Exploiting pathogenic escherichia coli to model transmembrane receptor signalling

feature-image

Play all audios:

Loading...

KEY POINTS * Many pathogens deploy a sophisticated virulence effector repertoire to promote their colonization, entry, survival and dissemination within mammalian hosts. Many of these


subversive effectors target the cellular actin cytoskeleton. * Upon adhesion to host intestinal cells, enteropathogenic and enterohaemorrhagic _Escherichia coli_ (EPEC and EHEC,


respectively) induce dramatic reorganization of the host-cell actin cytoskeleton to promote their intimate attachment, a phenotype associated with disease in humans and animals. * EPEC and


EHEC uniquely deliver their own receptor termed translocated intimin receptor (Tir) into the target-cell plasma membrane to trigger actin-pedestal assembly, which is engaged by the bacterial


surface protein intimin. This ligand–receptor mimicry provides a tractable experimental system to dissect eukaryotic transmembrane-receptor signalling. * We discuss how studies of intimin


have provided important insights into the molecular basis of ligand–receptor interaction, and have also revealed how intimin binding induces Tir clustering to trigger intracellular actin


polymerization. * The translocated EPEC receptor Tir is tyrosine-phosphorylated. We consider how EPEC Tir can be used to model host tyrosine-kinase signalling and adaptor-protein docking at


cellular transmembrane receptors, including those controlling immunological-synapse and focal-adhesion formation. * The translocated EHEC O157:H7 receptor Tir is not tyrosine-phosphorylated.


We discuss how it can be used to decipher tyrosine-kinase-independent signalling cascades at the plasma membrane. * We discuss the prospects for exploiting the adaptor-like EHEC O157:H7


effector EspFU to provide insights into the regulation of cellular nucleation-promoting factors such as neural Wiskott–Aldrich syndrome protein, and to probe for other factors that control


Arp2/3-dependent actin assembly at the plasma membrane. ABSTRACT Many microbial pathogens manipulate the actin cytoskeleton of eukaryotic target cells to promote their internalization,


intracellular motility and dissemination. Enteropathogenic and enterohaemorrhagic _Escherichia coli_, which both cause severe diarrhoeal disease, can adhere to mammalian intestinal cells and


induce reorganization of the actin cytoskeleton into 'pedestal-like' pseudopods beneath the extracellular bacteria. As pedestal assembly is triggered by _E. coli_ virulence


factors that mimic several host cell-signalling components, such as transmembrane receptors, their cognate ligands and cytoplasmic adaptor proteins, it can serve as a powerful model system


to study eukaryotic transmembrane signalling. Here, we consider the impact of recent data on our understanding of both _E. coli_ pathogenesis and cell biology, and the rich prospects for


exploiting these bacterial factors as versatile tools to probe cellular signalling pathways. Access through your institution Buy or subscribe This is a preview of subscription content,


access via your institution ACCESS OPTIONS Access through your institution Subscribe to this journal Receive 12 print issues and online access $209.00 per year only $17.42 per issue Learn


more Buy this article * Purchase on SpringerLink * Instant access to full article PDF Buy now Prices may be subject to local taxes which are calculated during checkout ADDITIONAL ACCESS


OPTIONS: * Log in * Learn about institutional subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS HOST CDK-1 AND FORMIN MEDIATE MICROVILLAR


EFFACEMENT INDUCED BY ENTEROHEMORRHAGIC _ESCHERICHIA COLI_ Article Open access 04 January 2021 THE PATHOGEN-ENCODED SIGNALLING RECEPTOR TIR EXPLOITS HOST-LIKE INTRINSIC DISORDER FOR


INFECTION Article Open access 13 February 2024 MICROSCALE COMMUNICATION BETWEEN BACTERIAL PATHOGENS AND THE HOST EPITHELIUM Article Open access 29 September 2021 REFERENCES * Cossart, P.


& Sansonetti, P. J. Bacterial invasion: the paradigms of enteroinvasive pathogens. _Science_ 304, 242–248 (2004). CAS  PubMed  Google Scholar  * Stebbins, C. E. & Galan, J. E.


Structural mimicry in bacterial virulence. _Nature_ 412, 701–705 (2001). CAS  PubMed  Google Scholar  * Nataro, J. P. & Kaper, J. B. Diarrheagenic _Escherichia coli_. _Clin. Microbiol.


Rev._ 11, 142–201 (1998). CAS  PubMed  PubMed Central  Google Scholar  * Dean-Nystrom, E. A., Bosworth, B. T., Moon, H. W. & O'Brien, A. D. _Escherichia coli_ O157:H7 requires


intimin for enteropathogenicity in calves. _Infect. Immun._ 66, 4560–4563 (1998). CAS  PubMed  PubMed Central  Google Scholar  * Donnenberg, M. S. et al. The role of the _eae_ gene of


enterohemorrhagic _Escherichia coli_ in intimate attachment _in vitro_ and in a porcine model. _J. Clin. Invest._ 92, 1418–1424 (1993). CAS  PubMed  PubMed Central  Google Scholar  *


Donnenberg, M. S. et al. Role of the _eaeA_ gene in experimental enteropathogenic _Escherichia coli_ infection. _J. Clin. Invest._ 92, 1412–1417 (1993). CAS  PubMed  PubMed Central  Google


Scholar  * Deng, W., Vallance, B. A., Li, Y., Puente, J. L. & Finlay, B. B. _Citrobacter rodentium_ translocated intimin receptor (Tir) is an essential virulence factor needed for actin


condensation, intestinal colonization and colonic hyperplasia in mice. _Mol. Microbiol._ 48, 95–115 (2003). CAS  PubMed  Google Scholar  * Shaner, N. C., Sanger, J. W. & Sanger, J. M.


Actin and α-actinin dynamics in the adhesion and motility of EPEC and EHEC on host cells. _Cell Motil. Cytoskeleton_ 60, 104–120 (2005). CAS  PubMed  Google Scholar  * Sanger, J. M., Chang,


R., Ashton, F., Kaper, J. B. & Sanger, J. W. Novel form of actin-based motility transports bacteria on the surfaces of infected cells. _Cell Motil. Cytoskeleton_ 34, 279–287 (1996). CAS


  PubMed  Google Scholar  * Knutton, S., Baldwin, T., Williams, P. H. & McNeish, A. S. Actin accumulation at sites of bacterial adhesion to tissue culture cells: basis of a new


diagnostic test for enteropathogenic and enterohemorrhagic _Escherichia coli_. _Infect. Immun._ 57, 1290–1298 (1989). CAS  PubMed  PubMed Central  Google Scholar  * Nicholson-Dykstra, S.,


Higgs, H. N. & Harris, E. S. Actin dynamics: growth from dendritic branches. _Curr. Biol._ 15, R346–R357 (2005). CAS  PubMed  Google Scholar  * Pollard, T. D. & Borisy, G. G.


Cellular motility driven by assembly and disassembly of actin filaments. _Cell_ 112, 453–465 (2003). CAS  PubMed  Google Scholar  * Carragher, N. O. & Frame, M. C. Focal adhesion and


actin dynamics: a place where kinases and proteases meet to promote invasion. _Trends Cell Biol._ 14, 241–249 (2004). CAS  PubMed  Google Scholar  * Thrasher, A. J. WASP in immune-system


organization and function. _Nature Rev. Immunol._ 2, 635–646 (2002). CAS  Google Scholar  * Welch, M. D. & Mullins, R. D. Cellular control of actin nucleation. _Annu. Rev. Cell. Dev.


Biol._ 18, 247–288 (2002). CAS  PubMed  Google Scholar  * Millard, T. H., Sharp, S. J. & Machesky, L. M. Signalling to actin assembly via the WASP (Wiskott–Aldrich syndrome


protein)-family proteins and the Arp2/3 complex. _Biochem. J._ 380, 1–17 (2004). CAS  PubMed  PubMed Central  Google Scholar  * Higgs, H. N. & Pollard, T. D. Regulation of actin filament


network formation through ARP2/3 complex: activation by a diverse array of proteins. _Annu. Rev. Biochem._ 70, 649–676 (2001). CAS  PubMed  Google Scholar  * Burns, S., Cory, G. O.,


Vainchenker, W. & Thrasher, A. J. Mechanisms of WASP-mediated hematologic and immunologic disease. _Blood_ 104, 3454–3462 (2004). CAS  PubMed  Google Scholar  * Stradal, T. E. et al.


Regulation of actin dynamics by WASP and WAVE family proteins. _Trends Cell Biol._ 14, 303–311 (2004). CAS  PubMed  Google Scholar  * Goley, E. D., Rodenbusch, S. E., Martin, A. C. &


Welch, M. D. Critical conformational changes in the Arp2/3 complex are induced by nucleotide and nucleation promoting factor. _Mol. Cell_ 16, 269–279 (2004). CAS  PubMed  Google Scholar  *


Prehoda, K. E., Scott, J. A., Mullins, R. D. & Lim, W. A. Integration of multiple signals through cooperative regulation of the N-WASP–Arp2/3 complex. _Science_ 290, 801–806 (2000). CAS


  PubMed  Google Scholar  * Rohatgi, R., Ho, H. Y. & Kirschner, M. W. Mechanism of N-WASP activation by CDC42 and phosphatidylinositol 4,5-bisphosphate. _J. Cell Biol._ 150, 1299–1310


(2000). CAS  PubMed  PubMed Central  Google Scholar  * Kim, A. S., Kakalis, L. T., Abdul-Manan, N., Liu, G. A. & Rosen, M. K. Autoinhibition and activation mechanisms of the


Wiskott–Aldrich syndrome protein. _Nature_ 404, 151–158 (2000). CAS  PubMed  Google Scholar  * Miki, H., Sasaki, T., Takai, Y. & Takenawa, T. Induction of filopodium formation by a


WASP-related actin-depolymerizing protein N-WASP. _Nature_ 391, 93–96 (1998). CAS  PubMed  Google Scholar  * Moreau, V. et al. A complex of N-WASP and WIP integrates signalling cascades that


lead to actin polymerization. _Nature Cell Biol._ 2, 441–448 (2000). CAS  PubMed  Google Scholar  * Martinez-Quiles, N. et al. WIP regulates N-WASP-mediated actin polymerization and


filopodium formation. _Nature Cell Biol._ 3, 484–491 (2001). CAS  PubMed  Google Scholar  * Anton, I. M., Lu, W., Mayer, B. J., Ramesh, N. & Geha, R. S. The Wiskott–Aldrich syndrome


protein-interacting protein (WIP) binds to the adaptor protein Nck. _J. Biol. Chem._ 273, 20992–20995 (1998). CAS  PubMed  Google Scholar  * Suetsugu, S., Miki, H. & Takenawa, T. The


essential role of profilin in the assembly of actin for microspike formation. _EMBO J._ 17, 6516–6526 (1998). CAS  PubMed  PubMed Central  Google Scholar  * Ho, H. Y. et al. Toca-1 mediates


Cdc42-dependent actin nucleation by activating the N-WASP–WIP complex. _Cell_ 118, 203–216 (2004). CAS  PubMed  Google Scholar  * Suetsugu, S. et al. Sustained activation of N-WASP through


phosphorylation is essential for neurite extension. _Dev. Cell_ 3, 645–658 (2002). CAS  PubMed  Google Scholar  * Carlier, M. F. et al. GRB2 links signaling to actin assembly by enhancing


interaction of neural Wiskott–Aldrich syndrome protein (N-WASP) with actin-related protein (ARP2/3) complex. _J. Biol. Chem._ 275, 21946–21952 (2000). CAS  PubMed  Google Scholar  * Rohatgi,


R., Nollau, P., Ho, H. Y., Kirschner, M. W. & Mayer, B. J. Nck and phosphatidylinositol 4,5-bisphosphate synergistically activate actin polymerization through the N-WASP–Arp2/3 pathway.


_J. Biol. Chem._ 276, 26448–26452 (2001). CAS  PubMed  Google Scholar  * Martinez-Quiles, N., Ho, H. Y., Kirschner, M. W., Ramesh, N. & Geha, R. S. Erk/Src phosphorylation of cortactin


acts as a switch on–switch off mechanism that controls its ability to activate N-WASP. _Mol. Cell Biol._ 24, 5269–5280 (2004). CAS  PubMed  PubMed Central  Google Scholar  * Cory, G. O.,


Cramer, R., Blanchoin, L. & Ridley, A. J. Phosphorylation of the WASP-VCA domain increases its affinity for the Arp2/3 complex and enhances actin polymerization by WASP. _Mol. Cell_ 11,


1229–1239 (2003). CAS  PubMed  Google Scholar  * Rohatgi, R. et al. The interaction between N-WASP and the Arp2/3 complex links Cdc42-dependent signals to actin assembly. _Cell_ 97, 221–231


(1999). CAS  PubMed  Google Scholar  * Lommel, S., Benesch, S., Rohde, M., Wehland, J. & Rottner, K. Enterohaemorrhagic and enteropathogenic _Escherichia coli_ use different mechanisms


for actin pedestal formation that converge on N-WASP. _Cell. Microbiol._ 6, 243–254 (2004). BOTH EPEC AND EHEC REQUIRE N-WASP FOR PEDESTAL ASSEMBLY, BUT EACH USES DIFFERENT MECHANISMS OF


RECRUITMENT AND ACTIVATION. CAS  PubMed  Google Scholar  * Kalman, D. et al. Enteropathogenic _E. coli_ acts through WASP and Arp2/3 complex to form actin pedestals. _Nature Cell Biol._ 1,


389–391 (1999). CAS  PubMed  Google Scholar  * Lommel, S. et al. Actin pedestal formation by enteropathogenic _Escherichia coli_ and intracellular motility of _Shigella flexneri_ are


abolished in N-WASP-defective cells. _EMBO Rep._ 2, 850–857 (2001). CAS  PubMed  PubMed Central  Google Scholar  * Ebel, F., von Eichel-Streiber, C., Rohde, M. & Chakraborty, T. Small


GTP-binding proteins of the Rho- and Ras-subfamilies are not involved in the actin rearrangements induced by attaching and effacing _Escherichia coli_. _FEMS Microbiol. Lett._ 163, 107–112


(1998). CAS  PubMed  Google Scholar  * Ben-Ami, G. et al. Agents that inhibit Rho, Rac, and Cdc42 do not block formation of actin pedestals in HeLa cells infected with enteropathogenic


_Escherichia coli_. _Infect. Immun._ 66, 1755–1758 (1998). CAS  PubMed  PubMed Central  Google Scholar  * Jerse, A. E., Yu, J., Tall, B. D. & Kaper, J. B. A genetic locus of


enteropathogenic _Escherichia coli_ necessary for the production of attaching and effacing lesions on tissue culture cells. _Proc. Natl Acad. Sci. USA_ 87, 7839–7843 (1990). CAS  PubMed 


Google Scholar  * McDaniel, T. K. & Kaper, J. B. A cloned pathogenicity island from enteropathogenic _Escherichia coli_ confers the attaching and effacing phenotype on _E. coli_ K-12.


_Mol. Microbiol._ 23, 399–407 (1997). CAS  PubMed  Google Scholar  * Elliott, S. J. et al. The complete sequence of the locus of enterocyte effacement (LEE) from enteropathogenic


_Escherichia coli_ E2348/69. _Mol. Microbiol._ 28, 1–4 (1998). CAS  PubMed  Google Scholar  * Ebel, F. et al. Initial binding of Shiga toxin-producing _Escherichia coli_ to host cells and


subsequent induction of actin rearrangements depend on filamentous EspA-containing surface appendages. _Mol. Microbiol._ 30, 147–161 (1998). CAS  PubMed  Google Scholar  * Knutton, S. et al.


A novel EspA-associated surface organelle of enteropathogenic _Escherichia coli_ involved in protein translocation into epithelial cells. _EMBO J._ 17, 2166–2176 (1998). CAS  PubMed  PubMed


Central  Google Scholar  * Sekiya, K. et al. Supermolecular structure of the enteropathogenic _Escherichia coli_ type III secretion system and its direct interaction with the


EspA-sheath-like structure. _Proc. Natl Acad. Sci. USA_ 98, 11638–11643 (2001). CAS  PubMed  Google Scholar  * Dean, P., Maresca, M. & Kenny, B. EPEC's weapons of mass subversion.


_Curr. Opin. Microbiol._ 8, 28–34 (2005). CAS  PubMed  Google Scholar  * Garmendia, J., Frankel, G. & Crepin, V. F. Enteropathogenic and enterohemorrhagic _Escherichia coli_ infections:


translocation, translocation, translocation. _Infect. Immun._ 73, 2573–2585 (2005). CAS  PubMed  PubMed Central  Google Scholar  * Rosenshine, I. et al. A pathogenic bacterium triggers


epithelial signals to form a functional bacterial receptor that mediates actin pseudopod formation. _EMBO J._ 15, 2613–2624 (1996). CAS  PubMed  PubMed Central  Google Scholar  * Kenny, B.


et al. Enteropathogenic _E. coli_ (EPEC) transfers its receptor for intimate adherence into mammalian cells. _Cell_ 91, 511–520 (1997). THE FIRST DEMONSTRATION THAT A BACTERIUM COULD


TRANSFER ITS OWN RECEPTOR INTO A MAMMALIAN HOST CELL. THIS PAPER ALSO DEFINED A LINK BETWEEN ACTIN NUCLEATION AND TIREPEC. CAS  PubMed  Google Scholar  * Deibel, C., Kramer, S., Chakraborty,


T. & Ebel, F. EspE, a novel secreted protein of attaching and effacing bacteria, is directly translocated into infected host cells, where it appears as a tyrosine-phosphorylated 90 kDa


protein. _Mol. Microbiol._ 28, 463–474 (1998). CAS  PubMed  Google Scholar  * Patel, A. et al. Host protein interactions with enteropathogenic _Escherichia coli_ (EPEC): 14-3-3τ binds Tir


and has a role in EPEC-induced actin polymerization. _Cell. Microbiol._ 8, 55–71 (2006). CAS  PubMed  Google Scholar  * Goosney, D. L. et al. Enteropathogenic _E. coli_ translocated intimin


receptor, Tir, interacts directly with α-actinin. _Curr. Biol._ 10, 735–738 (2000). CAS  PubMed  Google Scholar  * Freeman, N. L. et al. Interaction of the enteropathogenic _Escherichia


coli_ protein, translocated intimin receptor (Tir), with focal adhesion proteins. _Cell Motil. Cytoskeleton_ 47, 307–318 (2000). CAS  PubMed  Google Scholar  * Cantarelli, V. V. et al.


Cortactin is necessary for F-actin accumulation in pedestal structures induced by enteropathogenic _Escherichia coli_ infection. _Infect. Immun._ 70, 2206–2209 (2002). CAS  PubMed  PubMed


Central  Google Scholar  * Goosney, D. L., DeVinney, R. & Finlay, B. B. Recruitment of cytoskeletal and signaling proteins to enteropathogenic and enterohemorrhagic _Escherichia coli_


pedestals. _Infect. Immun._ 69, 3315–3322 (2001). CAS  PubMed  PubMed Central  Google Scholar  * Campellone, K. G. & Leong, J. M. Tails of two Tirs: actin pedestal formation by


enteropathogenic _E. coli_ and enterohemorrhagic _E. coli_ O157:H7. _Curr. Opin. Microbiol._ 6, 82–90 (2003). CAS  PubMed  Google Scholar  * Campellone, K. G., Giese, A., Tipper, D. J. &


Leong, J. M. A tyrosine-phosphorylated 12-amino-acid sequence of enteropathogenic _Escherichia coli_ Tir binds the host adaptor protein Nck and is required for Nck localization to actin


pedestals. _Mol. Microbiol._ 43, 1227–1241 (2002). CAS  PubMed  Google Scholar  * Gruenheid, S. et al. Enteropathogenic _E. coli_ Tir binds Nck to initiate actin pedestal formation in host


cells. _Nature Cell Biol._ 3, 856–859 (2001). IDENTIFIED NCK ADAPTOR PROTEINS AS CRITICAL HOST-CELL DETERMINANTS OF EPEC VIRULENCE THAT ENGAGE PHOSPHORYLATED Y474 OF TIREPEC. CAS  PubMed 


Google Scholar  * Kenny, B. Phosphorylation of tyrosine 474 of the enteropathogenic _Escherichia coli_ (EPEC) Tir receptor molecule is essential for actin nucleating activity and is preceded


by additional host modifications. _Mol. Microbiol._ 31, 1229–1241 (1999). CAS  PubMed  Google Scholar  * Phillips, N., Hayward, R. D. & Koronakis, V. Phosphorylation of the


enteropathogenic _E. coli_ receptor by the Src-family kinase c-Fyn triggers actin pedestal formation. _Nature Cell Biol._ 6, 618–625 (2004). USED THE 'PRIMING AND CHALLENGE' MODEL


TO DEMONSTRATE THAT INTIMIN-INDUCED CLUSTERING OF MEMBRANE-INTEGRAL TIREPEC INDUCES Y474 PHOSPHORYLATION BY THE HOST SFK C-FYN. CAS  PubMed  Google Scholar  * Swimm, A. et al.


Enteropathogenic _Escherichia coli_ use redundant tyrosine kinases to form actin pedestals. _Mol. Biol. Cell_ 15, 3520–3529 (2004). DEMONSTRATED THAT WILD-TYPE EPEC CAN USE REDUNDANT HOST


SFKS AND ABL-FAMILY KINASES TO FORM PEDESTALS ON CULTURED CELLS. THIS STUDY ALSO HIGHLIGHTED PYRIDO[2,3- _D_ ]PYRIMIDINE COMPOUNDS AS POTENTIAL INHIBITORS OF EPEC INFECTION. CAS  PubMed 


PubMed Central  Google Scholar  * Rivera, G. M., Briceno, C. A., Takeshima, F., Snapper, S. B. & Mayer, B. J. Inducible clustering of membrane-targeted SH3 domains of the adaptor protein


Nck triggers localized actin polymerization. _Curr. Biol._ 14, 11–22 (2004). CAS  PubMed  Google Scholar  * Campellone, K. G., Robbins, D. & Leong, J. M. EspFU is a translocated EHEC


effector that interacts with Tir and N-WASP and promotes Nck-independent actin assembly. _Dev. Cell_ 7, 217–228 (2004). IDENTIFIED AN EFFECTOR (ESPF U /TCCP) ENCODED OUTSIDE THE LEE THAT


LINKS TIREHEC TO N-WASP INDEPENDENTLY OF TYROSINE PHOSPHORYLATION, WHICH TRIGGERS LOCALIZED ACTIN ASSEMBLY. THIS STUDY WAS INDEPENDENT OF REFERENCE 99. CAS  PubMed  Google Scholar  *


Campellone, K. G. et al. Clustering of Nck by a 12-residue Tir phosphopeptide is sufficient to trigger localized actin assembly. _J. Cell Biol._ 164, 407–416 (2004). DETERMINED THE MINIMAL


REQUIREMENTS FOR EPEC-MEDIATED ACTIN ASSEMBLY BY DEMONSTRATING THAT NCK CLUSTERING BY A 12-RESIDUE Y474-SPANNING PHOSPHOPEPTIDE TRIGGERED ACTIN COMET-TAIL FORMATION IN _XENOPUS_ EGG


EXTRACTS. CAS  PubMed  PubMed Central  Google Scholar  * Campellone, K. G. & Leong, J. M. Nck-independent actin assembly is mediated by two phosphorylated tyrosines within


enteropathogenic _Escherichia coli_ Tir. _Mol. Microbiol._ 56, 416–432 (2005). CAS  PubMed  Google Scholar  * Frischknecht, F. & Way, M. Surfing pathogens and the lessons learned for


actin polymerization. _Trends Cell Biol._ 11, 30–38 (2001). CAS  PubMed  Google Scholar  * Frischknecht, F. et al. Actin-based motility of vaccinia virus mimics receptor tyrosine kinase


signalling. _Nature_ 401, 926–929 (1999). CAS  PubMed  Google Scholar  * Reeves, P. M. et al. Disabling poxvirus pathogenesis by inhibition of Abl-family tyrosine kinases. _Nature Med._ 11,


731–739 (2005). CAS  PubMed  Google Scholar  * Scaplehorn, N. et al. Grb2 and Nck act cooperatively to promote actin-based motility of vaccinia virus. _Curr. Biol._ 12, 740–745 (2002). CAS 


PubMed  Google Scholar  * Tzipori, S. et al. The role of the _eaeA_ gene in diarrhea and neurological complications in a gnotobiotic piglet model of enterohemorrhagic _Escherichia coli_


infection. _Infect. Immun._ 63, 3621–3627 (1995). CAS  PubMed  PubMed Central  Google Scholar  * Frankel, G. et al. Intimin and the host cell — is it bound to end in Tir(s)? _Trends


Microbiol._ 9, 214–218 (2001). CAS  PubMed  Google Scholar  * Sinclair, J. F. & O'Brien, A. D. Cell surface-localized nucleolin is a eukaryotic receptor for the adhesin intimin-γ of


enterohemorrhagic _Escherichia coli_ O157:H7. _J. Biol. Chem._ 277, 2876–2885 (2002). CAS  PubMed  Google Scholar  * Liu, H., Magoun, L., Luperchio, S., Schauer, D. B. & Leong, J. M.


The Tir-binding region of enterohaemorrhagic _Escherichia coli_ intimin is sufficient to trigger actin condensation after bacterial-induced host cell signalling. _Mol. Microbiol._ 34, 67–81


(1999). PubMed  Google Scholar  * Luo, Y. et al. Crystal structure of enteropathogenic _Escherichia coli_ intimin-receptor complex. _Nature_ 405, 1073–1077 (2000). THE CRYSTAL STRUCTURES OF


AN EPEC INTIMIN FRAGMENT ALONE, AND IN COMPLEX WITH THE TIREPEC INTIMIN-BINDING DOMAIN, PROVIDED THE FIRST INSIGHTS INTO THE MOLECULAR MECHANISMS UNDERLYING INTIMATE ADHESION. CAS  PubMed 


Google Scholar  * Batchelor, M. et al. Structural basis for recognition of the translocated intimin receptor (Tir) by intimin from enteropathogenic _Escherichia coli_. _EMBO J._ 19,


2452–2464 (2000). USED NMR AND MUTAGENESIS APPROACHES TO RESOLVE THE STRUCTURE OF THE EXTRACELLULAR DOMAIN OF EPEC INTIMIN AND TO DELINEATE THE TIR BINDING SITE. CAS  PubMed  PubMed Central


  Google Scholar  * Hamburger, Z. A., Brown, M. S., Isberg, R. R. & Bjorkman, P. J. Crystal structure of invasin: a bacterial integrin-binding protein. _Science_ 286, 291–295 (1999). CAS


  PubMed  Google Scholar  * Thomason, P. A., Wolanin, P. M. & Stock, J. B. Signal transduction: receptor clusters as information processing arrays. _Curr. Biol._ 12, R399–R401 (2002).


CAS  PubMed  Google Scholar  * Cochran, J. R., Aivazian, D., Cameron, T. O. & Stern, L. J. Receptor clustering and transmembrane signaling in T cells. _Trends Biochem. Sci._ 26, 304–310


(2001). CAS  PubMed  Google Scholar  * Touze, T., Hayward, R. D., Eswaran, J., Leong, J. M. & Koronakis, V. Self-association of EPEC intimin mediated by the β-barrel-containing anchor


domain: a role in clustering of the Tir receptor. _Mol. Microbiol._ 51, 73–87 (2004). CAS  PubMed  Google Scholar  * Dersch, P. & Isberg, R. R. A region of the _Yersinia


pseudotuberculosis_ invasin protein enhances integrin-mediated uptake into mammalian cells and promotes self-association. _EMBO J._ 18, 1199–1213 (1999). CAS  PubMed  PubMed Central  Google


Scholar  * Harder, T. & Simons, K. Clusters of glycolipid and glycosylphosphatidylinositol-anchored proteins in lymphoid cells: accumulation of actin regulated by local tyrosine


phosphorylation. _Eur. J. Immunol._ 29, 556–562 (1999). CAS  PubMed  Google Scholar  * Foger, N., Marhaba, R. & Zoller, M. Involvement of CD44 in cytoskeleton rearrangement and raft


reorganization in T cells. _J. Cell Sci._ 114, 1169–1178 (2001). CAS  PubMed  Google Scholar  * Zobiack, N. et al. Cell-surface attachment of pedestal-forming enteropathogenic _E. coli_


induces a clustering of raft components and a recruitment of annexin 2. _J. Cell Sci._ 115, 91–98 (2002). CAS  PubMed  Google Scholar  * Fuller, C. L., Braciale, V. L. & Samelson, L. E.


All roads lead to actin: the intimate relationship between TCR signaling and the cytoskeleton. _Immunol. Rev._ 191, 220–236 (2003). CAS  PubMed  Google Scholar  * Palacios, E. H. &


Weiss, A. Function of the Src-family kinases, Lck and Fyn, in T-cell development and activation. _Oncogene_ 23, 7990–8000 (2004). CAS  PubMed  Google Scholar  * Lowell, C. A. Src-family


kinases: rheostats of immune cell signaling. _Mol. Immunol._ 41, 631–643 (2004). CAS  PubMed  Google Scholar  * Sasahara, Y. et al. Mechanism of recruitment of WASP to the immunological


synapse and of its activation following TCR ligation. _Mol. Cell_ 10, 1269–1281 (2002). CAS  PubMed  Google Scholar  * ffrench-Constant, C. & Colognato, H. Integrins: versatile


integrators of extracellular signals. _Trends Cell Biol._ 14, 678–686 (2004). CAS  PubMed  Google Scholar  * Drevot, P. et al. TCR signal initiation machinery is pre-assembled and activated


in a subset of membrane rafts. _EMBO J._ 21, 1899–1908 (2002). CAS  PubMed  PubMed Central  Google Scholar  * Zipfel, P. A., Zhang, W., Quiroz, M. & Pendergast, A. M. Requirement for Abl


kinases in T cell receptor signaling. _Curr. Biol._ 14, 1222–1231 (2004). CAS  PubMed  Google Scholar  * Playford, M. P. & Schaller, M. D. The interplay between Src and integrins in


normal and tumor biology. _Oncogene_ 23, 7928–7946 (2004). CAS  PubMed  Google Scholar  * Leitinger, B. & Hogg, N. The involvement of lipid rafts in the regulation of integrin function.


_J. Cell Sci._ 115, 963–972 (2002). CAS  PubMed  Google Scholar  * Wiesner, S., Legate, K. R. & Fassler, R. Integrin-actin interactions. _Cell Mol. Life Sci._ 62, 1081–1099 (2005). CAS 


PubMed  Google Scholar  * Newsome, T. P., Scaplehorn, N. & Way, M. SRC mediates a switch from microtubule- to actin-based motility of vaccinia virus. _Science_ 306, 124–129 (2004). CAS 


PubMed  Google Scholar  * Newsome, T. P., Weisswange, I., Frischknecht, F. & Way, M. Abl collaborates with Src family kinases to stimulate actin-based motility of vaccinia virus. _Cell.


Microbiol._ 8, 233–241 (2006). CAS  PubMed  Google Scholar  * Yang, H. et al. Antiviral chemotherapy facilitates control of poxvirus infections through inhibition of cellular signal


transduction. _J. Clin. Invest._ 115, 379–387 (2005). CAS  PubMed  PubMed Central  Google Scholar  * Hernandez, S. E., Krishnaswami, M., Miller, A. L. & Koleske, A. J. How do Abl family


kinases regulate cell shape and movement? _Trends Cell Biol._ 14, 36–44 (2004). CAS  PubMed  Google Scholar  * Garmendia, J. et al. TccP is an enterohaemorrhagic _Escherichia coli_ O157:H7


type III effector protein that couples Tir to the actin-cytoskeleton. _Cell. Microbiol._ 6, 1167–1183 (2004). IDENTIFIED AN EFFECTOR (ESPF U /TCCP) ENCODED OUTSIDE THE LEE THAT LINKS TIREHEC


TO N-WASP INDEPENDENTLY OF TYROSINE PHOSPHORYLATION, WHICH TRIGGERS LOCALIZED ACTIN ASSEMBLY. THIS STUDY WAS INDEPENDENT OF REFERENCE 64. CAS  PubMed  Google Scholar  * DeVinney, R. et al.


Enterohemorrhagic _Escherichia coli_ O157:H7 produces Tir, which is translocated to the host cell membrane but is not tyrosine phosphorylated. _Infect. Immun._ 67, 2389–2398 (1999). CAS 


PubMed  PubMed Central  Google Scholar  * Chuang, C. H., Chiu, H. J., Hsu, S. C., Ho, J. Y. & Syu, W. J. Comparison of Tir from enterohemorrhagic and enteropathogenic _Escherichia coli_


strains: two homologues with distinct intracellular properties. _J. Biomed. Sci._ 13, 73–87 (2006). CAS  PubMed  Google Scholar  * DeVinney, R., Puente, J. L., Gauthier, A., Goosney, D.


& Finlay, B. B. Enterohaemorrhagic and enteropathogenic _Escherichia coli_ use a different Tir-based mechanism for pedestal formation. _Mol. Microbiol._ 41, 1445–1458 (2001). CAS  PubMed


  Google Scholar  * Kenny, B. The enterohaemorrhagic _Escherichia coli_ (serotype O157:H7) Tir molecule is not functionally interchangeable for its enteropathogenic _E. coli_ (serotype


O127:H6) homologue. _Cell. Microbiol._ 3, 499–510 (2001). CAS  PubMed  Google Scholar  * Viswanathan, V. K. et al. Comparative analysis of EspF from enteropathogenic and enterohemorrhagic


_Escherichia coli_ in alteration of epithelial barrier function. _Infect. Immun._ 72, 3218–3227 (2004). CAS  PubMed  PubMed Central  Google Scholar  * Stevens, J. H., Galyov, E. E. &


Stevens, M. P. Actin-dependent movement of bacterial pathogens. _Nature_ _Rev. Microbiol._ 4, 91–101 (2006). CAS  Google Scholar  * Egile, C. et al. Activation of the CDC42 effector N-WASP


by the _Shigella flexneri_ IcsA protein promotes actin nucleation by Arp2/3 complex and bacterial actin-based motility. _J. Cell Biol._ 146, 1319–1332 (1999). CAS  PubMed  PubMed Central 


Google Scholar  * Suzuki, T., Miki, H., Takenawa, T. & Sasakawa, C. Neural Wiskott–Aldrich syndrome protein is implicated in the actin-based motility of _Shigella flexneri_. _EMBO J._


17, 2767–2776 (1998). CAS  PubMed  PubMed Central  Google Scholar  * Mounier, J. et al. Rho family GTPases control entry of _Shigella flexneri_ into epithelial cells but not intracellular


motility. _J. Cell Sci._ 112, 2069–2080 (1999). CAS  PubMed  Google Scholar  * Shibata, T., Takeshima, F., Chen, F., Alt, F. W. & Snapper, S. B. Cdc42 facilitates invasion but not the


actin-based motility of _Shigella_. _Curr. Biol._ 12, 341–345 (2002). CAS  PubMed  Google Scholar  * Suzuki, T. et al. Rho family GTPase Cdc42 is essential for the actin-based motility of


_Shigella_ in mammalian cells. _J. Exp. Med._ 191, 1905–1920 (2000). CAS  PubMed  PubMed Central  Google Scholar  * Snapper, S. B. et al. N-WASP deficiency reveals distinct pathways for cell


surface projections and microbial actin-based motility. _Nature Cell Biol._ 3, 897–904 (2001). CAS  PubMed  Google Scholar  * Suzuki, T. et al. Neural Wiskott–Aldrich syndrome protein


(N-WASP) is the specific ligand for _Shigella_ VirG among the WASP family and determines the host cell type allowing actin-based spreading. _Cell. Microbiol._ 4, 223–233 (2002). CAS  PubMed


  Google Scholar  * Wu, X., Suetsugu, S., Cooper, L. A., Takenawa, T. & Guan, J. L. Focal adhesion kinase regulation of N-WASP subcellular localization and function. _J. Biol. Chem._


279, 9565–9576 (2004). CAS  PubMed  Google Scholar  * Torres, E. & Rosen, M. K. Contingent phosphorylation/dephosphorylation provides a mechanism of molecular memory in WASP. _Mol. Cell_


11, 1215–1227 (2003). CAS  PubMed  Google Scholar  * Abdul-Manan, N. et al. Structure of Cdc42 in complex with the GTPase-binding domain of the 'Wiskott–Aldrich syndrome' protein.


_Nature_ 399, 379–383 (1999). CAS  PubMed  Google Scholar  * Niedergang, F. & Chavrier, P. Regulation of phagocytosis by Rho GTPases. _Curr. Top. Microbiol. Immunol._ 291, 43–60 (2005).


CAS  PubMed  Google Scholar  * Raftopoulou, M. & Hall, A. Cell migration: Rho GTPases lead the way. _Dev. Biol._ 265, 23–32 (2004). CAS  PubMed  Google Scholar  * Torres, E. &


Rosen, M. K. Protein tyrosine kinase and GTPase signals cooperate to phosphorylate and activate WASP/N-WASP. _J. Biol. Chem._ 281, 3513–3520 (2006). CAS  PubMed  Google Scholar  *


Campellone, K. G. et al. Enterohaemorrhagic _Escherichia coli_ Tir requires a C-terminal 12-residue peptide to initiate EspFU-mediated actin assembly and harbors N-terminal sequences that


influence pedestal length. _Cell. Microbiol._ (in the press). * Garmendia, J. et al. Distribution of TccP in clinical enterohemorrhagic and enteropathogenic _Escherichia coli_ isolates. _J.


Clin. Microbiol._ 43, 5715–5720 (2005). IDENTIFICATION OF AN O119:H6 EPEC STRAIN ENCODING BOTH ESPF U (TCCP) CHARACTERISTIC OF EHEC O157:H7 AND A TIR PROTEIN HARBOURING Y474. CAS  PubMed 


PubMed Central  Google Scholar  * Bompard, G. & Caron, E. Regulation of WASP/WAVE proteins: making a long story short. _J. Cell Biol._ 166, 957–962 (2004). CAS  PubMed  PubMed Central 


Google Scholar  * Quinlan, M. E., Heuser, J. E., Kerkhoff, E. & Mullins, R. D. _Drosophila_ Spire is an actin nucleation factor. _Nature_ 433, 382–388 (2005). CAS  PubMed  Google Scholar


  * Wallar, B. J. & Alberts, A. S. The formins: active scaffolds that remodel the cytoskeleton. _Trends Cell Biol._ 13, 435–446 (2003). CAS  PubMed  Google Scholar  * Jones, N. et al.


Nck adaptor proteins link nephrin to the actin cytoskeleton of kidney podocytes. _Nature_ 8 Mar 2006 (doi:10.1038/nature04662). * Alto, N. M. et al. Identification of a bacterial type III


effector family with G protein mimicry functions. _Cell_ 124, 133–145 (2006). CAS  PubMed  Google Scholar  Download references ACKNOWLEDGEMENTS We thank N. Phillips, D. Tipper and E.


Koronakis for discussions and critique of the manuscript, and M. Brady, N. Phillips, S. Snapper, R. DeVinney, T. Newsome and M. Way for discussion and communication of unpublished results.


Our work is supported by a Wellcome Trust programme grant, a Medical Research Council project grant and Biotechnology and Biological Research Council Studentship to V.K., and a National


Institutes of Health (NIH) grant to J.M.L. K.G.C. visited the Koronakis laboratory with support from a Human Frontier Science Program international fellowship. AUTHOR INFORMATION Author


notes * Kenneth G. Campellone Present address: Department of Molecular and Cell Biology, University of California, Berkeley, California, 94720-3200, USA * Richard D. Hayward and Kenneth G.


Campellone: These authors contributed equally to this work. AUTHORS AND AFFILIATIONS * Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK Richard D.


Hayward & Vassilis Koronakis * Department of Molecular Genetics and Microbiology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, 01655, Massachusetts, USA


John M. Leong & Kenneth G. Campellone Authors * Richard D. Hayward View author publications You can also search for this author inPubMed Google Scholar * John M. Leong View author


publications You can also search for this author inPubMed Google Scholar * Vassilis Koronakis View author publications You can also search for this author inPubMed Google Scholar * Kenneth


G. Campellone View author publications You can also search for this author inPubMed Google Scholar CORRESPONDING AUTHORS Correspondence to John M. Leong or Vassilis Koronakis. ETHICS


DECLARATIONS COMPETING INTERESTS The authors declare no competing financial interests. RELATED LINKS RELATED LINKS DATABASES ENTREZ GENOME vaccinia virus ENTREZ GENOME PROJECT O157:H7


_Yersinia pseudotuberculosis_ FURTHER INFORMATION Vassils Koronakis' homepage John M. Leong's homepage GLOSSARY * Microvilli Small, finger-like projections found on the exposed


surfaces of epithelial cells that maximize the surface area. * Macropinocytosis A form of regulated, actin-dependent endocytosis that involves the formation of large endocytic vesicles after


the closure of cell-surface membrane ruffles. * Filopodia Thin, transient actin protrusions that extend out from the cell surface and are formed by the elongation of bundled actin filaments


in the core. * Lamellipodia Flattened protrusions at the leading edge of a moving cell that are enriched with a branched network of actin filaments. * Tight junction A seal between adjacent


epithelial cells, just beneath the apical surface, that forms a semi-permeable diffusion barrier between individual cells. * Focal adhesions Cellular structures that link the extracellular


matrix on the outside of the cell to the actin cytoskeleton inside the cell through integrin receptors. * Pathogenicity island A contiguous block of genes acquired by horizontal transfer in


which at least a subset of the genes code for virulence factors. * C-type lectin Calcium-dependent carbohydrate-binding protein. * Immunological synapse A large junctional structure formed


at the cell surface between a T cell and an antigen-presenting cell, also known as the supramolecular activation cluster. Important molecules that are involved in T-cell activation —


including the T-cell receptor, numerous signal-transduction molecules and molecular adaptors — accumulate in an orderly manner at this site. Immunological synapses are now known to also form


between other types of immune cells, for example, between dendritic cells and natural killer cells. * Immunoreceptor tyrosine-based activation motif (ITAM). A sequence found in the


cytoplasmic domains of the invariant chains of various cell-surface immune receptors, such as the T-cell receptor. Following phosphorylation of their tyrosine residue, ITAMs function as


docking sites for Src-homology-2-domain-containing tyrosine kinases and adaptor molecules, thereby facilitating intracellular-signalling cascades. RIGHTS AND PERMISSIONS Reprints and


permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Hayward, R., Leong, J., Koronakis, V. _et al._ Exploiting pathogenic _Escherichia coli_ to model transmembrane receptor signalling. _Nat Rev


Microbiol_ 4, 358–370 (2006). https://doi.org/10.1038/nrmicro1391 Download citation * Published: 03 April 2006 * Issue Date: May 2006 * DOI: https://doi.org/10.1038/nrmicro1391 SHARE THIS


ARTICLE Anyone you share the following link with will be able to read this content: Get shareable link Sorry, a shareable link is not currently available for this article. Copy to clipboard


Provided by the Springer Nature SharedIt content-sharing initiative