Mechanistic basis of maguk-organized complexes in synaptic development and signalling

feature-image

Play all audios:

Loading...

KEY POINTS * The postsynaptic density (PSD) is a large, dynamic protein assembly that orchestrates the densities and activities of both AMPA-type and NMDA-type glutamate receptors in


excitatory synapses. * The membrane-associated guanylate kinase (MAGUK) family of scaffold proteins, including Discs large homologues (DLGs) and membrane-associated guanylate kinase inverted


(MAGI) proteins, are key organizers of PSDs. They act as an interface between the upstream membrane-spanning glutamate receptors and cell adhesion proteins and the downstream


synapse-associated protein 90/postsynaptic density protein 95 (PSD95)-associated protein (SAPAP)–SRC homology 3 (SH3) and multiple ankyrin repeat domains protein (SHANK) complexes and the


cytoskeleton. * The guanylate kinase-like (GK) domain of MAGUKs binds to target proteins in a phosphorylation-dependent manner. This phosphorylation-dependent target recognition by MAGUKs


suggests that the assembly of PSD is activity-dependent. * Each MAGUK contains a highly conserved domain organization with PSD95–DLG1–Zonula occludens 1 (PDZ)–SH3–GK domains arranged in


tandem. The PDZ–SH3–GK tandem forms a supramodule allowing the MAGUK scaffolds to bind to target proteins with high specificity as well as to cluster transmembrane ion channels and


receptors. * Biochemical and structural studies of MAGUKs have offered insights into why mutations affecting genes encoding MAGUKs and their target proteins may alter synaptic protein


organization and lead to defects of synaptic development and signalling. ABSTRACT Membrane-associated guanylate kinases (MAGUKs) are a family of scaffold proteins that are highly enriched in


synapses and are responsible for organizing the numerous protein complexes required for synaptic development and plasticity. Mutations in genes encoding MAGUKs and their interacting


proteins can cause a broad spectrum of human psychiatric disorders. Here, we review MAGUK-mediated synaptic protein complex formation and regulation by focusing on findings from recent


biochemical and structural investigations. These mechanistic-based studies show that the formation of MAGUK-organized complexes is often directly regulated by protein phosphorylation,


suggesting a close connection between neuronal activity and the assembly of dynamic protein complexes in synapses. Access through your institution Buy or subscribe This is a preview of


subscription content, access via your institution ACCESS OPTIONS Access through your institution Subscribe to this journal Receive 12 print issues and online access $189.00 per year only


$15.75 per issue Learn more Buy this article * Purchase on SpringerLink * Instant access to full article PDF Buy now Prices may be subject to local taxes which are calculated during checkout


ADDITIONAL ACCESS OPTIONS: * Log in * Learn about institutional subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS NEUREXINS: MOLECULAR CODES


FOR SHAPING NEURONAL SYNAPSES Article 08 January 2021 TAU FORMS SYNAPTIC NANO-BIOMOLECULAR CONDENSATES CONTROLLING THE DYNAMIC CLUSTERING OF RECYCLING SYNAPTIC VESICLES Article Open access


10 November 2023 ACTIVITY DEPENDENT DISSOCIATION OF THE HOMER1 INTERACTOME Article Open access 25 February 2022 ACCESSION CODES ACCESSIONS PROTEIN DATA BANK * 1NF3 * 2KA9 * 2LC7 * 2QKT *


3R0H * 3UAT * 4DC2 * 4WSI REFERENCES * Funke, L., Dakoji, S. & Bredt, D. S. Membrane-associated guanylate kinases regulate adhesion and plasticity at cell junctions. _Annu. Rev.


Biochem._ 74, 219–245 (2005). CAS  PubMed  Google Scholar  * Oliva, C., Escobedo, P., Astorga, C., Molina, C. & Sierralta, J. Role of the MAGUK protein family in synapse formation and


function. _Dev. Neurobiol._ 72, 57–72 (2012). CAS  PubMed  Google Scholar  * Zhu, J., Shang, Y., Chen, J. & Zhang, M. Structure and function of the guanylate kinase-like domain of the


MAGUK family scaffold proteins. _Front. Biol._ 7, 379–396 (2012). CAS  Google Scholar  * Feng, W. & Zhang, M. Organization and dynamics of PDZ-domain-related supramodules in the


postsynaptic density. _Nat. Rev. Neurosci._ 10, 87–99 (2009). CAS  PubMed  Google Scholar  * Chen, K. & Featherstone, D. E. Pre and postsynaptic roles for _Drosophila_ CASK. _Mol. Cell.


Neurosci._ 48, 171–182 (2011). CAS  PubMed  Google Scholar  * Danielson, E. et al. S-SCAM/MAGI-2 is an essential synaptic scaffolding molecule for the GluA2-containing maintenance pool of


AMPA receptors. _J. Neurosci._ 32, 6967–6980 (2012). CAS  PubMed  PubMed Central  Google Scholar  * Zheng, C. Y., Seabold, G. K., Horak, M. & Petralia, R. S. MAGUKs, synaptic


development, and synaptic plasticity. _Neuroscientist_ 17, 493–512 (2011). CAS  PubMed  PubMed Central  Google Scholar  * Grant, S. G. Synaptopathies: diseases of the synaptome. _Curr. Opin.


Neurobiol._ 22, 522–529 (2012). CAS  PubMed  Google Scholar  * Palay, S. L. Synapses in the central nervous system. _J. Biophys. Biochem. Cytol._ 2, 193–202 (1956). CAS  PubMed  PubMed


Central  Google Scholar  * Gray, E. G. Axo-somatic and axo-dendritic synapses of the cerebral cortex: an electron microscope study. _J. Anat._ 93, 420–433 (1959). CAS  PubMed  PubMed Central


  Google Scholar  * Blomberg, F., Cohen, R. S. & Siekevitz, P. The structure of postsynaptic densities isolated from dog cerebral cortex. II. Characterization and arrangement of some of


the major proteins within the structure. _J. Cell Biol._ 74, 204–225 (1977). CAS  PubMed  PubMed Central  Google Scholar  * Carlin, R. K., Grab, D. J., Cohen, R. S. & Siekevitz, P.


Isolation and characterization of postsynaptic densities from various brain regions: enrichment of different types of postsynaptic densities. _J. Cell Biol._ 86, 831–845 (1980). CAS  PubMed


  Google Scholar  * Cohen, R. S., Blomberg, F., Berzins, K. & Siekevitz, P. The structure of postsynaptic densities isolated from dog cerebral cortex. I. Overall morphology and protein


composition. _J. Cell Biol._ 74, 181–203 (1977). CAS  PubMed  PubMed Central  Google Scholar  * Harris, K. M. & Weinberg, R. J. Ultrastructure of synapses in the mammalian brain. _Cold


Spring Harb. Perspect. Biol._ 4, pii: a005587 (2012). Google Scholar  * Chen, X. et al. Organization of the core structure of the postsynaptic density. _Proc. Natl Acad. Sci. USA_ 105,


4453–4458 (2008). CAS  PubMed  Google Scholar  * Sheng, M. & Hoogenraad, C. C. The postsynaptic architecture of excitatory synapses: a more quantitative view. _Annu. Rev. Biochem._ 76,


823–847 (2007). CAS  PubMed  Google Scholar  * Triller, A. & Choquet, D. New concepts in synaptic biology derived from single-molecule imaging. _Neuron_ 59, 359–374 (2008). CAS  PubMed 


Google Scholar  * Dani, A., Huang, B., Bergan, J., Dulac, C. & Zhuang, X. Superresolution imaging of chemical synapses in the brain. _Neuron_ 68, 843–856 (2010).THIS PAPER REPORTS A


SYSTEMATIC THREE-COLOUR, 3D STOCHASTIC OPTICAL RECONSTRUCTION MICROSCOPY IMAGING TOOL THAT CAN DETERMINE THE SPATIAL ORGANIZATION OF SUB-SYNAPTIC COMPONENTS IN BOTH PRE- AND POST-SYNAPSES


WITH NANOMETRE PRECISION. CAS  PubMed  PubMed Central  Google Scholar  * O'Rourke, N. A., Weiler, N. C., Micheva, K. D. & Smith, S. J. Deep molecular diversity of mammalian


synapses: why it matters and how to measure it. _Nat. Rev. Neurosci._ 13, 365–379 (2012). CAS  PubMed  PubMed Central  Google Scholar  * MacGillavry, H. D. & Hoogenraad, C. C. The


internal architecture of dendritic spines revealed by super-resolution imaging: What did we learn so far? _Exp. Cell Res._ 335, 180–186 (2015). CAS  PubMed  Google Scholar  * Sigrist, S. J.


& Sabatini, B. L. Optical super-resolution microscopy in neurobiology. _Curr. Opin. Neurobiol._ 22, 86–93 (2012). CAS  PubMed  Google Scholar  * Maglione, M. & Sigrist, S. J. Seeing


the forest tree by tree: super-resolution light microscopy meets the neurosciences. _Nat. Neurosci._ 16, 790–797 (2013).REFERENCES 19–22 SUMMARIZE FINDINGS IN MOLECULAR ARCHITECTURE AND THE


DYNAMIC BEHAVIOUR OF SYNAPTIC COMPONENTS FROM RECENT SUPER-RESOLUTION IMAGING STUDIES. CAS  PubMed  Google Scholar  * Nair, D. et al. Super-resolution imaging reveals that AMPA receptors


inside synapses are dynamically organized in nanodomains regulated by PSD95. _J. Neurosci._ 33, 13204–13224 (2013).THIS PAPER SHOWS THAT, IN RAT HIPPOCAMPAL NEURONS, AMPARS ARE OFTEN


CONCENTRATED INTO SEVERAL CLUSTERS (THE SO-CALLED AMPAR NANODOMAINS), EACH WITH A WIDTH OF ∼70 NM AND CONTAINING ∼20 RECEPTORS. MOREOVER, AMPAR NANODOMAINS ARE OFTEN CO-CLUSTERED WITH PSD95.


THE LEVEL OF PSD95 EXPRESSION CORRELATES WITH THE AMPAR NANODOMAIN SIZE AND NEURONAL ACTIVITY. CAS  PubMed  PubMed Central  Google Scholar  * Cheng, D. et al. Relative and absolute


quantification of postsynaptic density proteome isolated from rat forebrain and cerebellum. _Mol. Cell. Proteom._ 5, 1158–1170 (2006). CAS  Google Scholar  * Caroni, P., Donato, F. &


Muller, D. Structural plasticity upon learning: regulation and functions. _Nat. Rev. Neurosci._ 13, 478–490 (2012). CAS  PubMed  Google Scholar  * Choquet, D. & Triller, A. The dynamic


synapse. _Neuron_ 80, 691–703 (2013). CAS  PubMed  Google Scholar  * Bosch, M. et al. Structural and molecular remodeling of dendritic spine substructures during long-term potentiation.


_Neuron_ 82, 444–459 (2014). CAS  PubMed  PubMed Central  Google Scholar  * Nishiyama, J. & Yasuda, R. Biochemical computation for spine structural plasticity. _Neuron_ 87, 63–75 (2015).


CAS  PubMed  PubMed Central  Google Scholar  * Huganir, R. L. & Nicoll, R. A. AMPARs and synaptic plasticity: the last 25 years. _Neuron_ 80, 704–717 (2013). CAS  PubMed  PubMed Central


  Google Scholar  * Fukata, Y. et al. Local palmitoylation cycles define activity-regulated postsynaptic subdomains. _J. Cell Biol._ 202, 145–161 (2013). CAS  PubMed  PubMed Central  Google


Scholar  * MacGillavry, H. D., Song, Y., Raghavachari, S. & Blanpied, T. A. Nanoscale scaffolding domains within the postsynaptic density concentrate synaptic AMPA receptors. _Neuron_


78, 615–622 (2013).TOGETHER WITH REFERENCE 23, THIS WORK DEMONSTRATES THE CRITICAL ROLE OF PSD95 IN THE POSITIONING AND CLUSTERING OF AMPARS. CAS  PubMed  PubMed Central  Google Scholar  *


de Mendoza, A., Suga, H. & Ruiz-Trillo, I. Evolution of the MAGUK protein gene family in premetazoan lineages. _BMC Evol. Biol._ 10, 93 (2010). PubMed  PubMed Central  Google Scholar  *


Woods, D. F., Hough, C., Peel, D., Callaini, G. & Bryant, P. J. Dlg protein is required for junction structure, cell polarity, and proliferation control in _Drosophila_ epithelia. _J.


Cell Biol._ 134, 1469–1482 (1996). CAS  PubMed  Google Scholar  * Elias, G. M. & Nicoll, R. A. Synaptic trafficking of glutamate receptors by MAGUK scaffolding proteins. _Trends Cell


Biol._ 17, 343–352 (2007). CAS  PubMed  Google Scholar  * Nithianantharajah, J. et al. Synaptic scaffold evolution generated components of vertebrate cognitive complexity. _Nat. Neurosci._


16, 16–24 (2013). CAS  PubMed  Google Scholar  * Butz, S., Okamoto, M. & Sudhof, T. C. A tripartite protein complex with the potential to couple synaptic vesicle exocytosis to cell


adhesion in brain. _Cell_ 94, 773–782 (1998). CAS  PubMed  Google Scholar  * Hsueh, Y. P. et al. Direct interaction of CASK/LIN-2 and syndecan heparan sulfate proteoglycan and their


overlapping distribution in neuronal synapses. _J. Cell Biol._ 142, 139–151 (1998). CAS  PubMed  PubMed Central  Google Scholar  * Nagashima, S., Kodaka, M., Iwasa, H. & Hata, Y.


MAGI2/S-SCAM outside brain. _J. Biochem._ 157, 177–184 (2015). CAS  PubMed  Google Scholar  * Dudok, J. J., Sanz, A. S., Lundvig, D. M. & Wijnholds, J. MPP3 is required for maintenance


of the apical junctional complex, neuronal migration, and stratification in the developing cortex. _J. Neurosci._ 33, 8518–8527 (2013). CAS  PubMed  PubMed Central  Google Scholar  * Li, Y.


et al. Structure of Crumbs tail in complex with the PALS1 PDZ-SH3-GK tandem reveals a highly specific assembly mechanism for the apical Crumbs complex. _Proc. Natl Acad. Sci. USA_ 111,


17444–17449 (2014).THIS PAPER SHOWS THAT THE MPP5 PSG FORMS AN INTEGRAL STRUCTURAL UNIT IN BINDING TO CRB-CT. A STRUCTURAL ANALYSIS INDICATES THAT THE LIGAND-BINDING INDUCED DOMAIN-SWAPPED


HOMODIMER FORMATION OF MPP5 PSG MAY REPRESENT A GENERAL MODE FOR MAGUKS IN ORGANIZING LARGE PROTEIN COMPLEXES IN SYNAPSES. CAS  PubMed  Google Scholar  * Najm, J. et al. Mutations of CASK


cause an X-linked brain malformation phenotype with microcephaly and hypoplasia of the brainstem and cerebellum. _Nat. Genet._ 40, 1065–1067 (2008). CAS  PubMed  Google Scholar  * Zhang, M.


& Wang, W. Organization of signaling complexes by PDZ-domain scaffold proteins. _Acc. Chem. Res._ 36, 530–538 (2003). CAS  PubMed  Google Scholar  * Hofmann, K., Bucher, P. &


Tschopp, J. The CARD domain: a new apoptotic signalling motif. _Trends Biochem. Sci._ 22, 155–156 (1997). CAS  PubMed  Google Scholar  * Sudol, M., Chen, H. I., Bougeret, C., Einbond, A.


& Bork, P. Characterization of a novel protein-binding module—the WW domain. _FEBS Lett._ 369, 67–71 (1995). CAS  PubMed  Google Scholar  * Wei, Z. et al. Liprin-mediated large signaling


complex organization revealed by the liprin-α/CASK and liprin-α/liprin-β complex structures. _Mol. Cell_ 43, 586–598 (2011). CAS  PubMed  Google Scholar  * Mukherjee, K. et al. CASK


functions as a Mg2+-independent neurexin kinase. _Cell_ 133, 328–339 (2008). CAS  PubMed  PubMed Central  Google Scholar  * Xu, W. PSD-95-like membrane associated guanylate kinases


(PSD-MAGUKs) and synaptic plasticity. _Curr. Opin. Neurobiol._ 21, 306–312 (2011). CAS  PubMed  PubMed Central  Google Scholar  * Chen, X. et al. PSD-95 family MAGUKs are essential for


anchoring AMPA and NMDA receptor complexes at the postsynaptic density. _Proc. Natl Acad. Sci. USA_ 112, E6983–E6992 (2015). CAS  PubMed  Google Scholar  * Kornau, H. C., Schenker, L. T.,


Kennedy, M. B. & Seeburg, P. H. Domain interaction between NMDA receptor subunits and the postsynaptic density protein PSD-95. _Science_ 269, 1737–1740 (1995). CAS  PubMed  Google


Scholar  * Chetkovich, D. M., Chen, L., Stocker, T. J., Nicoll, R. A. & Bredt, D. S. Phosphorylation of the postsynaptic density-95 (PSD-95)/discs large/zona occludens-1 binding site of


stargazin regulates binding to PSD-95 and synaptic targeting of AMPA receptors. _J. Neurosci._ 22, 5791–5796 (2002). CAS  PubMed  PubMed Central  Google Scholar  * Schnell, E. et al. Direct


interactions between PSD-95 and stargazin control synaptic AMPA receptor number. _Proc. Natl Acad. Sci. USA_ 99, 13902–13907 (2002). CAS  PubMed  Google Scholar  * Hafner, A. S. et al.


