The ber necessities: the repair of dna damage in human-adapted bacterial pathogens

feature-image

Play all audios:

    

KEY POINTS * Base excision repair (BER) is a highly conserved process that primarily repairs oxidative DNA damage, and human-adapted bacterial pathogens have evolved specialized mechanisms


for BER. * _Mycobacterium tuberculosis_ displays striking redundancy in the enzymes that prevent incorporation of oxidized guanines into the DNA backbone and excise nucleotides mispaired


with this damaged base. * By contrast, _Helicobacter pylori_, which inhabits the gastric mucosa, has a minimal complement of BER enzymes. A network of enzymes recognize and repair DNA damage


by BER in _Neisseria meningitidis_. * Expression of the BER enzymes is constitutive in _Neisseria meningitidis_, which might reflect the high selective pressure of oxidative stress in its


habitat in the aerobic upper airways. * Further work is required to understand mechanisms of BER in other pathogens and related human commensal species, which should provide insights into


whether specialization in BER contributes to colonization and/or human disease. ABSTRACT During colonization and disease, bacterial pathogens must survive the onslaught of the host immune


system. A key component of the innate immune response is the generation of reactive oxygen and nitrogen species by phagocytic cells, which target and disrupt pathogen molecules, particularly


DNA, and the base excision repair (BER) pathway is the most important mechanism for the repair of such oxidative DNA damage. In this Review, we discuss how the human-specific pathogens


_Mycobacterium tuberculosis_, _Helicobacter pylori_ and _Neisseria meningitidis_ have evolved specialized mechanisms of DNA repair, particularly their BER pathways, compared with model


organisms such as _Escherichia coli_. This specialization in DNA repair is likely to reflect the distinct niches occupied by these important human pathogens in the host. Access through your


institution Buy or subscribe This is a preview of subscription content, access via your institution ACCESS OPTIONS Access through your institution Subscribe to this journal Receive 12 print


issues and online access $209.00 per year only $17.42 per issue Learn more Buy this article * Purchase on SpringerLink * Instant access to full article PDF Buy now Prices may be subject to


local taxes which are calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in * Learn about institutional subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT


BEING VIEWED BY OTHERS BACTERIAL DNA EXCISION REPAIR PATHWAYS Article 24 February 2022 THE PUTATIVE ERROR PRONE POLYMERASE _REV1_ MEDIATES DNA DAMAGE AND DRUG RESISTANCE IN _CANDIDA


ALBICANS_ Article Open access 29 November 2024 THE ALPK1/TIFA/NF-ΚB AXIS LINKS A BACTERIAL CARCINOGEN TO R-LOOP-INDUCED REPLICATION STRESS Article Open access 09 October 2020 REFERENCES *


Eisen, J. A. & Hanawalt, P. C. A phylogenomic study of DNA repair genes, proteins, and processes. _Mutat. Res._ 435, 171–213 (1999). CAS  PubMed  PubMed Central  Google Scholar  *


Boiteux, S. & Guillet, M. Abasic sites in DNA: repair and biological consequences in _Saccharomyces cerevisiae_. _DNA Repair (Amst.)_ 3, 1–12 (2004). CAS  Google Scholar  * Daley, J. M.,


Zakaria, C. & Ramotar, D. The endonuclease IV family of apurinic/apyrimidinic endonucleases. _Mutat. Res._ 705, 217–227 (2010). CAS  PubMed  Google Scholar  * Eisele, N. A. &


Anderson, D. M. Host defense and the airway epithelium: frontline responses that protect against bacterial invasion and pneumonia. _J. Pathog._ 2011, 249802 (2011). PubMed  PubMed Central 


Google Scholar  * Swanson, P. A. et al. Enteric commensal bacteria potentiate epithelial restitution via reactive oxygen species-mediated inactivation of focal adhesion kinase phosphatases.


_Proc. Natl Acad. Sci. USA_ 108, 8803–8808 (2011). CAS  PubMed  Google Scholar  * Kinnula, V. L., Adler, K. B., Ackley, N. J. & Crapo, J. D. Release of reactive oxygen species by guinea


pig tracheal epithelial cells _in vitro_. _Am. J. Physiol._ 262, L708–L712 (1992). CAS  PubMed  Google Scholar  * Sibille, Y. & Reynolds, H. Y. Macrophages and polymorphonuclear


neutrophils in lung defense and injury. _Am. Rev. Respir. Dis._ 141, 471–501 (1990). CAS  PubMed  Google Scholar  * Fialkow, L., Wang, Y. & Downey, G. P. Reactive oxygen and nitrogen


species as signaling molecules regulating neutrophil function. _Free Radic. Biol. Med._ 42, 153–164 (2007). CAS  PubMed  Google Scholar  * Goldblatt, D. & Thrasher, A. J. Chronic


granulomatous disease. _Clin. Exp. Immunol._ 122, 1–9 (2000). CAS  PubMed  PubMed Central  Google Scholar  * Gaut, J. P. et al. Neutrophils employ the myeloperoxidase system to generate


antimicrobial brominating and chlorinating oxidants during sepsis. _Proc. Natl Acad. Sci. USA_ 98, 11961–11966 (2001). CAS  PubMed  Google Scholar  * Nathan, C. & Shiloh, M. U. Reactive


oxygen and nitrogen intermediates in the relationship between mammalian hosts and microbial pathogens. _Proc. Natl Acad. Sci. USA_ 97, 8841–8848 (2000). THIS EXCELLENT REVIEW SUMMARIZES


EVIDENCE FOR THE ROLE OF ROS AND RNS IN PROTECTION AGAINST MICROBIAL INFECTIONS. CAS  PubMed  Google Scholar  * Missall, T. A., Lodge, J. K. & McEwen, J. E. Mechanisms of resistance to


oxidative and nitrosative stress: implications for fungal survival in mammalian hosts. _Eukaryot. Cell_ 3, 835–846 (2004). CAS  PubMed  PubMed Central  Google Scholar  * Shiloh, M. U. et al.


Phenotype of mice and macrophages deficient in both phagocyte oxidase and inducible nitric oxide synthase. _Immunity_ 10, 29–38 (1999). CAS  PubMed  Google Scholar  * Cadet, J. &


Wagner, J. R. DNA base damage by reactive oxygen species, oxidizing agents, and UV radiation. _Cold Spring Harb. Perspect. Biol._ 5, a012559 (2013). PubMed  PubMed Central  Google Scholar  *


Burney, S., Caulfield, J. L., Niles, J. C., Wishnok, J. S. & Tannenbaum, S. R. The chemistry of DNA damage from nitric oxide and peroxynitrite. _Mutat. Res._ 424, 37–49 (1999). CAS 


PubMed  Google Scholar  * Szabo, C. & Ohshima, H. DNA damage induced by peroxynitrite: subsequent biological effects. _Nitr. Oxide_ 1, 373–385 (1997). CAS  Google Scholar  * Huffman, J.


L., Sundheim, O. & Tainer, J. A. DNA base damage recognition and removal: new twists and grooves. _Mutat. Res._ 577, 55–76 (2005). CAS  PubMed  Google Scholar  * Krokan, H. E. &


Bjoras, M. Base excision repair. _Cold Spring Harb. Perspect. Biol._ 5, a012583 (2013). PubMed  PubMed Central  Google Scholar  * Svilar, D., Goellner, E. M., Almeida, K. H. & Sobol, R.


W. Base excision repair and lesion-dependent subpathways for repair of oxidative DNA damage. _Antioxid. Redox Signal_ 14, 2491–2507 (2011). CAS  PubMed  PubMed Central  Google Scholar  *


Dianov, G. & Lindahl, T. Reconstitution of the DNA base excision-repair pathway. _Curr. Biol._ 4, 1069–1076 (1994). CAS  PubMed  Google Scholar  * Mosbaugh, D. W. & Linn, S.


Characterization of the action of _Escherichia coli_ DNA polymerase I at incisions produced by repair endodeoxyribonucleases. _J. Biol. Chem._ 257, 575–583 (1982). CAS  PubMed  Google


Scholar  * Sung, J. S. & Mosbaugh, D. W. _Escherichia coli_ uracil- and ethenocytosine-initiated base excision DNA repair: rate-limiting step and patch size distribution. _Biochemistry_


42, 4613–4625 (2003). CAS  PubMed  Google Scholar  * Yao, M. & Kow, Y. W. Cleavage of insertion/deletion mismatches, flap and pseudo-Y DNA structures by deoxyinosine 3′-endonuclease from


_Escherichia coli_. _J. Biol. Chem._ 271, 30672–30676 (1996). CAS  PubMed  Google Scholar  * Singh, P. et al. Carbon nanotube-nucleobase hybrids: nanorings from uracil-modified


single-walled carbon nanotubes. _Chemistry_ 17, 6772–6780 (2011). CAS  PubMed  Google Scholar  * Tchou, J. et al. 8-oxoguanine (8-hydroxyguanine) DNA glycosylase and its substrate


specificity. _Proc. Natl Acad. Sci. USA_ 88, 4690–4694 (1991). CAS  PubMed  Google Scholar  * Tsai-Wu, J. J., Liu, H. F. & Lu, A. L. _Escherichia coli_ MutY protein has both


_N_-glycosylase and apurinic/apyrimidinic endonuclease activities on A.C and A.G mispairs. _Proc. Natl Acad. Sci. USA_ 89, 8779–8783 (1992). CAS  PubMed  Google Scholar  * Nakamura, T. et


al. Structural and dynamic features of the MutT protein in the recognition of nucleotides with the mutagenic 8-oxoguanine base. _J. Biol. Chem._ 285, 444–452 (2010). CAS  PubMed  Google


Scholar  * Dye, C., Scheele, S., Dolin, P., Pathania, V. & Raviglione, M. C. Consensus statement. Global burden of tuberculosis: estimated incidence, prevalence, and mortality by


country. WHO Global Surveillance and Monitoring Project. _JAMA_ 282, 677–686 (1999). CAS  PubMed  Google Scholar  * Subbian, S., Mehta, P. K., Cirillo, S. L., Bermudez, L. E. & Cirillo,


J. D. A. _Mycobacterium marinum mel_2 mutant is defective for growth in macrophages that produce reactive oxygen and reactive nitrogen species. _Infect. Immun._ 75, 127–134 (2007). CAS 


PubMed  Google Scholar  * Li, Q. et al. Differences in rate and variability of intracellular growth of a panel of _Mycobacterium tuberculosis_ clinical isolates within a human monocyte


model. _Infect. Immun._ 70, 6489–6493 (2002). CAS  PubMed  PubMed Central  Google Scholar  * Sullivan, J. T., Young, E. F., McCann, J. R. & Braunstein, M. The _Mycobacterium


tuberculosis_ SecA2 system subverts phagosome maturation to promote growth in macrophages. _Infect. Immun._ 80, 996–1006 (2012). CAS  PubMed  PubMed Central  Google Scholar  * Nicholson, S.


et al. Inducible nitric oxide synthase in pulmonary alveolar macrophages from patients with tuberculosis. _J. Exp. Med._ 183, 2293–2302 (1996). CAS  PubMed  Google Scholar  * Adams, L. B.,


Dinauer, M. C., Morgenstern, D. E. & Krahenbuhl, J. L. Comparison of the roles of reactive oxygen and nitrogen intermediates in the host response to _Mycobacterium tuberculosis_ using


transgenic mice. _Tuber Lung Dis._ 78, 237–246 (1997). CAS  PubMed  Google Scholar  * MacMicking, J. D. et al. Identification of nitric oxide synthase as a protective locus against


tuberculosis. _Proc. Natl Acad. Sci. USA_ 94, 5243–5248 (1997). THIS STUDY PROVIDES DIRECT EVIDENCE FOR THE PROTECTIVE ROLE OF THE HOST NITRIC OXIDE SYNTHASE AGAINST TB. CAS  PubMed  Google


Scholar  * Lee, P. P. et al. Susceptibility to mycobacterial infections in children with X-linked chronic granulomatous disease: a review of 17 patients living in a region endemic for


tuberculosis. _Pediatr. Infect. Dis. J._ 27, 224–230 (2008). PubMed  Google Scholar  * Rand, L. et al. The majority of inducible DNA repair genes in _Mycobacterium tuberculosis_ are induced


independently of RecA. _Mol. Microbiol._ 50, 1031–1042 (2003). CAS  PubMed  Google Scholar  * Davis, E. O. et al. DNA damage induction of _rec_A in _Mycobacterium tuberculosis_ independently


of RecA and LexA. _Mol. Microbiol._ 46, 791–800 (2002). CAS  PubMed  Google Scholar  * Smollett, K. L. et al. Global analysis of the regulon of the transcriptional repressor LexA, a key


component of SOS response in _Mycobacterium tuberculosis_. _J. Biol. Chem._ 287, 22004–22014 (2012). CAS  PubMed  PubMed Central  Google Scholar  * Dos Vultos, T., Mestre, O., Tonjum, T.


& Gicquel, B. DNA repair in _Mycobacterium tuberculosis_ revisited. _FEMS Microbiol. Rev._ 33, 471–487 (2009). CAS  PubMed  Google Scholar  * Kurthkoti, K. & Varshney, U. Distinct


mechanisms of DNA repair in mycobacteria and their implications in attenuation of the pathogen growth. _Mech. Ageing Dev._ 133, 138–146 (2012). CAS  PubMed  Google Scholar  * Dos Vultos, T.,


Blazquez, J., Rauzier, J., Matic, I. & Gicquel, B. Identification of Nudix hydrolase family members with an antimutator role in _Mycobacterium tuberculosis_ and _Mycobacterium


smegmatis_. _J. Bacteriol._ 188, 3159–3161 (2006). CAS  PubMed  PubMed Central  Google Scholar  * Patil, A. G., Sang, P. B., Govindan, A. & Varshney, U. _Mycobacterium tuberculosis_


MutT1 (Rv2985) and ADPRase (Rv1700) proteins constitute a two-stage mechanism of 8-oxo-dGTP and 8-oxo-GTP detoxification and adenosine to cytidine mutation avoidance. _J. Biol. Chem._ 288,


11252–11262 (2013). CAS  PubMed  PubMed Central  Google Scholar  * Sang, P. B. & Varshney, U. Biochemical properties of MutT2 proteins from _Mycobacterium tuberculosis_ and _M.


smegmatis_ and their contrasting antimutator roles in _Escherichia coli_. _J. Bacteriol._ 195, 1552–1560 (2013). CAS  PubMed  PubMed Central  Google Scholar  * Jain, R., Kumar, P. &


Varshney, U. A distinct role of formamidopyrimidine DNA glycosylase (MutM) in down-regulation of accumulation of G, C mutations and protection against oxidative stress in mycobacteria. _DNA


Repair (Amst.)_ 6, 1774–1785 (2007). CAS  Google Scholar  * Olsen, I. et al. Characterization of the major formamidopyrimidine-DNA glycosylase homolog in _Mycobacterium tuberculosis_ and its


linkage to variable tandem repeats. _FEMS Immunol. Med. Microbiol._ 56, 151–161 (2009). CAS  PubMed  PubMed Central  Google Scholar  * Guo, Y. et al. The oxidative DNA glycosylases of


_Mycobacterium tuberculosis_ exhibit different substrate preferences from their _Escherichia coli_ counterparts. _DNA Repair (Amst.)_ 9, 177–190 (2010). THIS STUDY PROVIDES A THOROUGH


COMPARATIVE BIOCHEMICAL ANALYSIS OF DNA GLYCOSYLASES AND HIGHLIGHTS DIFFERENCES BETWEEN _M. TUBERCULOSIS_ AND _E. COLI_. CAS  Google Scholar  * Hazra, T. K. et al. Characterization of a


novel 8-oxoguanine-DNA glycosylase activity in _Escherichia coli_ and identification of the enzyme as endonuclease VIII. _J. Biol. Chem._ 275, 27762–27767 (2000). CAS  PubMed  Google Scholar


  * Zharkov, D. O. et al. Structural analysis of an _Escherichia coli_ endonuclease VIII covalent reaction intermediate. _EMBO J._ 21, 789–800 (2002). CAS  PubMed  PubMed Central  Google


Scholar  * Sidorenko, V. S., Rot, M. A., Filipenko, M. L., Nevinsky, G. A. & Zharkov, D. O. Novel DNA glycosylases from _Mycobacterium tuberculosis_. _Biochem. (Mosc)_ 73, 442–450


(2008). CAS  Google Scholar  * Matsumoto, Y., Zhang, Q. M., Takao, M., Yasui, A. & Yonei, S. _Escherichia coli_ Nth and human hNTH1 DNA glycosylases are involved in removal of


8-oxoguanine from 8-oxoguanine/guanine mispairs in DNA. _Nucleic Acids Res._ 29, 1975–1981 (2001). CAS  PubMed  PubMed Central  Google Scholar  * Vertessy, B. G. & Toth, J. Keeping


uracil out of DNA: physiological role, structure and catalytic mechanism of dUTPases. _Acc. Chem. Res._ 42, 97–106 (2009). CAS  PubMed  PubMed Central  Google Scholar  * Helt, S. S. et al.


Mechanism of dTTP inhibition of the bifunctional dCTP deaminase:dUTPase encoded by _Mycobacterium tuberculosis_. _J. Mol. Biol._ 376, 554–569 (2008). CAS  PubMed  Google Scholar  * Lindahl,


T. An _N_-glycosidase from _Escherichia coli_ that releases free uracil from DNA containing deaminated cytosine residues. _Proc. Natl Acad. Sci. USA_ 71, 3649–3653 (1974). CAS  PubMed 


Google Scholar  * Lindahl, T., Ljungquist, S., Siegert, W., Nyberg, B. & Sperens, B. D.N. A. _N_-glycosidases: properties of uracil-DNA glycosidase from _Escherichia coli_. _J. Biol.


Chem._ 252, 3286–3294 (1977). CAS  PubMed  Google Scholar  * Purnapatre, K. & Varshney, U. Uracil DNA glycosylase from _Mycobacterium smegmatis_ and its distinct biochemical properties.


_Eur. J. Biochem._ 256, 580–588 (1998). CAS  PubMed  Google Scholar  * Sassetti, C. M. & Rubin, E. J. Genetic requirements for mycobacterial survival during infection. _Proc. Natl Acad.


Sci. USA_ 100, 12989–12994 (2003). BY SCREENING A MUTANT LIBRARY, THIS STUDY IDENTIFIED 194 GENES THAT ARE IMPORTANT FOR MYCOBACTERIAL GROWTH _IN VIVO_. CAS  PubMed  Google Scholar  *


Venkatesh, J., Kumar, P., Krishna, P. S., Manjunath, R. & Varshney, U. Importance of uracil DNA glycosylase in _Pseudomonas aeruginosa_ and _Mycobacterium smegmatis_, G+C-rich bacteria,


in mutation prevention, tolerance to acidified nitrite, and endurance in mouse macrophages. _J. Biol. Chem._ 278, 24350–24358 (2003). CAS  PubMed  Google Scholar  * Srinath, T., Bharti, S.


K. & Varshney, U. Substrate specificities and functional characterization of a thermo-tolerant uracil DNA glycosylase (UdgB) from _Mycobacterium tuberculosis_. _DNA Repair (Amst.)_ 6,


1517–1528 (2007). CAS  Google Scholar  * Kumar, P., Bharti, S. K. & Varshney, U. Uracil excision repair in _Mycobacterium tuberculosis_ cell-free extracts. _Tuberculosis (Edinb.)_ 91,


212–218 (2011). CAS  Google Scholar  * Durbach, S. I. et al. DNA alkylation damage as a sensor of nitrosative stress in _Mycobacterium tuberculosis_. _Infect. Immun._ 71, 997–1000 (2003).


CAS  PubMed  PubMed Central  Google Scholar  * Miggiano, R. et al. Biochemical and structural studies of the _Mycobacterium tuberculosis_ O6-methylguanine methyltransferase and mutated


variants. _J. Bacteriol._ 195, 2728–2736 (2013). CAS  PubMed  PubMed Central  Google Scholar  * O'Brien, P. J. & Ellenberger, T. The _Escherichia coli_ 3-methyladenine DNA


glycosylase AlkA has a remarkably versatile active site. _J. Biol. Chem._ 279, 26876–26884 (2004). CAS  PubMed  Google Scholar  * Cole, S. T. et al. Deciphering the biology of _Mycobacterium


tuberculosis_ from the complete genome sequence. _Nature_ 393, 537–544 (1998). CAS  PubMed  Google Scholar  * Loeb, L. A. Apurinic sites as mutagenic intermediates. _Cell_ 40, 483–484


(1985). CAS  PubMed  Google Scholar  * Puri, R. V., Singh, N., Gupta, R. K. & Tyagi, A. K. Endonuclease IV is the major apurinic/apyrimidinic endonuclease in _Mycobacterium tuberculosis_


and is important for protection against oxidative damage. _PLoS ONE_ 8, e71535 (2013). CAS  PubMed  PubMed Central  Google Scholar  * Takeuchi, M., Lillis, R., Demple, B. & Takeshita,


M. Interactions of _Escherichia coli_ endonuclease IV and exonuclease III with abasic sites in DNA. _J. Biol. Chem._ 269, 21907–21914 (1994). CAS  PubMed  Google Scholar  * Kusters, J. G.,


van Vliet, A. H. & Kuipers, E. J. Pathogenesis of _Helicobacter pylori_ infection. _Clin. Microbiol. Rev._ 19, 449–490 (2006). CAS  PubMed  PubMed Central  Google Scholar  * Salama, N.


R., Hartung, M. L. & Muller, A. Life in the human stomach: persistence strategies of the bacterial pathogen _Helicobacter pylori_. _Nature Rev. Microbio._ 11, 385–399 (2013). CAS  Google


Scholar  * Allen, L. A., Beecher, B. R., Lynch, J. T., Rohner, O. V. & Wittine, L. M. _Helicobacter pylori_ disrupts NADPH oxidase targeting in human neutrophils to induce extracellular


superoxide release. _J. Immunol._ 174, 3658–3667 (2005). THIS STUDY SHOWS THAT _H. PYLORI_ DISRUPTS TARGETING BY NADPH OXIDASE IN THE PHAGOSOME AND REDIRECTS SUPEROXIDE FOR RELEASE TO THE


EXTRACELLULAR ENVIRONMENT. CAS  PubMed  Google Scholar  * Chaturvedi, R. et al. Induction of polyamine oxidase 1 by _Helicobacter pylori_ causes macrophage apoptosis by hydrogen peroxide


release and mitochondrial membrane depolarization. _J. Biol. Chem._ 279, 40161–40173 (2004). CAS  PubMed  Google Scholar  * Xu, H. et al. Spermine oxidation induced by _Helicobacter pylori_


results in apoptosis and DNA damage: implications for gastric carcinogenesis. _Cancer Res._ 64, 8521–8525 (2004). CAS  PubMed  Google Scholar  * Alm, R. A. et al. Genomic-sequence comparison


of two unrelated isolates of the human gastric pathogen _Helicobacter pylori_. _Nature_ 397, 176–180 (1999). PubMed  Google Scholar  * Tomb, J. F. et al. The complete genome sequence of the


gastric pathogen _Helicobacter pylori_. _Nature_ 388, 539–547 (1997). CAS  PubMed  Google Scholar  * García-Ortíz, M. V. et al. Unexpected role for _Helicobacter pylori_ DNA polymerase I as


a source of genetic variability. _PLoS Genet._ 7, e1002152 (2011). PubMed  PubMed Central  Google Scholar  * Linz, B. et al. A mutation burst during the acute phase of _Helicobacter pylori_


infection in humans and rhesus macaques. _Nature Commun._ 5, 4165 (2014). CAS  Google Scholar  * O'Rourke, E. J. et al. Pathogen DNA as target for host-generated oxidative stress: role


for repair of bacterial DNA damage in _Helicobacter pylori_ colonization. _Proc. Natl Acad. Sci. USA_ 100, 2789–2794 (2003). THIS STUDY PROVIDES EVIDENCE FOR HOST-INDUCED OXIDATIVE DNA


DAMAGE OF THE _H. PYLORI_ GENOME DURING COLONIZATION. CAS  PubMed  Google Scholar  * O'Rourke, E. J. et al. A novel 3-methyladenine DNA glycosylase from _Helicobacter pylori_ defines a


new class within the endonuclease III family of base excision repair glycosylases. _J. Biol. Chem._ 275, 20077–20083 (2000). CAS  PubMed  Google Scholar  * Eichman, B. F., O'Rourke, E.


J., Radicella, J. P. & Ellenberger, T. Crystal structures of 3-methyladenine DNA glycosylase MagIII and the recognition of alkylated bases. _EMBO J._ 22, 4898–4909 (2003). CAS  PubMed 


PubMed Central  Google Scholar  * Baldwin, D. N. et al. Identification of _Helicobacter pylori_ genes that contribute to stomach colonization. _Infect. Immun._ 75, 1005–1016 (2007). THIS


STUDY SCREENED A LIBRARY OF _H. PYLORI_ MUTANTS IN A MOUSE MODEL OF INFECTION TO IDENTIFY GENES THAT ARE IMPORTANT FOR GASTRIC COLONIZATION. CAS  PubMed  Google Scholar  * Mathieu, A.,


O'Rourke, E. J. & Radicella, J. P. _Helicobacter pylori_ genes involved in avoidance of mutations induced by 8-oxoguanine. _J. Bacteriol._ 188, 7464–7469 (2006). CAS  PubMed  PubMed


Central  Google Scholar  * Huang, S., Kang, J. & Blaser, M. J. Antimutator role of the DNA glycosylase _mutY_ gene in _Helicobacter pylori_. _J. Bacteriol._ 188, 6224–6234 (2006). CAS 


PubMed  PubMed Central  Google Scholar  * Eutsey, R., Wang, G. & Maier, R. J. Role of a MutY DNA glycosylase in combating oxidative DNA damage in _Helicobacter pylori_. _DNA Repair


(Amst.)_ 6, 19–26 (2007). CAS  PubMed  Google Scholar  * Pinto, A. V. et al. Suppression of homologous and homeologous recombination by the bacterial MutS2 protein. _Mol. Cell_ 17, 113–120


(2005). CAS  PubMed  Google Scholar  * Wang, G., Alamuri, P., Humayun, M. Z., Taylor, D. E. & Maier, R. J. The _Helicobacter pylori_ MutS protein confers protection from oxidative DNA


damage. _Mol. Microbiol._ 58, 166–176 (2005). CAS  PubMed  Google Scholar  * Stephens, D. S. Uncloaking the meningococcus: dynamics of carriage and disease. _Lancet_ 353, 941–942 (1999). CAS


  PubMed  Google Scholar  * Cartwright, K. A., Stuart, J. M., Jones, D. M. & Noah, N. D. The Stonehouse survey: nasopharyngeal carriage of meningococci and _Neisseria lactamica_.


_Epidemiol. Infect._ 99, 591–601 (1987). CAS  PubMed  PubMed Central  Google Scholar  * Christensen, H., May, M., Bowen, L., Hickman, M. & Trotter, C. L. Meningococcal carriage by age: a


systematic review and meta-analysis. _Lancet Infect. Dis._ 10, 853–861 (2010). PubMed  Google Scholar  * Criss, A. K. & Seifert, H. S. A bacterial siren song: intimate interactions


between _Neisseria_ and neutrophils. _Nature Rev. Microbiol._ 10, 178–190 (2012). CAS  Google Scholar  * Carpenter, E. P. et al. AP endonuclease paralogues with distinct activities in DNA


repair and bacterial pathogenesis. _EMBO J._ 26, 1363–1372 (2007). THIS STUDY DEMONSTRATES THAT THE TWO DISTINCT _N. MENINGITIDIS_ AP ENDONUCLEASE PARALOGUES DIFFER IN FUNCTIONAL ACTIVITY


OWING TO A SINGLE POLYMORPHISM. CAS  PubMed  PubMed Central  Google Scholar  * Nagorska, K. et al. A network of enzymes involved in repair of oxidative DNA damage in _Neisseria


meningitidis_. _Mol. Microbiol._ 83, 1064–1079 (2012). THIS STUDY HIGHLIGHTS THAT BER IN _N. MENINGITIDIS_ CONSISTS OF A FLEXIBLE NETWORK OF ENZYMES WITH BOTH OVERLAPPING AND DISTINCT


ACTIVITIES. CAS  PubMed  PubMed Central  Google Scholar  * Morelle, S., Carbonnelle, E., Matic, I. & Nassif, X. Contact with host cells induces a DNA repair system in pathogenic


Neisseriae. _Mol. Microbiol._ 55, 853–861 (2005). CAS  PubMed  Google Scholar  * Davidsen, T. & Tønjum, T. Meningococcal genome dynamics. _Nature Rev. Microbiol._ 4, 11–22 (2006). CAS 


Google Scholar  * Tibballs, K. L. et al. Characterization of the meningococcal DNA glycosylase Fpg involved in base excision repair. _BMC Microbiol._ 9, 7 (2009). PubMed  PubMed Central 


Google Scholar  * Silhan, J. et al. Specialization of an Exonuclease III family enzyme in the repair of 3′ DNA lesions during base excision repair in the human pathogen _Neisseria


meningitidis_. _Nucleic Acids Res._ 40, 2065–2075 (2012). CAS  PubMed  Google Scholar  * Demple, B. & Harrison, L. Repair of oxidative damage to DNA: enzymology and biology. _Annu. Rev.


Biochem._ 63, 915–948 (1994). CAS  PubMed  Google Scholar  * Davidsen, T., Tuven, H. K., Bjoras, M., Rodland, E. A. & Tonjum, T. Genetic interactions of DNA repair pathways in the


pathogen _Neisseria meningitidis_. _J. Bacteriol._ 189, 5728–5737 (2007). THIS STUDY PROVIDES EVIDENCE FOR INTERACTIONS BETWEEN DNA REPAIR PATHWAYS IN _N. MENINGITIDIS_. CAS  PubMed  PubMed


Central  Google Scholar  * Davidsen, T., Bjoras, M., Seeberg, E. C. & Tonjum, T. Antimutator role of DNA glycosylase MutY in pathogenic _Neisseria_ species. _J. Bacteriol._ 187,


2801–2809 (2005). CAS  PubMed  PubMed Central  Google Scholar  * Sanders, L. H., Sudhakaran, J. & Sutton, M. D. The GO system prevents ROS-induced mutagenesis and killing in _Pseudomonas


aeruginosa_. _FEMS Microbiol. Lett._ 294, 89–96 (2009). CAS  PubMed  PubMed Central  Google Scholar  * LeCuyer, B. E., Criss, A. K. & Seifert, H. S. Genetic characterization of the


nucleotide excision repair system of _Neisseria gonorrhoeae_. _J. Bacteriol._ 192, 665–673 (2010). CAS  PubMed  Google Scholar  * Fischer, W. & Haas, R. The RecA protein of _Helicobacter


pylori_ requires a posttranslational modification for full activity. _J. Bacteriol._ 186, 777–784 (2004). CAS  PubMed  PubMed Central  Google Scholar  * Orillard, E., Radicella, J. P. &


Marsin, S. Biochemical and cellular characterization of _Helicobacter pylori_ RecA, a protein with high-level constitutive expression. _J. Bacteriol._ 193, 6490–6497 (2011). CAS  PubMed 


PubMed Central  Google Scholar  * Yesilkaya, H., Andisi, V. F., Andrew, P. W. & Bijlsma, J. J. _Streptococcus pneumoniae_ and reactive oxygen species: an unusual approach to living with


radicals. _Trends Microbiol._ 21, 187–195 (2013). CAS  PubMed  Google Scholar  * Ambur, O. H. et al. Genome dynamics in major bacterial pathogens. _FEMS Microbiol. Rev._ 33, 453–470 (2009).


CAS  PubMed  PubMed Central  Google Scholar  * Lesterlin, C., Ball, G., Schermelleh, L. & Sherratt, D. J. RecA bundles mediate homology pairing between distant sisters during DNA break


repair. _Nature_ 506, 249–253 (2014). CAS  PubMed  Google Scholar  * Pitcher, R. S. et al. NHEJ protects mycobacteria in stationary phase against the harmful effects of desiccation. _DNA


Repair (Amst.)_ 6, 1271–1276 (2007). CAS  Google Scholar  * Prieto, A. I., Ramos-Morales, F. & Casadesus, J. Repair of DNA damage induced by bile salts in _Salmonella enterica_.


_Genetics_ 174, 575–584 (2006). CAS  PubMed  PubMed Central  Google Scholar  * Thompson, S. A. & Blaser, M. J. Isolation of the _Helicobacter pylori recA_ gene and involvement of the


recA region in resistance to low pH. _Infect. Immun._ 63, 2185–2193 (1995). CAS  PubMed  PubMed Central  Google Scholar  * Thompson, S. A., Latch, R. L. & Blaser, J. M. Molecular


characterization of the _Helicobacter pylori uvr B_ gene. _Gene_ 209, 113–122 (1998). CAS  PubMed  Google Scholar  * Yi, C. & He, C. DNA repair by reversal of DNA damage. _Cold Spring


Harb. Perspect. Biol._ 5, a012575 (2013). PubMed  PubMed Central  Google Scholar  * Krokan, H. E., Standal, R. & Slupphaug, G. DNA glycosylases in the base excision repair of DNA.


_Biochem. J._ 325, 1–16 (1997). CAS  PubMed  PubMed Central  Google Scholar  * Friedman, J. I. & Stivers, J. T. Detection of damaged DNA bases by DNA glycosylase enzymes. _Biochemistry_


49, 4957–4967 (2010). CAS  PubMed  PubMed Central  Google Scholar  * Berti, P. J. & McCann, J. A. Toward a detailed understanding of base excision repair enzymes: transition state and


mechanistic analyses of _N_-glycoside hydrolysis and _N_-glycoside transfer. _Chem. Rev._ 106, 506–555 (2006). CAS  PubMed  Google Scholar  * Mol, C. D., Hosfield, D. J. & Tainer, J. A.


Abasic site recognition by two apurinic/apyrimidinic endonuclease families in DNA base excision repair: the 3′ ends justify the means. _Mutat. Res._ 460, 211–229 (2000). CAS  PubMed  Google


Scholar  * Kisker, C., Kuper, J. & Van Houten, B. Prokaryotic nucleotide excision repair. _Cold Spring Harb. Perspect. Biol._ 5, a012591 (2013). PubMed  PubMed Central  Google Scholar  *


Deaconescu, A. M. et al. Structural basis for bacterial transcription-coupled DNA repair. _Cell_ 124, 507–520 (2006). CAS  PubMed  Google Scholar  * Jiricny, J. Postreplicative mismatch


repair. _Cold Spring Harb. Perspect. Biol._ 5, a012633 (2013). PubMed  PubMed Central  Google Scholar  * Ayora, S. et al. Double-strand break repair in bacteria: a view from _Bacillus


subtilis_. _FEMS Microbiol. Rev._ 35, 1055–1081 (2011). CAS  PubMed  Google Scholar  * Jasin, M. & Rothstein, R. Repair of strand breaks by homologous recombination. _Cold Spring Harb.


Perspect. Biol._ 5, a012740 (2013). PubMed  PubMed Central  Google Scholar  * Pitcher, R. S., Brissett, N. C. & Doherty, A. J. Nonhomologous end-joining in bacteria: a microbial


perspective. _Annu. Rev. Microbiol._ 61, 259–282 (2007). CAS  PubMed  Google Scholar  * Nohmi, T. Environmental stress and lesion-bypass DNA polymerases. _Annu. Rev. Microbiol._ 60, 231–253


(2006). CAS  PubMed  Google Scholar  Download references ACKNOWLEDGEMENTS Work in C.M.T.'s laboratory is supported by a Wellcome Trust Senior Investigator Award, the Medical Research


Council and Action Medical Research. AUTHOR INFORMATION AUTHORS AND AFFILIATIONS * Sir William Dunn School of Pathology, South Parks Road, University of Oxford, Oxford, OX1 3RE, UK Stijn van


der Veen & Christoph M. Tang Authors * Stijn van der Veen View author publications You can also search for this author inPubMed Google Scholar * Christoph M. Tang View author


publications You can also search for this author inPubMed Google Scholar CORRESPONDING AUTHOR Correspondence to Christoph M. Tang. ETHICS DECLARATIONS COMPETING INTERESTS The authors declare


no competing financial interests. POWERPOINT SLIDES POWERPOINT SLIDE FOR FIG. 1 POWERPOINT SLIDE FOR FIG. 2 POWERPOINT SLIDE FOR FIG. 3 POWERPOINT SLIDE FOR FIG. 4 POWERPOINT SLIDE FOR


TABLE 1 GLOSSARY * Apurinic or apyrimidinic (AP) sites Regions of the DNA that lack nucleobases, generally as a result of DNA damage, spontaneous loss or inefficient DNA repair. * Reactive


oxygen species (ROS). Reactive molecules that contain oxygen (such as superoxide, hydrogen peroxide and hydroxyl radicals), which damage macromolecules such as DNA, proteins and lipids. *


Reactive nitrogen species (RNS). Nitrogen-containing oxides, such as peroxynitrite and nitric oxide radicals, which are highly reactive molecules that damage DNA and proteins through


oxidation and nitrosation reactions. * Phagocytosis The mechanism by which phagocytes, such as macrophages and neutrophils, engulf and destroy microorganisms, foreign material and cellular


debris. * Respiratory burst Rapid release of reactive oxygen species and reactive nitrogen species from immune cells, such as macrophages and neutrophils, to attack invading microorganisms.


It is initiated by the NADPH-dependent oxidase that converts oxygen into superoxide, which subsequently reacts with other molecules such as nitric oxide to form the highly reactive oxidants


peroxynitrite and hydroxyl radials. * Activated neutrophils and macrophages Neutrophils and macrophages that undergo morphological changes following triggers (such as cytokines) and that are


able to extend pseudopods that assist phagocytosis. In addition, they can rapidly release reactive oxygen species and reactive nitrogen species in a 'respiratory burst', thereby


killing engulfed microorganisms. * Superoxide anions (O2−). A common reactive form of oxygen that is generated when molecular oxygen gains an electron. It is a common intermediate in


biological processes and is generated by phagocytes to kill microorganisms in a 'respiratory burst'. * Phagosome Intracellular compartment of a phagocyte that contains phagocytised


microorganisms, foreign material or cellular debris. * Chronic granulomatous disease (CGD). A genetic deficiency of phagocyte oxidase components that is characterized by recurrent


infections. * Hydroxyl radicals (OH•). Highly reactive oxygen-containing molecules that cause severe damage to macromolecules. They are produced by phagocytes through the conversion of water


into superoxide and hydrogen peroxide to kill microorganisms in a 'respiratory burst'. * Fenton reaction Reaction between hydrogen peroxide and iron salts, mostly via iron–sulfur


protein clusters, which generates hydroxyl radicals. * Peroxynitrite (ONOO−). A highly reactive molecule that damages macromolecules, such as DNA and proteins, through oxidation and


nitrosation reactions. In phagocytes, it is produced during the 'respiratory burst' through the reaction of superoxide with nitric oxide. * Deamination Removal of an amine group


from nucleobases, amino acids or other molecules. * Alkylation Transfer of alkyl groups, such as a methyl group or chains with more carbons, between molecules. * β-elimination Cleavage of


the DNA backbone at the 3′ end of an apurinic or apyrimidinic site by a bifunctional DNA glycosylase after removal of a damaged nucleobase. Cleavage produces a 3′-unsaturated aldehyde and a


5′-phosphate group. * γ-elimination Cleavage of the DNA backbone at the 5′ end of an apurinic or apyrimidinic (AP) site by a bifunctional DNA glycosylase. Cleavage removes the AP site and


leaves a phosphate group at both termini. * SOS response An inducible pathway in bacteria that is activated on the accumulation of single-stranded DNA as a result of DNA damage or the


collapse of replication forks. This response typically involves DNA repair proteins and translesion DNA polymerases. * UvrABC complex A multicomponent enzyme complex that has endonucleolytic


activity and is involved in the nucleotide excision repair pathway. * Holliday junction An assembly of four DNA strands that forms during certain types of genetic recombination. *


Hypoxanthine A deamination product of adenine that is highly mutagenic owing to its ability to base-pair with cytosine and adenine during replication. * Ethenocytosine A highly mutagenic


adduct that is formed by the alkylation of cytosine. * Phase variation A heritable change in the level of expression of a protein. It often occurs through an alteration in repetitive DNA


sequences. RIGHTS AND PERMISSIONS Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE van der Veen, S., Tang, C. The BER necessities: the repair of DNA damage in human-adapted


bacterial pathogens. _Nat Rev Microbiol_ 13, 83–94 (2015). https://doi.org/10.1038/nrmicro3391 Download citation * Published: 12 January 2015 * Issue Date: February 2015 * DOI:


https://doi.org/10.1038/nrmicro3391 SHARE THIS ARTICLE Anyone you share the following link with will be able to read this content: Get shareable link Sorry, a shareable link is not currently


available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative