chains from proteoglycans reduces their barrier functions and allows regrowth of severed axons and synaptic rearrangements.


* Glycans have been shown to have pivotal roles in nervous system development, regeneration and synaptic plasticity. Owing to their structural richness, they could be as versatile as the


protein backbone that carries them. ABSTRACT Carbohydrate-carrying molecules in the nervous system have important roles during development, regeneration and synaptic plasticity.


Carbohydrates mediate interactions between recognition molecules, thereby contributing to the formation of a complex molecular meshwork at the cell surface and in the extracellular matrix.


The tremendous structural diversity of glycan chains allows for immense combinatorial possibilities that might underlie the fine-tuning of cell–cell and cell–matrix interactions. Access


through your institution Buy or subscribe This is a preview of subscription content, access via your institution ACCESS OPTIONS Access through your institution Subscribe to this journal


Receive 12 print issues and online access $189.00 per year only $15.75 per issue Learn more Buy this article * Purchase on SpringerLink * Instant access to full article PDF Buy now Prices


may be subject to local taxes which are calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in * Learn about institutional subscriptions * Read our FAQs * Contact customer support


SIMILAR CONTENT BEING VIEWED BY OTHERS GENETICALLY ENCODED CHEMICAL CROSSLINKING OF CARBOHYDRATE Article 10 October 2022 UNCOVERING PROTEIN GLYCOSYLATION DYNAMICS AND HETEROGENEITY USING


DEEP QUANTITATIVE GLYCOPROFILING (DQGLYCO) Article Open access 10 February 2025 GROWTH FACTOR-TRIGGERED DE-SIALYLATION CONTROLS GLYCOLIPID-LECTIN-DRIVEN ENDOCYTOSIS Article 21 February 2025


REFERENCES * Finne, J., Finne, U., Deagostini-Bazin, H. & Goridis, C. Occurrence of α2-8 linked polysialosyl units in a neural cell adhesion molecule. _Biochem. Biophys. Res. Commun._


112, 482–487 (1983). Article  CAS  PubMed  Google Scholar  * Eckhardt, M. et al. Mice deficient in the polysialyltransferase ST8SiaIV/PST-1 allow discrimination of the roles of neural cell


adhesion molecule protein and polysialic acid in neural development and synaptic plasticity. _J. Neurosci._ 20, 5234–5244 (2000). MICE DEFICIENT IN THIS POLYSIALYLTRANSFERASE ALLOW THE


DISSECTION OF DEVELOPMENTALLY EARLY AND LATE FUNCTIONS OF POLYSIALIC ACID. Article  CAS  PubMed  PubMed Central  Google Scholar  * von der Ohe, M. et al. Localization and characterization of


polysialic acid-containing _N_-linked glycans from bovine NCAM. _Glycobiology_ 12, 47–63 (2002). Article  CAS  PubMed  Google Scholar  * Rutishauser, U. & Landmesser, L. Polysialic acid


in the vertebrate nervous system: a promoter of plasticity in cell–cell interactions. _Trends Neurosci._ 19, 422–427 (1996). AN EARLY REVIEW HIGHLIGHTING THE SEMINAL WORK ON POLYSIALIC


ACID-DEPENDENT AXON BRANCHING AND FASCICULATION IN THE PERIPHERAL NERVOUS SYSTEM. Article  CAS  PubMed  Google Scholar  * Sadoul, R., Hirn, M., Deagostini-Bazin, H., Rougon, G. &


Goridis, C. Adult and embryonic mouse neural cell adhesion molecules have different binding properties. _Nature_ 304, 347–349 (1983). Article  CAS  PubMed  Google Scholar  * Cunningham, B.


A., Hoffman, S., Rutishauser, U., Hemperly, J. J. & Edelman, G. M. Molecular topography of the neural cell adhesion molecule N-CAM: surface orientation and location of sialic acid-rich


and binding regions. _Proc. Natl Acad. Sci. USA_ 80, 3116–3120 (1983). Article  CAS  PubMed  PubMed Central  Google Scholar  * Yang, P., Major, D. & Rutishauser, U. Role of charge and


hydration in effects of polysialic acid on molecular interactions on and between cell membranes. _J. Biol. Chem._ 269, 23039–23044 (1994). CAS  PubMed  Google Scholar  * Storms, S. D. &


Rutishauser, U. A role for polysialic acid in neural cell adhesion molecule heterophilic binding to proteoglycans. _J. Biol. Chem._ 273, 27124–27129 (1998). Article  CAS  PubMed  Google


Scholar  * Durbec, P. & Cremer, H. Revisiting the function of PSA-NCAM in the nervous system. _Mol. Neurobiol._ 24, 53–64 (2001). Article  CAS  PubMed  Google Scholar  * Yamamoto, N. et


al. Inhibitory mechanism by polysialic acid for lamina-specific branch formation of thalamocortical axons. _J. Neurosci._ 20, 9145–9151 (2000). Article  CAS  PubMed  PubMed Central  Google


Scholar  * Muller, D., Stoppini, L., Wang, C. & Kiss, J. Z. A role for polysialylated neural cell adhesion molecule in lesion-induced sprouting in hippocampal organotypic cultures.


_Neuroscience_ 61, 441–445 (1994). Article  CAS  PubMed  Google Scholar  * Seiki, T. Microenvironmental elements supporting adult hippocampal neurogenesis. _Anat. Sci. Int._ 78, 69–78


(2003). Article  Google Scholar  * Kempermann, G., Gast, D. & Gage, F. H. Neuroplasticity in old age: sustained fivefold induction of hippocampal neurogenesis by long-term environmental


enrichment. _Ann. Neurol._ 52, 135–143 (2002). Article  PubMed  Google Scholar  * Hekmat, A., Bitter-Suermann, D. & Schachner, M. Immunocytological localization of the highly


polysialylated form of the neural cell adhesion molecule during development of the murine cerebellar cortex. _J. Comp. Neurol._ 291, 457–467 (1990). Article  CAS  PubMed  Google Scholar  *


Hu, H. Polysialic acid regulates chain formation by migrating olfactory interneuron precursors. _J. Neurosci. Res._ 61, 480–492 (2000). Article  CAS  PubMed  Google Scholar  * Chazal, G.,


Durbec, P., Jankovski, A., Rougon, G. & Cremer, H. Consequences of neural cell adhesion molecule deficiency on cell migration in the rostral migratory stream of the mouse. _J. Neurosci._


20, 1446–1457 (2000). Article  CAS  PubMed  PubMed Central  Google Scholar  * Piet, R., Poulain, D. A. & Oliet, S. H. Modulation of synaptic transmission by astrocytes in the rat


supraoptic nucleus. _J. Physiol. (Paris)_ 96, 231–236 (2002). Article  CAS  Google Scholar  * Theodosis, D. T., Bonhomme, R., Vitiello, S., Rougon, G. & Poulain, D. A. Cell surface


expression of polysialic acid on NCAM is a prerequisite for activity-dependent morphological neuronal and glial plasticity. _J. Neurosci._ 19, 10228–10236 (1999). THIS STUDY DESCRIBES THE


ROLE OF POLYSIALIC ACID IN STRUCTURE AND FUNCTION OF THE HYPOTHALAMO-NEUROHYPOPHYSIAL SYSTEM. Article  CAS  PubMed  PubMed Central  Google Scholar  * Prosser, R. A., Rutishauser, U., Ungers,


G., Fedorkova, L. & Glass, J. D. Intrinsic role of polysialylated neural cell adhesion molecule in photic phase resetting of the mammalian circadian clock. _J. Neurosci._ 23, 652–658


(2003) THIS PAPER IS THE MOST RECENT ACCOUNT ON THE FASCINATING ROLE OF POLYSIALIC ACID IN REGULATING THE CIRCADIAN CLOCK. Article  CAS  PubMed  PubMed Central  Google Scholar  * Fox, G. B.,


O'Connell, A. W., Murphy, K. J. & Regan, C. M. Memory consolidation induces a transient and time-dependent increase in the frequency of neural cell adhesion molecule polysialylated


cells in the adult rat hippocampus. _J. Neurochem._ 65, 2796–2799 (1995). Article  CAS  PubMed  Google Scholar  * Becker, C. G. et al. The polysialic acid modification of the neural cell


adhesion molecule is involved in spatial learning and hippocampal long-term potentiation. _J. Neurosci. Res._ 45, 143–152 (1996). Article  CAS  PubMed  Google Scholar  * Muller, D. et al.


PSA-NCAM is required for activity-induced synaptic plasticity. _Neuron_ 17, 413–422 (1996). Article  CAS  PubMed  Google Scholar  * Suppiramaniam, V. et al. Colominic acid (polysialic acid)


alters the channel properties of AMPA receptors reconstituted in lipid bilayers. _Soc. Neurosci. Abstr._ 25, 1489 (1999). Google Scholar  * Toni, N. et al. Long-term potentiation in the CA1


hippocampal formation may induce synaptogenesis by splitting of activated synapses. _30__th_ _Annu. Meet. Swiss Soc. Exp. Bio. Abstr._ S6–22 (1998). * Bruses, J. L. & Rutishauser, U.


Regulation of neural cell adhesion molecule polysialylation: evidence for nontranscriptional control and sensitivity to an intracellular pool of calcium. _J. Cell Biol._ 140, 1177–1186


(1998). Article  CAS  PubMed  PubMed Central  Google Scholar  * Rusakov, D. A., Davies, H. A., Krivko, I. M., Stewart, M. G. & Schachner, M. Training in chicks alters PSA-N-CAM


distribution in forebrain cell membranes. _Neuroreport_ 5, 2469–2473 (1994). Article  CAS  PubMed  Google Scholar  * Rusakov, D. A., Davies, H. A., Stewart, M. G. & Schachner, M.


Clustering and co-localization of immunogold double labelled neural cell adhesion molecule isoforms in chick forebrain. _Neurosci. Lett._ 183, 50–53 (1995). Article  CAS  PubMed  Google


Scholar  * Matus, A., De Petris, S. & Raff, M. C. Mobility of concanavalin A receptors in myelin and synaptic membranes. _Nature New Biol._ 244, 278–280 (1973). Article  CAS  PubMed 


Google Scholar  * Clark, R. A. et al. Identification of lectin-purified neural glycoproteins, GPs 180, 116, and 110, with NMDA and AMPA receptor subunits: conservation of glycosylation at


the synapse. _J. Neurochem._ 70, 2594–2605 (1998). Article  CAS  PubMed  Google Scholar  * Villanueva, S. & Steward, O. Glycoprotein synthesis at the synapse: fractionation of


polypeptides synthesized within isolated dendritic fragments by concanavalin A affinity chromatography. _Brain Res. Mol. Brain Res._ 91, 137–147 (2001). Article  CAS  PubMed  Google Scholar


  * Dotti, C. G. & Simons, K. Polarized sorting of viral glycoproteins to the axon and dendrites of hippocampal neurons in culture. _Cell_ 62, 63–72 (1990). Article  CAS  PubMed  Google


Scholar  * Gloor, S. et al. The adhesion molecule on glia (AMOG) is a homologue of the beta subunit of the Na,K-ATPase. _J. Cell Biol._ 110, 165–174 (1990). Article  CAS  PubMed  Google


Scholar  * Horstkorte, R., Schachner, M., Magyar, J. P., Vorherr, T. & Schmitz, B. The fourth immunoglobulin-like domain of NCAM contains a carbohydrate recognition domain for


oligomannosidic glycans implicated in association with L1 and neurite outgrowth. _J. Cell Biol._ 121, 1409–1421 (1993). THIS STUDY PROVIDES THE FIRST EVIDENCE OF A FUNCTIONAL _CIS_


-INTERACTION BETWEEN ADHESION MOLECULES MEDIATED BY A GLYCAN (SEE ALSO REFERENCES 39 AND 48). Article  CAS  PubMed  Google Scholar  * Simon, H., Klinz, S., Fahrig, T. & Schachner, M.


Molecular association of the neural adhesion molecules L1 and N-CAM in the surface membrane of neuroblastoma cells is shown by chemical cross-linking. _Eur. J. Neurosci._ 3, 634–640 (1991).


Article  PubMed  Google Scholar  * Thor, G., Pollerberg, E. G. & Schachner, M. Molecular association of two neural cell adhesion molecules within the surface membrane of cultured mouse


neuroblastoma cells. _Neurosci. Lett._ 66, 121–126 (1986). Article  CAS  PubMed  Google Scholar  * Heiland, P. C. et al. Tyrosine and serine phosphorylation of the neural cell adhesion


molecule L1 is implicated in its oligomannosidic glycan dependent association with NCAM and neurite outgrowth. _Eur. J. Cell Biol._ 75, 97–106 (1998). Article  CAS  PubMed  Google Scholar  *


Luthi, A., Laurent, J. P., Figurov, A., Muller, D. & Schachner, M. Hippocampal long-term potentiation and neural cell adhesion molecules L1 and NCAM. _Nature_ 372, 777–779 (1994).


Article  PubMed  Google Scholar  * Doherty, P. & Walsh, F. S. Cell adhesion molecules, second messengers and axonal growth. _Curr. Opin. Neurobiol._ 2, 595–601 (1992). Article  CAS 


PubMed  Google Scholar  * Heller, M., von der Ohe, M., Kleene, R., Mohajeri, M. H. & Schachner, M. The immunoglobulin-superfamily molecule basigin is a binding protein for


oligomannosidic carbohydrates: an anti-idiotypic approach. _J. Neurochem._ 84, 557–565 (2003). DESCRIPTION OF AN UNCONVENTIONAL APPROACH TO IDENTIFY RECEPTORS FOR GLYCANS. Article  CAS 


PubMed  Google Scholar  * Crocker, P. R. Siglecs: sialic-acid-binding immunoglobulin-like lectins in cell–cell interactions and signalling. _Curr. Opin. Struct. Biol._ 12, 609–615 (2002).


Article  CAS  PubMed  Google Scholar  * Tang, S. et al. Myelin-associated glycoprotein interacts with neurons via a sialic acid binding site at Arg118 and a distinct neurite inhibition site.


_J. Cell Biol._ 138, 1355–1366 (1997). Article  CAS  PubMed  PubMed Central  Google Scholar  * Schachner, M. & Bartsch, U. Multiple functions of the myelin-associated glycoprotein MAG


(siglec-4a) in formation and maintenance of myelin. _Glia_ 29, 154–165 (2000). Article  CAS  PubMed  Google Scholar  * Bartsch, U. et al. Lack of evidence that myelin-associated glycoprotein


is a major inhibitor of axonal regeneration in the CNS. _Neuron_ 15, 1375–1381 (1995). Article  CAS  PubMed  Google Scholar  * Filbin, M. T. Myelin-associated glycoprotein: a role in


myelination and in the inhibition of axonal regeneration? _Curr. Opin. Neurobiol._ 5, 588–595 (1995). Article  CAS  PubMed  Google Scholar  * Vyas, A. A. et al. Gangliosides are functional


nerve cell ligands for myelin-associated glycoprotein (MAG), an inhibitor of nerve regeneration. _Proc. Natl Acad. Sci. USA_ 99, 8412–8417 (2002). Article  CAS  PubMed  PubMed Central 


Google Scholar  * Vyas, A. A. & Schnaar, R. L. Brain gangliosides: functional ligands for myelin stability and the control of nerve regeneration. _Biochimie_ 83, 677–682 (2001). Article


  CAS  PubMed  Google Scholar  * O'Leary, C. P. & Willison, H. J. Autoimmune ataxic neuropathies (sensory ganglioneuropathies). _Curr. Opin. Neurol._ 10, 366–370 (1997). Article 


CAS  PubMed  Google Scholar  * Kleene, R., Yang, H., Kutsche, M. & Schachner, M. The neural recognition molecule L1 is a sialic acid-binding lectin for CD24, which induces promotion and


inhibition of neurite outgrowth. _J. Biol. Chem._ 276, 21656–21663 (2001). Article  CAS  PubMed  Google Scholar  * Du, Y. Z., Srivastava, A. K. & Schwartz, C. E. Multiple exon screening


using restriction endonuclease fingerprinting (REF): detection of six novel mutations in the L1 cell adhesion molecule (L1CAM) gene. _Hum. Mutat._ 11, 222–230 (1998). Article  CAS  PubMed 


Google Scholar  * Finckh, U. et al. Spectrum and detection rate of L1CAM mutations in isolated and familial cases with clinically suspected L1-disease. _Am. J. Med. Genet._ 92, 40–46 (2000).


Article  CAS  PubMed  Google Scholar  * Hardelin, J. P. et al. Heterogeneity in the mutations responsible for X-chromosome-linked Kallmann syndrome. _Hum. Mol. Genet._ 2, 373–377 (1993).


Article  CAS  PubMed  Google Scholar  * Holm, J. et al. Structural features of a close homologue of L1 (CHL1) in the mouse: a new member of the L1 family of neural recognition molecules.


_Eur. J. Neurosci._ 8, 1613–1629 (1996). Article  CAS  PubMed  Google Scholar  * Maeda, Y. et al. Induction of demyelination by intraneural injection of antibodies against sulfoglucuronyl


paragloboside. _Exp. Neurol._ 113, 221–225 (1991). Article  CAS  PubMed  Google Scholar  * Gallego, R. G. et al. Epitope diversity of _N_-glycans from bovine peripheral myelin glycoprotein


P0 revealed by mass spectrometry and nano probe magic angle spinning 1H NMR spectroscopy. _J. Biol. Chem._ 276, 30834–30844 (2001). Article  CAS  PubMed  Google Scholar  * Yuen, C. T. et al.


Brain contains HNK-1 immunoreactive _O_-glycans of the sulfoglucuronyl lactosamine series that terminate in 2-linked or 2,6-linked hexose (mannose). _J. Biol. Chem._ 272, 8924–8931 (1997).


Article  CAS  PubMed  Google Scholar  * Schachner, M. & Martini, R. Glycans and the modulation of neural-recognition molecule function. _Trends Neurosci._ 18, 183–191 (1995). Article 


CAS  PubMed  Google Scholar  * Vogel, M., Zimmermann, H. & Singer, W. Transient association of the HNK-1 epitope with 5′-nucleotidase during development of the cat visual cortex. _Eur.


J. Neurosci._ 5, 1423–1425 (1993). Article  CAS  PubMed  Google Scholar  * Hall, H., Carbonetto, S. & Schachner, M. L1/HNK-1 carbohydrate- and β1 integrin-dependent neural cell adhesion


to laminin-1. _J. Neurochem._ 68, 544–553 (1997). Article  CAS  PubMed  Google Scholar  * Margolis, R. K., Ripellino, J. A., Goossen, B., Steinbrich, R. & Margolis, R. U. Occurrence of


the HNK-1 epitope (3-sulfoglucuronic acid) in PC12 pheochromocytoma cells, chromaffin granule membranes, and chondroitin sulfate proteoglycans. _Biochem. Biophys. Res. Commun._ 145,


1142–1148 (1987). Article  CAS  PubMed  Google Scholar  * Chou, D. K., Evans, J. E. & Jungalwala, F. B. Identity of nuclear high-mobility-group protein, HMG-1, and in brain. _J.


Neurochem._ 77, 120–131 (2001). Article  CAS  PubMed  Google Scholar  * Hall, H., Vorherr, T. & Schachner, M. Characterization of a 21 amino acid peptide sequence of the laminin G2


domain that is involved in HNK-1 carbohydrate binding and cell adhesion. _Glycobiology_ 5, 435–441 (1995). Article  CAS  PubMed  Google Scholar  * Hall, H. et al. HNK-1 carbohydrate-mediated


cell adhesion to laminin-1 is different from heparin-mediated and sulfatide-mediated cell adhesion. _Eur. J. Biochem._ 246, 233–242 (1997). Article  CAS  PubMed  Google Scholar  * Miura,


R., Ethell, I. M. & Yamaguchi, Y. Carbohydrate-protein interactions between HNK-1-reactive sulfoglucuronyl glycolipids and the proteoglycan lectin domain mediate neuronal cell adhesion


and neurite outgrowth. _J. Neurochem._ 76, 413–424 (2001). AN IMPORTANT CONTRIBUTION TO THE FUNCTION OF THE HNK1 GLYCAN IN PROTEOGLYCAN-MEDIATED NEURONAL INTERACTIONS. Article  CAS  PubMed 


Google Scholar  * Miura, R. et al. The proteoglycan lectin domain binds sulfated cell surface glycolipids and promotes cell adhesion. _J. Biol. Chem._ 274, 11431–11438 (1999). Article  CAS 


PubMed  Google Scholar  * Griffith, L. S., Schmitz, B. & Schachner, M. L2/HNK-1 carbohydrate and protein-protein interactions mediate the homophilic binding of the neural adhesion


molecule P0. _J. Neurosci. Res._ 33, 639–648 (1992). Article  CAS  PubMed  Google Scholar  * Cole, G. J. & Schachner, M. Localization of the L2 monoclonal antibody binding site on


chicken neural cell adhesion molecule (NCAM) and evidence for its role in NCAM-mediated cell adhesion. _Neurosci. Lett._ 78, 227–232 (1987). Article  CAS  PubMed  Google Scholar  * Kallapur,


S. G. & Akeson, R. A. The neural cell adhesion molecule (NCAM) heparin binding domain binds to cell surface heparan sulfate proteoglycans. _J. Neurosci. Res._ 33, 538–548 (1992).


Article  CAS  PubMed  Google Scholar  * Martini, R., Schachner, M. & Brushart, T. M. The L2/HNK-1 carbohydrate is preferentially expressed by previously motor axon-associated Schwann


cells in reinnervated peripheral nerves. _J. Neurosci._ 14, 7180–7191 (1994). A STUDY ON THE COMPLEX REGULATION OF HNK1 EXPRESSION IN PERIPHERAL NERVOUS SYSTEM REGENERATION. Article  CAS 


PubMed  PubMed Central  Google Scholar  * Low, K., Orberger, G., Schmitz, B., Martini, R. & Schachner, M. The L2/HNK-1 carbohydrate is carried by the myelin associated glycoprotein and


sulphated glucuronyl glycolipids in muscle but not cutaneous nerves of adult mice. _Eur. J. Neurosci._ 6, 1773–1781 (1994). Article  CAS  PubMed  Google Scholar  * Simon-Haldi, M., Mantei,


N., Franke, J., Voshol, H. & Schachner, M. Identification of a peptide mimic of the L2/HNK-1 carbohydrate epitope. _J. Neurochem._ 83, 1380–1388 (2002). THIS STUDY PROVIDES A BASIS FOR


THE IDENTIFICATION OF PEPTIDE MIMICS FOR THE FUNCTIONS OF THE HNK1 GLYCAN. Article  CAS  PubMed  Google Scholar  * Strekalova, T., Wotjak, C. T. & Schachner, M. Intrahippocampal


administration of an antibody against the HNK-1 carbohydrate impairs memory consolidation in an inhibitory learning task in mice. _Mol. Cell. Neurosci._ 17, 1102–1113 (2001). Article  CAS 


PubMed  Google Scholar  * Pradel, G., Schachner, M. & Schmidt, R. Inhibition of memory consolidation by antibodies against cell adhesion molecules after active avoidance conditioning in


zebrafish. _J. Neurobiol._ 39, 197–206 (1999). Article  CAS  PubMed  Google Scholar  * Senn, C. et al. Mice deficient for the HNK-1 sulfotransferase show alterations in synaptic efficacy and


spatial learning and memory. _Mol. Cell. Neurosci._ 20, 712–729 (2002). Article  CAS  PubMed  Google Scholar  * Yamamoto, S. et al. Mice deficient in nervous system-specific carbohydrate


epitope HNK-1 exhibit impaired synaptic plasticity and spatial learning. _J. Biol. Chem._ 277, 27227–27231 (2002). Article  CAS  PubMed  Google Scholar  * Saghatelyan, A. K. et al. The


extracellular matrix molecule tenascin-R and its HNK-1 carbohydrate modulate perisomatic inhibition and long-term potentiation in the CA1 region of the hippocampus. _Eur. J. Neurosci._ 12,


3331–3342 (2000). Article  CAS  PubMed  Google Scholar  * Dityatev, A. & Schachner, M. Extracellular matrix molecules and synaptic plasticity. _Nature Rev. Neurosci._ 4, 456–468 (2003).


REVIEW ON THE INTERACTION OF THE HNK1 CARBOHYDRATE WITH THE METABOTROPIC GABA RECEPTOR THAT LEADS TO A COMPLEX SET OF FUNCTIONAL CONSEQUENCES IN INHIBITORY SYNAPSES IN THE HIPPOCAMPUS.


Article  CAS  Google Scholar  * Casu, B. & Lindahl, U. Structure and biological interactions of heparin and heparan sulfate. _Adv. Carbohydr. Chem. Biochem._ 57, 159–206 (2001). A RECENT


ACCOUNT OF STRUCTURE–FUNCTION RELATIONSHIPS OF SULPHATE GROUPS IN GLYCOSAMINOGLYCANS. Article  CAS  PubMed  Google Scholar  * Yamaguchi, Y. Lecticans: organizers of the brain extracellular


matrix. _Cell. Mol. Life Sci._ 57, 276–289 (2000). A COMPREHENSIVE REVIEW ON AN INTERESTING FAMILY OF EXTRACELLULAR MATRIX PROTEOGLYCANS. Article  CAS  PubMed  Google Scholar  * Bruckner, G.


et al. Postnatal development of perineuronal nets in wild-type mice and in a mutant deficient in tenascin-R. _J. Comp. Neurol._ 428, 616–629 (2000). Article  CAS  PubMed  Google Scholar  *


Kalb, R. G. & Hockfield, S. Induction of a neuronal proteoglycan by the NMDA receptor in the developing spinal cord. _Science_ 250, 294–296 (1990). Article  CAS  PubMed  Google Scholar 


* Kaksonen, M. et al. Syndecan-3-deficient mice exhibit enhanced LTP and impaired hippocampus-dependent memory. _Mol. Cell. Neurosci._ 21, 158–172 (2002). Article  CAS  PubMed  Google


Scholar  * Jenniskens, G. J., Oosterhof, A., Brandwijk, R., Veerkamp, J. H. & van Kuppevelt, T. H. Heparan sulfate heterogeneity in skeletal muscle basal lamina: demonstration by phage


display-derived antibodies. _J. Neurosci._ 20, 4099–4111 (2000). A NEW APPROACH TO IDENTIFY STRUCTURAL DIFFERENCES IN HEPARAN SULPHATES BY PHAGE DISPLAYED ANTIBODIES. Article  CAS  PubMed 


PubMed Central  Google Scholar  * Bukalo, O., Schachner, M. & Dityatev, A. Modification of extracellular matrix by enzymatic removal of chondroitin sulfate and by lack of tenascin-R


differentially affects several forms of synaptic plasticity in the hippocampus. _Neuroscience_ 104, 359–369 (2001). Article  CAS  PubMed  Google Scholar  * Brakebusch, C. et al.


Brevican-deficient mice display impaired hippocampal CA1 long-term potentiation but show no obvious deficits in learning and memory. _Mol. Cell. Biol._ 22, 7417–7427 (2002). Article  CAS 


PubMed  PubMed Central  Google Scholar  * Zhou, X. H. et al. Neurocan is dispensable for brain development. _Mol. Cell. Biol._ 21, 5970–5978 (2001). Article  CAS  PubMed  PubMed Central 


Google Scholar  * Becker, C. G. & Becker, T. Repellent guidance of regenerating optic axons by chondroitin sulfate glycosaminoglycans in zebrafish. _J. Neurosci._ 22, 842–853 (2002).


Article  CAS  PubMed  PubMed Central  Google Scholar  * Asher, R. A., Morgenstern, D. A., Moon, L. D. & Fawcett, J. W. Chondroitin sulphate proteoglycans: inhibitory components of the


glial scar. _Prog. Brain Res._ 132, 611–619 (2001). Article  CAS  PubMed  Google Scholar  * Grimpe, B. & Silver, J. The extracellular matrix in axon regeneration. _Prog. Brain Res._ 137,


333–349 (2002). A REVIEW ON THE SEMINAL IDENTIFICATION OF THE FUNCTIONAL IMPORTANCE OF CHONDROITIN SULPHATE _IN VITRO_. Article  CAS  PubMed  Google Scholar  * Bradbury, E. J. et al.


Chondroitinase ABC promotes functional recovery after spinal cord injury. _Nature_ 416, 636–640 (2002). AN _IN VIVO_ FOLLOW-UP ON THE PREDICTION THAT REMOVAL OF CHONDROITIN SULPHATE ALLOWS


AXON REGROWTH IN THE CENTRAL NERVOUS SYSTEM. Article  CAS  PubMed  Google Scholar  * Pizzorusso, T. et al. Reactivation of ocular dominance plasticity in the adult visual cortex. _Science_


298, 1248–1251 (2002). AN IMPORTANT STUDY ON THE ROLE OF CHONDROITIN SULPHATE AS A REGULATOR OF SYNAPTIC PLASTICITY. Article  CAS  PubMed  Google Scholar  * Chen, Y. J. et al. Neutral


_N_-glycans in adult rat brain tissue — complete characterisation reveals fucosylated hybrid and complex structures. _Eur. J. Biochem._ 251, 691–703 (1998). Article  CAS  PubMed  Google


Scholar  * Zamze, S. et al. Sialylated _N_-glycans in adult rat brain tissue — a widespread distribution of disialylated antennae in complex and hybrid structures. _Eur. J. Biochem._ 258,


243–270 (1998). Article  CAS  PubMed  Google Scholar  * Chai, W. et al. High prevalence of 2-mono- and 2,6-di-substituted manol-terminating sequences among _O_-glycans released from brain


glycopeptides by reductive alkaline hydrolysis. _Eur. J. Biochem._ 263, 879–888 (1999). Article  CAS  PubMed  Google Scholar  * Smalheiser, N. R., Haslam, S. M., Sutton-Smith, M., Morris, H.


R. & Dell, A. Structural analysis of sequences _O_-linked to mannose reveals a novel Lewisx structure in cranin (dystroglycan) purified from sheep brain. _J. Biol. Chem._ 273,


23698–23703 (1998). Article  CAS  PubMed  Google Scholar  * Chiba, A. et al. Structures of sialylated _O_-linked oligosaccharides of bovine peripheral nerve α-dystroglycan. The role of a


novel _O_-mannosyl-type oligosaccharide in the binding of α-dystroglycan with laminin. _J. Biol. Chem._ 272, 2156–2162 (1997). Article  CAS  PubMed  Google Scholar  * Wing, D. R.,


Rademacher, T. W., Schmitz, B., Schachner, M. & Dwek, R. A. Comparative glycosylation in neural adhesion molecules. _Biochem. Soc. Trans._ 20, 386–390 (1992). Article  CAS  PubMed 


Google Scholar  * Akita, K. et al. Identification of the core protein carrying the Tn antigen in mouse brain: specific expression on syndecan-3. _Cell. Struct. Funct._ 26, 271–278 (2001).


Article  CAS  PubMed  Google Scholar  * Ojima, H., Sakai, M. & Ohyama, J. Molecular heterogeneity of _Vicia villosa_-recognized perineuronal nets surrounding pyramidal and nonpyramidal


neurons in the guinea pig cerebral cortex. _Brain Res._ 786, 274–280 (1998). Article  CAS  PubMed  Google Scholar  * Apostolski, S. et al. Identification of Galβ(1-3)GalNAc bearing


glycoproteins at the nodes of Ranvier in peripheral nerve. _J. Neurosci. Res._ 38, 134–141 (1994). Article  CAS  PubMed  Google Scholar  * Thomas, F. P. Antibodies to GM1 and Galβ(1-3)GalNAc


at the nodes of Ranvier in human and experimental autoimmune neuropathy. _Microsc. Res. Tech._ 34, 536–543 (1996). Article  CAS  PubMed  Google Scholar  * Cooper, D. N. & Barondes, S.


H. God must love galectins; he made so many of them. _Glycobiology_ 9, 979–984 (1999). Article  CAS  PubMed  Google Scholar  * Pesheva, P., Kuklinski, S., Schmitz, B. & Probstmeier, R.


Galectin-3 promotes neural cell adhesion and neurite growth. _J. Neurosci. Res._ 54, 639–654 (1998). Article  CAS  PubMed  Google Scholar  * Parkhomovskiy, N., Kammesheidt, A. & Martin,


P. T. _N_-acetyllactosamine and the CT carbohydrate antigen mediate agrin-dependent activation of MuSK and acetylcholine receptor clustering in skeletal muscle. _Mol. Cell. Neurosci._ 15,


380–397 (2000). Article  CAS  PubMed  Google Scholar  * Sasaki, T. & Endo, T. Both cell-surface carbohydrates and protein tyrosine phosphatase are involved in the differentiation of


astrocytes _in vitro_. _Glia_ 32, 60–70 (2000). Article  CAS  PubMed  Google Scholar  * Sasaki, T. & Endo, T. Evidence for the presence of N-CAM 180 on astrocytes from rat cerebellum and


differences in glycan structures between N-CAM 120 and N-CAM 140. _Glia_ 28, 236–243 (1999). Article  CAS  PubMed  Google Scholar  * Dowsing, B., Puche, A., Hearn, C. & Key, B. Presence


of novel N-CAM glycoforms in the rat olfactory system. _J. Neurobiol._ 32, 659–670 (1997). Article  CAS  PubMed  Google Scholar  * Key, B. & Anderson, R. B. Neuronal pathfinding during


development of the rostral brain in _Xenopus_. _Clin. Exp. Pharmacol. Physiol._ 26, 752–754 (1999). Article  CAS  PubMed  Google Scholar  * Pays, L. & Schwarting, G. Gal-NCAM is a


differentially expressed marker for mature sensory neurons in the rat olfactory system. _J. Neurobiol._ 43, 173–185 (2000). Article  CAS  PubMed  Google Scholar  * Smalla, K. H., Angenstein,


F., Richter, K., Gundelfinger, E. D. & Staak, S. Identification of fucose α(1-2) galactose epitope-containing glycoproteins from rat hippocampus. _Neuroreport_ 9, 813–817 (1998).


Article  CAS  PubMed  Google Scholar  * Gocht, A., Struckhoff, G. & Lohler, J. CD15-containing glycoconjugates in the central nervous system. _Histol. Histopathol._ 11, 1007–1028 (1996).


CAS  PubMed  Google Scholar  * Capela, A. & Temple, S. LeX/SSEA-1 is expressed by adult mouse CNS stem cells, identifying them as nonependymal. _Neuron_ 35, 865–875 (2002). Article 


PubMed  Google Scholar  * Sajdel-Sulkowska, E. M. Immunofluorescent detection of CD15-fucosylated glycoconjugates in primary cerebellar cultures and their function in glial-neuronal adhesion


in the central nervous system. _Acta Biochim. Pol._ 45, 781–790 (1998). CAS  PubMed  Google Scholar  * Marquardt, T. & Denecke, J. Congenital disorders of glycosylation: review of their


molecular bases, clinical presentations and specific therapies. _Eur. J. Pediatr._ 162, 359–379 (2003). A COMPREHENSIVE REVIEW ON THE GENETIC AND CLINICAL ASPECTS OF GLYCOSYLATION


DISORDERS. CAS  PubMed  Google Scholar  * Low, J. B. & Marth, J. D. A genetic approach to mammalian glycan function. _Annu. Rev. Biochem._ 72, 643–691 (2003). A SCHOLARLY COMPILATION OF


THE FUNCTIONAL CONSEQUENCES OF GLYCOSYLTRANSFERASE DEFICIENCIES. Article  CAS  Google Scholar  * Yoshida, A. et al. Muscular dystrophy and neuronal migration disorder caused by mutations in


a glycosyltransferase, POMGnT1. _Dev. Cell._ 1, 717–724 (2001). Article  CAS  PubMed  Google Scholar  * Beltran-Valero de Bernabe, D. et al. Mutations in the _O_-mannosyltransferase gene


POMT1 give rise to the severe neuronal migration disorder Walker-Warburg syndrome. _Am. J. Hum. Genet._ 71, 1033–1043 (2002). Article  PubMed  PubMed Central  Google Scholar  * Shi, S. &


Stanley, P. Protein O-fucosyltransferase 1 is an essential component of Notch signaling pathways. _Proc. Natl Acad. Sci. USA_ 100, 5234–5239 (2003). Article  CAS  PubMed  PubMed Central 


Google Scholar  * Givogri, M. I. et al. Central nervous system myelination in mice with deficient expression of Notch1 receptor. _J. Neurosci. Res._ 67, 309–320 (2002). Article  CAS  PubMed


  Google Scholar  * Stump, G. et al. Notch1 and its ligands Delta-like and Jagged are expressed and active in distinct cell populations in the postnatal mouse brain. _Mech. Dev._ 114,


153–159 (2002). Article  CAS  PubMed  Google Scholar  * Ishii, Y., Nakamura, S. & Osumi, N. Demarcation of early mammalian cortical development by differential expression of fringe


genes. _Brain Res. Dev. Brain Res._ 119, 307–320 (2000). Article  CAS  PubMed  Google Scholar  * Haltiwanger, R. S. & Stanley, P. Modulation of receptor signaling by glycosylation:


fringe is an _O_-fucose-β1,3-_N_-acetylglucosaminyltransferase. _Biochim. Biophys. Acta._ 1573, 328–335 (2002). REVIEW ON A GENETICALLY IDENTIFIED GLYCOSYLTRANSFERASE THAT IMPINGES ON THE


FASCINATING NOTCH SIGNALLING PATHWAY. Article  CAS  PubMed  Google Scholar  * Martin, P. T. Glycobiology of the synapse. _Glycobiology_ 12, 1R–7R (2002). A TIMELY ACCOUNT ON THE IMPORTANCE


OF GLYCANS AT THE NEUROMUSCULAR JUNCTION. Article  CAS  PubMed  Google Scholar  * Vutskits, L. et al. PSA-NCAM modulates BDNF-dependent survival and differentiation of cortical neurons.


_Eur. J. Neurosci._ 13, 1391–1402 (2001). Article  CAS  PubMed  Google Scholar  * Muller, D. et al. Brain-derived neurotrophic factor restores long-term potentiation in polysialic


acid-neural cell adhesion molecule-deficient hippocampus. _Proc. Natl Acad. Sci. USA_ 97, 4315–4320 (2000). Article  CAS  PubMed  PubMed Central  Google Scholar  * Joliot, A. H., Triller,


A., Volovitch, M., Pernelle, C. & Prochiantz, A. α-2,8-Polysialic acid is the neuronal surface receptor of antennapedia homeobox peptide. _New Biol._ 3, 1121–1134 (1991). CAS  PubMed 


Google Scholar  Download references ACKNOWLEDGEMENTS The authors are grateful to A. Dityatev for his comments on the manuscript and the Deutsche Forschungsgemeinschaft for support. AUTHOR


INFORMATION AUTHORS AND AFFILIATIONS * Zentrum für Molekulare Neurobiologie, Universität Hamburg, Martinistrasse 52, Hamburg, 20246, Germany Ralf Kleene & Melitta Schachner Authors *


Ralf Kleene View author publications You can also search for this author inPubMed Google Scholar * Melitta Schachner View author publications You can also search for this author inPubMed 


Google Scholar CORRESPONDING AUTHOR Correspondence to Melitta Schachner. ETHICS DECLARATIONS COMPETING INTERESTS The authors declare no competing financial interests. RELATED LINKS RELATED


LINKS DATABASES LOCUSLINK agrin AMOG brevican CD24 CHL1 DCC DSCAM F3/F11/contactin L1 MAG NCAM neogenin neurofascin neuroglian perlecan sidekick TAG1/TAX1/axonin telencephalin tenascin-R


SWISS-PROT NgCAM NrCAM GLOSSARY * GLYCOSIDIC BONDS Covalent bonds that are formed between two monosaccharide molecules by means of a dehydration reaction. The linkage terminology is based on


which carbon atoms in the two sugars are linked and the position of the linking oxygen group. For example, if carbon-1 (C-1) of sugar-1 is linked to C-4 of sugar-2, and the linking oxygen


is below the plane of the sugar-1 ring, the linkage is referred to as an α1,4 glycosidic bond. If the oxygen had been above the plane of the ring, the linkage would be designated β1,4. *


MUCIN A highly glycosylated protein that is rich in serine and/or threonine _O_-glycosylation. * ROSTRAL MIGRATORY STREAM Neuroblasts from the subventricular zone migrate in the rostral


migratory stream (RMS) towards the olfactory bulb in a so-called tangential migration and move from the rostral tip of the migratory stream by detaching from each other to initiate radial


migration to their target areas in the olfactory bulb. * MOSSY FIBRES Axons of dentate gyrus granule cells, which constitute the main excitatory input to CA3 pyramidal cells in the


hippocampus. * PERFORATED SYNAPSES Synapses in which the postsynaptic density is discontinuous. * VOLUME TRANSMISSION A mechanism of extrasynaptic intercellular communication that relies on


signal diffusion through the extracellular fluid. * RECOGNITION MOLECULE Recognition molecules belong to diverse sets of families, such as the immunoglobulin superfamily, the integrin


family, the receptor tyrosine kinase families, and epidermal growth factor repeats-containing family of molecules. Glycolipids and proteoglycans are also recognition molecules. As


carbohydrate-carrying proteins, they can be either transmembrane molecules, glycosylphosphatidyl inositol anchored to the cell surface or extracellular matrix molecules that fill the space


between cells. * EPITOPE Part of a molecule that is recognized by an antibody. It consists of several monosaccharides and/or amino acids, and in the case of a glycan it can be exposed in a


distinct three-dimensional configuration, often in particular arrangements with amino acids. * HIGH-MOBILITY GROUP PROTEINS Non-histone proteins that are involved in chromatin structure and


gene regulation. * PEPTIDOMIMETICS Peptidomimetics are peptides that mimic other molecules, for example, carbohydrates, in their ability to bind to other molecules. In terms of


three-dimensional structure, they are similar to the compounds that they mimic. * STEP-DOWN PASSIVE AVOIDANCE TASK A behavioural experiment, in which an animal learns to associate stepping


down from a raised platform with an aversive stimulus, such as electric shock. The name of the task derives from the fact that the animal learns to passively stay on the platform to avoid


the stimulus. * INWARDLY RECTIFYING K+ CHANNELS Potassium channels that allow long depolarizing responses, as they close during depolarizing pulses and open with steep voltage dependence on


hyperpolarization. They are called inward rectifiers because current flows through them more easily into than out of the cell. * PERINEURONAL NETS Agglomerates of extracellular matrix


components, including molecules of the lectican family of chondroitin sulphate proteoglycans, such as aggrecan, versican, brevican and neurocan, as well as hyaluronan and tenascin-R or


tenascin-C. These accumulations are found around cell bodies and dendrites of certain classes of neurons, mainly parvalbumin-positive inhibitory interneurons. The function of these nets is


unknown, but probably relates to the regulation of synaptic plasticity. * AMBLYOPIC Amblyopia is an eye problem that causes poor vision. It is also known as 'lazy eye', and is


often associated with squint. RIGHTS AND PERMISSIONS Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Kleene, R., Schachner, M. Glycans and neural cell interactions. _Nat Rev


Neurosci_ 5, 195–208 (2004). https://doi.org/10.1038/nrn1349 Download citation * Issue Date: 01 March 2004 * DOI: https://doi.org/10.1038/nrn1349 SHARE THIS ARTICLE Anyone you share the


following link with will be able to read this content: Get shareable link Sorry, a shareable link is not currently available for this article. Copy to clipboard Provided by the Springer


Nature SharedIt content-sharing initiative