Lengthening of the Stargazin cytoplasmic tail increases synaptic transmission by promoting interaction to deeper domains of PSD-95. _Neuron_ 86, 475–489 (2015). CAS  PubMed  Google Scholar 


* Bats, C., Groc, L. & Choquet, D. The interaction between Stargazin and PSD-95 regulates AMPA receptor surface trafficking. _Neuron_ 53, 719–734 (2007). CAS  PubMed  Google Scholar  *


Levy, J. M., Chen, X., Reese, T. S. & Nicoll, R. A. Synaptic consolidation normalizes AMPAR quantal size following MAGUK loss. _Neuron_ 87, 534–548 (2015).THIS PAPER DEMONSTRATES THAT


PSD93, PSD95 AND SAP102 ARE ALL REQUIRED FOR SYNAPTIC LOCALIZATION OF AMPAR AND SYNAPTIC ACTIVITY. CAS  PubMed  PubMed Central  Google Scholar  * Benson, D. L. & Huntley, G. W. Synapse


adhesion: a dynamic equilibrium conferring stability and flexibility. _Curr. Opin. Neurobiol._ 22, 397–404 (2012). CAS  PubMed  Google Scholar  * Thalhammer, A. & Cingolani, L. A. Cell


adhesion and homeostatic synaptic plasticity. _Neuropharmacology_ 78, 23–30 (2014). CAS  PubMed  Google Scholar  * Gottmann, K. Transsynaptic modulation of the synaptic vesicle cycle by


cell-adhesion molecules. _J. Neurosci. Res._ 86, 223–232 (2008). CAS  PubMed  Google Scholar  * Yamagata, M., Sanes, J. R. & Weiner, J. A. Synaptic adhesion molecules. _Curr. Opin. Cell


Biol._ 15, 621–632 (2003). CAS  PubMed  Google Scholar  * Takahashi, H. & Craig, A. M. Protein tyrosine phosphatases PTPδ, PTPσ, and LAR: presynaptic hubs for synapse organization.


_Trends Neurosci._ 36, 522–534 (2013). CAS  PubMed  PubMed Central  Google Scholar  * Schreiner, D. et al. Targeted combinatorial alternative splicing generates brain region-specific


repertoires of neurexins. _Neuron_ 84, 386–398 (2014). CAS  PubMed  Google Scholar  * Treutlein, B., Gokce, O., Quake, S. R. & Sudhof, T. C. Cartography of neurexin alternative splicing


mapped by single-molecule long-read mRNA sequencing. _Proc. Natl Acad. Sci. USA_ 111, E1291–1299 (2014). CAS  PubMed  Google Scholar  * Arac, D. et al. Structures of neuroligin-1 and the


neuroligin-1/neurexin-1 β complex reveal specific protein–protein and protein–Ca2+ interactions. _Neuron_ 56, 992–1003 (2007). CAS  PubMed  Google Scholar  * Iida, J., Hirabayashi, S., Sato,


Y. & Hata, Y. Synaptic scaffolding molecule is involved in the synaptic clustering of neuroligin. _Mol. Cell. Neurosci._ 27, 497–508 (2004). CAS  PubMed  Google Scholar  * Irie, M. et


al. Binding of neuroligins to PSD-95. _Science_ 277, 1511–1515 (1997). CAS  PubMed  Google Scholar  * Sudhof, T. C. The presynaptic active zone. _Neuron_ 75, 11–25 (2012). CAS  PubMed 


PubMed Central  Google Scholar  * Futai, K. et al. Retrograde modulation of presynaptic release probability through signaling mediated by PSD-95-neuroligin. _Nat. Neurosci._ 10, 186–195


(2007). CAS  PubMed  PubMed Central  Google Scholar  * Wittenmayer, N. et al. Postsynaptic Neuroligin1 regulates presynaptic maturation. _Proc. Natl Acad. Sci. USA_ 106, 13564–13569 (2009).


CAS  PubMed  Google Scholar  * Hu, Z. et al. Neurexin and neuroligin mediate retrograde synaptic inhibition in _C. elegans_. _Science_ 337, 980–984 (2012). CAS  PubMed  PubMed Central 


Google Scholar  * Froyen, G. et al. Detection of genomic copy number changes in patients with idiopathic mental retardation by high-resolution X-array-CGH: important role for increased gene


dosage of XLMR genes. _Hum. Mutat._ 28, 1034–1042 (2007). CAS  PubMed  Google Scholar  * Hayashi, S. et al. The CASK gene harbored in a deletion detected by array-CGH as a potential


candidate for a gene causative of X-linked dominant mental retardation. _Am. J. Med. Genet. A_ 146A, 2145–2151 (2008). CAS  PubMed  Google Scholar  * Piluso, G. et al. A missense mutation in


CASK causes FG syndrome in an Italian family. _Am. J. Hum. Genet._ 84, 162–177 (2009). CAS  PubMed  PubMed Central  Google Scholar  * Tarpey, P. S. et al. A systematic, large-scale


resequencing screen of X-chromosome coding exons in mental retardation. _Nat. Genet._ 41, 535–543 (2009). CAS  PubMed  PubMed Central  Google Scholar  * Arking, D. E. et al. A common genetic


variant in the neurexin superfamily member CNTNAP2 increases familial risk of autism. _Am. J. Hum. Genet._ 82, 160–164 (2008). CAS  PubMed  PubMed Central  Google Scholar  * Sun, C. et al.


Identification and functional characterization of rare mutations of the neuroligin-2 gene (NLGN2) associated with schizophrenia. _Hum. Mol. Genet._ 20, 3042–3051 (2011). CAS  PubMed  PubMed


Central  Google Scholar  * Laumonnier, F. et al. X-linked mental retardation and autism are associated with a mutation in the _NLGN4_ gene, a member of the neuroligin family. _Am. J. Hum.


Genet._ 74, 552–557 (2004). CAS  PubMed  PubMed Central  Google Scholar  * Glessner, J. T. et al. Autism genome-wide copy number variation reveals ubiquitin and neuronal genes. _Nature_ 459,


569–573 (2009). CAS  PubMed  PubMed Central  Google Scholar  * Kim, J. H., Liao, D., Lau, L. F. & Huganir, R. L. SynGAP: a synaptic RasGAP that associates with the PSD-95/SAP90 protein


family. _Neuron_ 20, 683–691 (1998). CAS  PubMed  Google Scholar  * Clement, J. P. et al. Pathogenic SYNGAP1 mutations impair cognitive development by disrupting maturation of dendritic


spine synapses. _Cell_ 151, 709–723 (2012). CAS  PubMed  PubMed Central  Google Scholar  * Berryer, M. H. et al. Mutations in SYNGAP1 cause intellectual disability, autism, and a specific


form of epilepsy by inducing haploinsufficiency. _Hum. Mutat._ 34, 385–394 (2013). CAS  PubMed  Google Scholar  * Hamdan, F. F. et al. Mutations in SYNGAP1 in autosomal nonsyndromic mental


retardation. _N. Engl. J. Med._ 360, 599–605 (2009). CAS  PubMed  PubMed Central  Google Scholar  * Parker, M. J. et al. _De novo_, heterozygous, loss-of-function mutations in SYNGAP1 cause


a syndromic form of intellectual disability. _Am. J. Med. Genet. A_ 167A, 2231–2237 (2015). PubMed  Google Scholar  * Araki, Y., Zeng, M., Zhang, M. & Huganir, R. L. Rapid dispersion of


SynGAP from synaptic spines triggers AMPA receptor insertion and spine enlargement during LTP. _Neuron_ 85, 173–189 (2015). CAS  PubMed  PubMed Central  Google Scholar  * Penzes, P. et al.


The neuronal Rho-GEF Kalirin-7 interacts with PDZ domain-containing proteins and regulates dendritic morphogenesis. _Neuron_ 29, 229–242 (2001). CAS  PubMed  Google Scholar  * Ma, X. M. et


al. Kalirin-7 is required for synaptic structure and function. _J. Neurosci._ 28, 12368–12382 (2008). CAS  PubMed  PubMed Central  Google Scholar  * Hotulainen, P. & Hoogenraad, C. C.


Actin in dendritic spines: connecting dynamics to function. _J. Cell Biol._ 189, 619–629 (2010). CAS  PubMed  PubMed Central  Google Scholar  * Frost, N. A., Kerr, J. M., Lu, H. E. &


Blanpied, T. A. A network of networks: cytoskeletal control of compartmentalized function within dendritic spines. _Curr. Opin. Neurobiol._ 20, 578–587 (2010). CAS  PubMed  PubMed Central 


Google Scholar  * Bosch, M. & Hayashi, Y. Structural plasticity of dendritic spines. _Curr. Opin. Neurobiol._ 22, 383–388 (2012). CAS  PubMed  Google Scholar  * Urban, N. T., Willig, K.


I., Hell, S. W. & Nagerl, U. V. STED nanoscopy of actin dynamics in synapses deep inside living brain slices. _Biophys. J._ 101, 1277–1284 (2011). CAS  PubMed  PubMed Central  Google


Scholar  * Chazeau, A. et al. Nanoscale segregation of actin nucleation and elongation factors determines dendritic spine protrusion. _EMBO J._ 33, 2745–2764 (2014). CAS  PubMed  PubMed


Central  Google Scholar  * Kim, E. et al. GKAP, a novel synaptic protein that interacts with the guanylate kinase-like domain of the PSD-95/SAP90 family of channel clustering molecules. _J.


Cell Biol._ 136, 669–678 (1997). CAS  PubMed  PubMed Central  Google Scholar  * Zhu, J. et al. Guanylate kinase domains of the MAGUK family scaffold proteins as specific


phospho-protein-binding modules. _EMBO J._ 30, 4986–4997 (2011).BY DETERMINING THE STRUCTURE OF THE SAP97 SH3–GK IN COMPLEX WITH A PHOSPHO-LGN PEPTIDE, THIS STUDY, TOGETHER WITH THAT


REPORTED IN REFERENCE 127, REVEALED THAT THE MAGUK GK DOMAIN HAS EVOLVED FROM THE ANCIENT NUCLEOTIDE KINASE INTO A PHOSPHO-PROTEIN-BINDING DOMAIN. CAS  PubMed  PubMed Central  Google Scholar


  * Naisbitt, S. et al. Shank, a novel family of postsynaptic density proteins that binds to the NMDA receptor/PSD-95/GKAP complex and cortactin. _Neuron_ 23, 569–582 (1999). CAS  PubMed 


Google Scholar  * Du, Y., Weed, S. A., Xiong, W. C., Marshall, T. D. & Parsons, J. T. Identification of a novel cortactin SH3 domain-binding protein and its localization to growth cones


of cultured neurons. _Mol. Cell. Biol._ 18, 5838–5851 (1998). CAS  PubMed  PubMed Central  Google Scholar  * Han, K. et al. SHANK3 overexpression causes manic-like behaviour with unique


pharmacogenetic properties. _Nature_ 503, 72–77 (2013). CAS  PubMed  PubMed Central  Google Scholar  * Niethammer, M. et al. CRIPT, a novel postsynaptic protein that binds to the third PDZ


domain of PSD-95/SAP90. _Neuron_ 20, 693–707 (1998). CAS  PubMed  Google Scholar  * Brenman, J. E. et al. Localization of postsynaptic density-93 to dendritic microtubules and interaction


with microtubule-associated protein 1A. _J. Neurosci._ 18, 8805–8813 (1998). CAS  PubMed  Google Scholar  * Peca, J. et al. Shank3 mutant mice display autistic-like behaviours and striatal


dysfunction. _Nature_ 472, 437–442 (2011). CAS  PubMed  PubMed Central  Google Scholar  * Schmeisser, M. J. et al. Autistic-like behaviours and hyperactivity in mice lacking ProSAP1/Shank2.


_Nature_ 486, 256–260 (2012). CAS  PubMed  Google Scholar  * Won, H. et al. Autistic-like social behaviour in Shank2-mutant mice improved by restoring NMDA receptor function. _Nature_ 486,


261–265 (2012). CAS  PubMed  Google Scholar  * Welch, J. M. et al. Cortico-striatal synaptic defects and OCD-like behaviours in Sapap3-mutant mice. _Nature_ 448, 894–900 (2007). CAS  PubMed


  PubMed Central  Google Scholar  * Ting, J. T., Peca, J. & Feng, G. Functional consequences of mutations in postsynaptic scaffolding proteins and relevance to psychiatric disorders.


_Annu. Rev. Neurosci._ 35, 49–71 (2012). CAS  PubMed  Google Scholar  * Ye, F. & Zhang, M. Structures and target recognition modes of PDZ domains: recurring themes and emerging pictures.


_Biochem. J._ 455, 1–14 (2013).THIS REVIEW COMPREHENSIVELY SUMMARIZES THE MECHANISTIC BASES OF COMPLEX FORMATION BETWEEN THE EXTENDED PDZ DOMAIN AND THE EXTENDED PBM, AS WELL AS THE


REGULATED PDZ–TARGET INTERACTIONS. CAS  PubMed  Google Scholar  * Hillier, B. J., Christopherson, K. S., Prehoda, K. E., Bredt, D. S. & Lim, W. A. Unexpected modes of PDZ domain


scaffolding revealed by structure of nNOS–syntrophin complex. _Science_ 284, 812–815 (1999). CAS  PubMed  Google Scholar  * Wu, H. et al. PDZ domains of Par-3 as potential phosphoinositide


signaling integrators. _Mol. Cell_ 28, 886–898 (2007). CAS  PubMed  Google Scholar  * Wang, C. K., Pan, L., Chen, J. & Zhang, M. Extensions of PDZ domains as important structural and


functional elements. _Protein Cell_ 1, 737–751 (2010). CAS  PubMed  PubMed Central  Google Scholar  * Wang, W., Weng, J., Zhang, X., Liu, M. & Zhang, M. Creating conformational entropy


by increasing interdomain mobility in ligand binding regulation: a revisit to N-terminal tandem PDZ domains of PSD-95. _J. Am. Chem. Soc._ 131, 787–796 (2009). CAS  PubMed  Google Scholar  *


McCann, J. J., Zheng, L., Chiantia, S. & Bowen, M. E. Domain orientation in the N-terminal PDZ tandem from PSD-95 is maintained in the full-length protein. _Structure_ 19, 810–820


(2011). CAS  PubMed  PubMed Central  Google Scholar  * Eildal, J. N. et al. Rigidified clicked dimeric ligands for studying the dynamics of the PDZ1-2 supramodule of PSD-95. _ChemBioChem_


16, 64–69 (2015). CAS  PubMed  Google Scholar  * Long, J. F. et al. Supramodular structure and synergistic target binding of the N-terminal tandem PDZ domains of PSD-95. _J. Mol. Biol._ 327,


203–214 (2003). CAS  PubMed  Google Scholar  * Bach, A. et al. A high-affinity, dimeric inhibitor of PSD-95 bivalently interacts with PDZ1-2 and protects against ischemic brain damage.


_Proc. Natl Acad. Sci. USA_ 109, 3317–3322 (2012). CAS  PubMed  Google Scholar  * Sainlos, M. et al. Biomimetic divalent ligands for the acute disruption of synaptic AMPAR stabilization.


_Nat. Chem. Biol._ 7, 81–91 (2011). CAS  PubMed  Google Scholar  * Yau, K. W. & Hardie, R. C. Phototransduction motifs and variations. _Cell_ 139, 246–264 (2009). CAS  PubMed  PubMed


Central  Google Scholar  * Mishra, P. et al. Dynamic scaffolding in a G protein-coupled signaling system. _Cell_ 131, 80–92 (2007). CAS  PubMed  Google Scholar  * Liu, W. et al. The INAD


scaffold is a dynamic, redox-regulated modulator of signaling in the _Drosophila_ eye. _Cell_ 145, 1088–1101 (2011). CAS  PubMed  Google Scholar  * Petit, C. M., Zhang, J., Sapienza, P. J.,


Fuentes, E. J. & Lee, A. L. Hidden dynamic allostery in a PDZ domain. _Proc. Natl Acad. Sci. USA_ 106, 18249–18254 (2009). CAS  PubMed  Google Scholar  * Bhattacharya, S. et al.


Ligand-induced dynamic changes in extended PDZ domains from NHERF1. _J. Mol. Biol._ 425, 2509–2528 (2013). CAS  PubMed  PubMed Central  Google Scholar  * Peterson, F. C., Penkert, R. R.,


Volkman, B. F. & Prehoda, K. E. Cdc42 regulates the Par-6 PDZ domain through an allosteric CRIB-PDZ transition. _Mol. Cell_ 13, 665–676 (2004). CAS  PubMed  Google Scholar  * Garrard, S.


M. et al. Structure of Cdc42 in a complex with the GTPase-binding domain of the cell polarity protein, Par6. _EMBO J._ 22, 1125–1133 (2003). CAS  PubMed  PubMed Central  Google Scholar  *


McGee, A. W. et al. Structure of the SH3-guanylate kinase module from PSD-95 suggests a mechanism for regulated assembly of MAGUK scaffolding proteins. _Mol. Cell_ 8, 1291–1301 (2001). CAS 


PubMed  Google Scholar  * Tavares, G. A., Panepucci, E. H. & Brunger, A. T. Structural characterization of the intramolecular interaction between the SH3 and guanylate kinase domains of


PSD-95. _Mol. Cell_ 8, 1313–1325 (2001). CAS  PubMed  Google Scholar  * Deguchi, M. et al. BEGAIN (brain-enriched guanylate kinase-associated protein), a novel neuronal PSD-95/SAP90-binding


protein. _J. Biol. Chem._ 273, 26269–26272 (1998). CAS  PubMed  Google Scholar  * Colledge, M. et al. Targeting of PKA to glutamate receptors through a MAGUK-AKAP complex. _Neuron_ 27,


107–119 (2000). CAS  PubMed  Google Scholar  * Pak, D. T., Yang, S., Rudolph-Correia, S., Kim, E. & Sheng, M. Regulation of dendritic spine morphology by SPAR, a PSD-95-associated


RapGAP. _Neuron_ 31, 289–303 (2001). CAS  PubMed  Google Scholar  * Siegrist, S. E. & Doe, C. Q. Microtubule-induced Pins/Galphai cortical polarity in _Drosophila_ neuroblasts. _Cell_


123, 1323–1335 (2005). CAS  PubMed  Google Scholar  * Johnston, C. A., Hirono, K., Prehoda, K. E. & Doe, C. Q. Identification of an Aurora-A/PinsLINKER/Dlg spindle orientation pathway


using induced cell polarity in S2 cells. _Cell_ 138, 1150–1163 (2009). CAS  PubMed  PubMed Central  Google Scholar  * Hao, Y. et al. Par3 controls epithelial spindle orientation by


aPKC-mediated phosphorylation of apical Pins. _Curr. Biol._ 20, 1809–1818 (2010). CAS  PubMed  PubMed Central  Google Scholar  * Zhu, J. et al. Phosphorylation-dependent interaction between


tumor suppressors Dlg and Lgl. _Cell Res._ 24, 451–463 (2014). CAS  PubMed  PubMed Central  Google Scholar  * Betschinger, J., Mechtler, K. & Knoblich, J. A. The Par complex directs


asymmetric cell division by phosphorylating the cytoskeletal protein Lgl. _Nature_ 422, 326–330 (2003). CAS  PubMed  Google Scholar  * Plant, P. J. et al. A polarity complex of mPar-6 and


atypical PKC binds, phosphorylates and regulates mammalian Lgl. _Nat. Cell Biol._ 5, 301–308 (2003). CAS  PubMed  Google Scholar  * Bilder, D., Li, M. & Perrimon, N. Cooperative


regulation of cell polarity and growth by _Drosophila_ tumor suppressors. _Science_ 289, 113–116 (2000). CAS  PubMed  Google Scholar  * Hirao, K. et al. A novel multiple PDZ


domain-containing molecule interacting with N-methyl-D-aspartate receptors and neuronal cell adhesion proteins. _J. Biol. Chem._ 273, 21105–21110 (1998). CAS  PubMed  Google Scholar  *


Trinidad, J. C., Thalhammer, A., Specht, C. G., Schoepfer, R. & Burlingame, A. L. Phosphorylation state of postsynaptic density proteins. _J. Neurochem._ 92, 1306–1316 (2005). CAS 


PubMed  Google Scholar  * Wang, C., Shang, Y., Yu, J. & Zhang, M. Substrate recognition mechanism of atypical protein kinase Cs revealed by the structure of PKCiota in complex with a


substrate peptide from Par-3. _Structure_ 20, 791–801 (2012). CAS  PubMed  Google Scholar  * Daw, M. I. et al. PDZ proteins interacting with C-terminal GluR2/3 are involved in a


PKC-dependent regulation of AMPA receptors at hippocampal synapses. _Neuron_ 28, 873–886 (2000). CAS  PubMed  Google Scholar  * Xia, J., Chung, H. J., Wihler, C., Huganir, R. L. &


Linden, D. J. Cerebellar long-term depression requires PKC-regulated interactions between GluR2/3 and PDZ domain-containing proteins. _Neuron_ 28, 499–510 (2000). CAS  PubMed  Google Scholar


  * Fong, D. K., Rao, A., Crump, F. T. & Craig, A. M. Rapid synaptic remodeling by protein kinase C: reciprocal translocation of NMDA receptors and calcium/calmodulin-dependent kinase


II. _J. Neurosci._ 22, 2153–2164 (2002). CAS  PubMed  Google Scholar  * Boehm, J. et al. Synaptic incorporation of AMPA receptors during LTP is controlled by a PKC phosphorylation site on


GluR1. _Neuron_ 51, 213–225 (2006). CAS  PubMed  Google Scholar  * Lowenthal, M. S., Markey, S. P. & Dosemeci, A. Quantitative mass spectrometry measurements reveal stoichiometry of


principal postsynaptic density proteins. _J. Proteome Res._ 14, 2528–2538 (2015). CAS  PubMed  PubMed Central  Google Scholar  * te Velthuis, A. J., Admiraal, J. F. & Bagowski, C. P.


Molecular evolution of the MAGUK family in metazoan genomes. _BMC Evol. Biol._ 7, 129 (2007). PubMed  PubMed Central  Google Scholar  * Pan, L., Chen, J., Yu, J., Yu, H. & Zhang, M. The


structure of the PDZ3-SH3-GuK tandem of ZO-1 protein suggests a supramodular organization of the membrane-associated guanylate kinase (MAGUK) family scaffold protein core. _J. Biol. Chem._


286, 40069–40074 (2011). CAS  PubMed  PubMed Central  Google Scholar  * Nomme, J. et al. The Src homology 3 domain is required for junctional adhesion molecule binding to the third PDZ


domain of the scaffolding protein ZO-1. _J. Biol. Chem._ 286, 43352–43360 (2011). CAS  PubMed  PubMed Central  Google Scholar  * Zhang, J., Lewis, S. M., Kuhlman, B. & Lee, A. L.


Supertertiary structure of the MAGUK core from PSD-95. _Structure_ 21, 402–413 (2013). CAS  PubMed  Google Scholar  * McCann, J. J. et al. Supertertiary structure of the synaptic MAGuK


scaffold proteins is conserved. _Proc. Natl Acad. Sci. USA_ 109, 15775–15780 (2012). CAS  PubMed  Google Scholar  * Hata, Y., Butz, S. & Sudhof, T. C. CASK: a novel dlg/PSD95 homolog


with an N-terminal calmodulin-dependent protein kinase domain identified by interaction with neurexins. _J. Neurosci._ 16, 2488–2494 (1996). CAS  PubMed  Google Scholar  * Biederer, T. et


al. SynCAM, a synaptic adhesion molecule that drives synapse assembly. _Science_ 297, 1525–1531 (2002). CAS  PubMed  Google Scholar  * Hara, H. et al. Clustering of CARMA1 through SH3-GUK


domain interactions is required for its activation of NF-κB signalling. _Nat. Commun._ 6, 5555 (2015). CAS  PubMed  Google Scholar  * Moog, U. et al. Phenotypic and molecular insights into


CASK-related disorders in males. _Orphanet J. Rare Dis._ 10, 44 (2015). PubMed  PubMed Central  Google Scholar  * Elias, G. M. et al. Synapse-specific and developmentally regulated targeting


of AMPA receptors by a family of MAGUK scaffolding proteins. _Neuron_ 52, 307–320 (2006). CAS  PubMed  Google Scholar  * Schluter, O. M., Xu, W. & Malenka, R. C. Alternative N-terminal


domains of PSD-95 and SAP97 govern activity-dependent regulation of synaptic AMPA receptor function. _Neuron_ 51, 99–111 (2006). CAS  PubMed  Google Scholar  Download references


ACKNOWLEDGEMENTS Research in the laboratory of M.Z. has been supported by grants from the Research Grants Council of Hong Kong (663811, 663812 and AoE-M09-12) and a 973 Program grant from


the Minister of Science and Technology of China (2014CB910204). J.Z. is supported by a grant from the National Natural Science Foundation of China (31470733). M.Z. is a Kerry Holdings


Professor in Science and a Senior Fellow of the Institute for Advanced Study (IAS) at the Hong Kong University of Science and Technology (HKUST). AUTHOR INFORMATION AUTHORS AND AFFILIATIONS


* Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China Jinwei Zhu, Yuan Shang 


& Mingjie Zhang * Center of Systems Biology and Human Health, School of Science and Institute for Advanced Study, Hong Kong University of Science and Technology, Clear Water Bay,


Kowloon, Hong Kong, China Mingjie Zhang * National Center for Protein Science Shanghai, Institute of Biochemistry and Cell Biology, Shanghai Institutes of Biological Sciences, Chinese


Academy of Sciences, 333 Haike Road, Pudong District, Shanghai, 201210, China Jinwei Zhu Authors * Jinwei Zhu View author publications You can also search for this author inPubMed Google


Scholar * Yuan Shang View author publications You can also search for this author inPubMed Google Scholar * Mingjie Zhang View author publications You can also search for this author


inPubMed Google Scholar CORRESPONDING AUTHOR Correspondence to Mingjie Zhang. ETHICS DECLARATIONS COMPETING INTERESTS The authors declare no competing financial interests. RELATED LINKS


DATABASES Protein Data Bank POWERPOINT SLIDES POWERPOINT SLIDE FOR FIG. 1 POWERPOINT SLIDE FOR FIG. 2 POWERPOINT SLIDE FOR FIG. 3 POWERPOINT SLIDE FOR FIG. 4 POWERPOINT SLIDE FOR FIG. 5


POWERPOINT SLIDE FOR FIG. 6 SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION S1 (FIGURE) A | The structure of PKC-ι in complex with a substrate peptide derived from PAR3 (PDB code: 4DC2).


(PDF 532 kb) SUPPLEMENTARY INFORMATION S2 (FIGURE) A | Ribbon diagram of the SAP97 SH3–GK tandem (PDB code: 3UAT). (PDF 532 kb) GLOSSARY * Dendritic remodelling A biochemical process of


dendritic spines in which the actin cytoskeleton undergoes a rapid change in shape and structure in response to various stimuli. * Multivalency effect Binding avidity enhancement brought by


synergistic actions of individual interaction sites between multi-domain scaffold protein and multivalent target interactions. * Allosteric regulation Binding of an effector molecule to a


specific site of a protein causes conformational changes far away from the binding site and thus alters the function of the protein. * Phosphoprotein-binding modules Protein domains such as


the SH2 domain, the GK domain and the FHA domain that can specifically recognize phosphorylated proteins. * Supramodules Two or more protein modules arranged in tandem in a protein that


interact with each other to form a high-order structure with functions distinct from those of the individual or simple sum of the modules. * Domain-swapped dimer Two identical protein


molecules associate to form dimer by exchanging identical structural elements, such that native intramolecular interactions are replaced by their intermolecular counterparts. RIGHTS AND


PERMISSIONS Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Zhu, J., Shang, Y. & Zhang, M. Mechanistic basis of MAGUK-organized complexes in synaptic development and


signalling. _Nat Rev Neurosci_ 17, 209–223 (2016). https://doi.org/10.1038/nrn.2016.18 Download citation * Published: 18 March 2016 * Issue Date: April 2016 * DOI:


https://doi.org/10.1038/nrn.2016.18 SHARE THIS ARTICLE Anyone you share the following link with will be able to read this content: Get shareable link Sorry, a shareable link is not currently


available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative