Splitsville: structural and functional insights into the dynamic bacterial z ring

feature-image

Play all audios:

Loading...

KEY POINTS * All cells must divide to proliferate, and most bacteria divide by splitting themselves into two during cytokinesis. Many bacteria divide by splitting into approximately equal


halves in a process called binary fission. Cytokinesis in bacteria is achieved by the divisome, a dedicated protein machine that is located at the site of cell division. Recent advances in


ultrastructural imaging, biochemistry and genetics of _Escherichia coli_ and other model bacterial species have helped to refine models of divisome function and regulation. * FtsZ, the


bacterial homologue of tubulin, is the principal driver of bacterial cytokinesis. _In vitro_, FtsZ assembles into single protofilaments in the presence of GTP. _In vivo_, these


protofilaments loosely assemble to encircle the cell at the site of division — called the Z ring — and are positioned there by species-specific spatial positioning proteins. * As FtsZ is a


soluble protein, FtsZ protofilaments must be tethered to the inner surface of the cytoplasmic membrane by additional proteins, including FtsA and ZipA in _E. coli_. This complex of FtsZ and


membrane tethers is called the proto-ring and has highly dynamic behaviour. * Although they do not form microtubules, FtsZ protofilaments self-associate to form bundles, either through


interactions with other FtsZ subunits or with several FtsZ-binding proteins that enhance bundling, including ZipA and Zap proteins. These lateral interactions between FtsZ protofilaments may


be important for the ability of FtsZ to divide a cell. * FtsA, a bacterial homologue of actin, is a key connector between the Z ring and other proteins of the divisome, all of which span


the membrane and some of which bind to the peptidoglycan layer. Once the divisome is completely assembled, it coordinates the inward constriction of the Z ring and cytoplasmic membrane with


the synthesis of the cell division septum, which is composed of peptidoglycan. FtsA is a key player in this coordination, which probably involves feedback signalling between the


peptidoglycan-binding divisome proteins and the Z ring. Biochemical characterization of FtsA remains a major challenge. * In addition to signalling in the divisome during the process of


cytokinesis, the divisome is regulated by mechanical, metabolic and stress inputs. FtsZ is a major target for these regulators, but other divisome proteins are also targets. Understanding


how divisome proteins are inhibited or stimulated will be valuable in the future design of divisome-specific antimicrobial compounds. ABSTRACT Bacteria must divide to increase in number and


colonize their niche. Binary fission is the most widespread means of bacterial cell division, but even this relatively simple mechanism has many variations on a theme. In most bacteria, the


tubulin homologue FtsZ assembles into a ring structure, termed the Z ring, at the site of cytokinesis and recruits additional proteins to form a large protein machine — the divisome — that


spans the membrane. In this Review, we discuss current insights into the regulation of the assembly of the Z ring and how the divisome drives membrane invagination and septal cell wall


growth while flexibly responding to various cellular inputs. Access through your institution Buy or subscribe This is a preview of subscription content, access via your institution ACCESS


OPTIONS Access through your institution Subscribe to this journal Receive 12 print issues and online access $209.00 per year only $17.42 per issue Learn more Buy this article * Purchase on


SpringerLink * Instant access to full article PDF Buy now Prices may be subject to local taxes which are calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in * Learn about


institutional subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS INSIGHTS INTO THE ASSEMBLY AND REGULATION OF THE BACTERIAL DIVISOME Article 31


July 2023 SINGLE-MOLECULE IMAGING REVEALS THAT Z-RING CONDENSATION IS ESSENTIAL FOR CELL DIVISION IN _BACILLUS SUBTILIS_ Article 18 March 2021 FUNCTION AND REGULATION OF THE DIVISOME FOR


MITOCHONDRIAL FISSION Article 03 February 2021 CHANGE HISTORY * _ 25 APRIL 2016 _Nature Reviews Microbiology_ 14, 305–319 (2016). In the sixth paragraph of the section 'FtsA and the


dynamics of proto-ring assembly', the sentence “Finally, an FtsZ mutant with decreased self-bundling _in vitro_ (FtsZ-E93R) has reduced function in cell division50, 51.” should have


read “However, an FtsZ mutant with increased self-bundling _in vitro_ (FtsZ-E93R) has reduced function in cell division50,51.” The authors apologize to the readers for any misunderstanding


caused. _ REFERENCES * Egan, A. J. & Vollmer, W. The physiology of bacterial cell division. _Ann. NY Acad. Sci._ 1277, 8–28 (2013). Article  CAS  PubMed  Google Scholar  * Brown, P. J.


et al. Polar growth in the alphaproteobacterial order Rhizobiales. _Proc. Natl Acad. Sci. USA_ 109, 1697–1701 (2011). Article  Google Scholar  * Margolin, W. Themes and variations in


prokaryotic cell division. _FEMS Microbiol. Rev._ 24, 531–548 (2000). Article  CAS  PubMed  Google Scholar  * Leisch, N. et al. Growth in width and FtsZ ring longitudinal positioning in a


gammaproteobacterial symbiont. _Curr. Biol._ 22, R831–R832 (2012). Article  CAS  PubMed  Google Scholar  * Monahan, L. G., Liew, A. T., Bottomley, A. L. & Harry, E. J. Division site


positioning in bacteria: one size does not fit all. _Front. Microbiol._ 5, 19 (2014). Article  PubMed  PubMed Central  Google Scholar  * Rowlett, V. W. & Margolin, W. The Min system and


other nucleoid-independent regulators of Z ring positioning. _Front. Microbiol._ 6, 478 (2015). Article  PubMed  PubMed Central  Google Scholar  * Willemse, J., Borst, J. W., de Waal, E.,


Bisseling, T. & van Wezel, G. P. Positive control of cell division: FtsZ is recruited by SsgB during sporulation of _Streptomyces_. _Genes Dev._ 25, 89–99 (2011).THIS STUDY PROVIDES THE


FIRST EXAMPLE OF POSITIVE SPATIAL REGULATION OF Z RING POSITIONING. Article  CAS  PubMed  PubMed Central  Google Scholar  * Treuner-Lange, A. et al. PomZ, a ParA-like protein, regulates


Z-ring formation and cell division in _Myxococcus xanthus_. _Mol. Microbiol._ 87, 235–253 (2013). Article  CAS  PubMed  Google Scholar  * Holeckova, N. et al. LocZ is a new cell division


protein involved in proper septum placement in _Streptococcus Pneumoniae_. _mBio_ 6, e01700-14 (2014). Article  PubMed  PubMed Central  CAS  Google Scholar  * Fleurie, A. et al. MapZ marks


the division sites and positions FtsZ rings in _Streptococcus pneumoniae_. _Nature_ 516, 259–262 (2014). Article  CAS  PubMed  PubMed Central  Google Scholar  * McCormick, J. R., Su, E. P.,


Driks, A. & Losick, R. Growth and viability of _Streptomyces coelicolor_ mutant for the cell division gene _ftsZ_. _Mol. Microbiol._ 14, 243–254 (1994). Article  CAS  PubMed  Google


Scholar  * Rico, A. I., Krupka, M. & Vicente, M. In the beginning. _Escherichia coli_ assembled the proto-ring: an initial phase of division. _J. Biol. Chem._ 288, 20830–20836 (2013).


Article  CAS  PubMed  PubMed Central  Google Scholar  * Pichoff, S. & Lutkenhaus, J. Tethering the Z ring to the membrane through a conserved membrane targeting sequence in FtsA. _Mol.


Microbiol._ 55, 1722–1734 (2005). Article  CAS  PubMed  Google Scholar  * Hale, C. A. & de Boer, P. A. Direct binding of FtsZ to ZipA, an essential component of the septal ring structure


that mediates cell division in _E. coli_. _Cell_ 88, 175–185 (1997). Article  CAS  PubMed  Google Scholar  * Pichoff, S. & Lutkenhaus, J. Unique and overlapping roles for ZipA and FtsA


in septal ring assembly in _Escherichia coli_. _EMBO J._ 21, 685–693 (2002). Article  CAS  PubMed  PubMed Central  Google Scholar  * Duman, R. et al. Structural and genetic analyses reveal


the protein SepF as a new membrane anchor for the Z ring. _Proc. Natl Acad. Sci. USA_ 110, E4601–E4610 (2013). Article  CAS  PubMed  PubMed Central  Google Scholar  * Krol, E. et al.


_Bacillus subtilis_ SepF binds to the C-terminus of FtsZ. _PLoS ONE_ 7, e43293 (2013). Google Scholar  * Ishikawa, S., Kawai, Y., Hiramatsu, K., Kuwano, M. & Ogasawara, N. A new


FtsZ-interacting protein, YlmF, complements the activity of FtsA during progression of cell division in _Bacillus subtilis_. _Mol. Microbiol._ 60, 1364–1380 (2006). Article  CAS  PubMed 


Google Scholar  * Gupta, S. et al. The essential protein SepF of mycobacteria interacts with FtsZ and MurG to regulate cell growth and division. _Microbiology_ 161, 1627–1638 (2015). Article


  CAS  PubMed  Google Scholar  * Gola, S., Munder, T., Casonato, S., Manganelli, R. & Vicente, M. The essential role of SepF in mycobacterial division. _Mol. Microbiol._ 97, 560–576


(2015). Article  CAS  PubMed  Google Scholar  * Levin, P. A., Kurtser, I. G. & Grossman, A. D. Identification and characterization of a negative regulator of FtsZ ring formation in


_Bacillus subtilis_. _Proc. Natl Acad. Sci. USA_ 96, 9642–9647 (1999). Article  CAS  PubMed  PubMed Central  Google Scholar  * Steele, V. R., Bottomley, A. L., Garcia-Lara, J.,


Kasturiarachchi, J. & Foster, S. J. Multiple essential roles for EzrA in cell division of _Staphylococcus aureus_. _Mol. Microbiol._ 80, 542–555 (2011). Article  CAS  PubMed  Google


Scholar  * Haeusser, D. P. et al. EzrA prevents aberrant cell division by modulating assembly of the cytoskeletal protein FtsZ. _Mol. Microbiol._ 52, 801–814 (2004). Article  CAS  PubMed 


PubMed Central  Google Scholar  * Cleverley, R. M. et al. Structure and function of a spectrin-like regulator of bacterial cytokinesis. _Nat. Commun._ 5, 5421 (2014). Article  PubMed  Google


Scholar  * Machnicka, B. et al. Spectrins: a structural platform for stabilization and activation of membrane channels, receptors and transporters. _Biochim. Biophys. Acta_ 1838, 620–634


(2014). Article  CAS  PubMed  Google Scholar  * Haeusser, D. P., Garza, A. C., Buscher, A. Z. & Levin, P. A. The division inhibitor EzrA contains a seven-residue patch required for


maintaining the dynamic nature of the medial FtsZ ring. _J. Bacteriol._ 189, 9001–9010 (2007). Article  CAS  PubMed  PubMed Central  Google Scholar  * Land, A. D., Luo, Q. & Levin, P. A.


Functional domain analysis of the cell division inhibitor EzrA. _PLoS ONE_ 9, e102616 (2014). Article  PubMed  PubMed Central  CAS  Google Scholar  * Son, S. H. & Lee, H. H. The


N-terminal domain of EzrA binds to the C terminus of FtsZ to inhibit _Staphylococcus aureus_ FtsZ polymerization. _Biochem. Biophys. Res. Commun._ 433, 108–114 (2013). Article  CAS  PubMed 


Google Scholar  * van den Ent, F. & Löwe, J. Crystal structure of the cell division protein FtsA from _Thermotoga maritima_. _EMBO J._ 19, 5300–5307 (2000). Article  CAS  PubMed  PubMed


Central  Google Scholar  * Sanchez, M., Valencia, A., Ferrandiz, M. J., Sandler, C. & Vicente, M. Correlation between the structure and biochemical activities of FtsA, an essential cell


division protein of the actin family. _EMBO J._ 13, 4919–4925 (1994). Article  CAS  PubMed  PubMed Central  Google Scholar  * Feucht, A., Lucet, I., Yudkin, M. D. & Errington, J.


Cytological and biochemical characterization of the FtsA cell division protein of _Bacillus subtilis_. _Mol. Microbiol._ 40, 115–125 (2001). Article  CAS  PubMed  Google Scholar  *


Paradis-Bleau, C., Sanschagrin, F. & Levesque, R. C. Peptide inhibitors of the essential cell division protein FtsA. _Protein Eng. Des. Sel._ 18, 85–91 (2005). Article  CAS  PubMed 


Google Scholar  * Lara, B. et al. Cell division in cocci: localization and properties of the _Streptococcus pneumoniae_ FtsA protein. _Mol. Microbiol._ 55, 699–711 (2005).THE FIRST STUDY TO


DEMONSTRATE THAT FTSA HAS ATP-DEPENDENT POLYMERIZATION ACTIVITY. Article  CAS  PubMed  Google Scholar  * Szwedziak, P., Wang, Q., Freund, S. M. & Löwe, J. FtsA forms actin-like


protofilaments. _EMBO J._ 31, 2249–2260 (2012).THIS STUDY STRUCTURALLY DEFINES THE FTSA–FTSA AND FTSA–FTSZ INTERFACES. Article  CAS  PubMed  PubMed Central  Google Scholar  * Pichoff, S.,


Shen, B., Sullivan, B. & Lutkenhaus, J. FtsA mutants impaired for self-interaction bypass ZipA suggesting a model in which FtsA's self-interaction competes with its ability to


recruit downstream division proteins. _Mol. Microbiol._ 83, 151–167 (2012).THIS STUDY SHOWS THAT MANY MUTATIONS THAT INTERFERE WITH FTSA OLIGOMERIZATION RENDER ZIPA NON-ESSENTIAL. Article 


CAS  PubMed  Google Scholar  * Shiomi, D. & Margolin, W. Dimerization or oligomerization of the actin-like FtsA protein enhances the integrity of the cytokinetic Z ring. _Mol.


Microbiol._ 66, 1396–1415 (2007). CAS  PubMed  PubMed Central  Google Scholar  * Fujita, J. et al. Crystal structure of FtsA from _Staphylococcus aureus_. _FEBS Lett._ 588, 1879–1885 (2014).


Article  CAS  PubMed  Google Scholar  * Geissler, B., Elraheb, D. & Margolin, W. A gain of function mutation in _ftsA_ bypasses the requirement for the essential cell division gene


_zipA_ in _Escherichia coli_. _Proc. Natl Acad. Sci. USA_ 100, 4197–4202 (2003). Article  CAS  PubMed  PubMed Central  Google Scholar  * Geissler, B. & Margolin, W. Evidence for


functional overlap among multiple bacterial cell division proteins: compensating for the loss of FtsK. _Mol. Microbiol._ 58, 596–612 (2005). Article  CAS  PubMed  PubMed Central  Google


Scholar  * Beuria, T. K. et al. Adenine nucleotide-dependent regulation of assembly of bacterial tubulin-like FtsZ by a hypermorph of bacterial actin-like FtsA. _J. Biol. Chem._ 284,


14079–14086 (2009).THE FIRST EVIDENCE THAT FTSA CAN AFFECT THE ASSEMBLY STATE OF FTSZ. Article  CAS  PubMed  PubMed Central  Google Scholar  * Loose, M. & Mitchison, T. J. The bacterial


cell division proteins FtsA and FtsZ self-organize into dynamic cytoskeletal patterns. _Nat. Cell Biol._ 16, 38–46 (2014).THIS STUDY SHOWS THAT FTSA CAN REGULATE FTSZ ASSEMBLY DYNAMICS ON A


PHYSIOLOGICAL MEMBRANE SURFACE. Article  CAS  PubMed  Google Scholar  * Modi, K. & Misra, H. S. Dr-FtsA, an actin homologue in _Deinococcus radiodurans_ differentially affects Dr-FtsZ


and Ec-FtsZ functions _in vitro_. _PLoS ONE_ 9, e115918 (2014). Article  PubMed  PubMed Central  CAS  Google Scholar  * Du, S., Park, K.-T. & Lutkenhaus, J. Oligomerization of FtsZ


converts the FtsZ tail motif (CCTP) into a multivalent ligand with high avidity for partners ZipA and SlmA. _Mol. Microbiol._ 95, 173–188 (2015). Article  CAS  PubMed  Google Scholar  *


Herricks, J. R., Nguyen, D. & Margolin, W. A thermosensitive defect in the ATP binding pocket of FtsA can be suppressed by allosteric changes in the dimer interface. _Mol. Microbiol._


94, 713–727 (2014). Article  CAS  PubMed  PubMed Central  Google Scholar  * Shen, B. & Lutkenhaus, J. The conserved C-terminal tail of FtsZ is required for the septal localization and


division inhibitory activity of MinCC/MinD. _Mol. Microbiol._ 72, 410–424 (2009). Article  CAS  PubMed  PubMed Central  Google Scholar  * Rowlett, V. W. & Margolin, W. Asymmetric


constriction of dividing _Escherichia coli_ cells induced by expression of a fusion between two Min proteins. _J. Bacteriol._ 196, 2089–2100 (2014). Article  PubMed  PubMed Central  CAS 


Google Scholar  * Szwedziak, P., Wang, Q., Bharat, T. A. M., Tsim, M. & Löwe, J. Architecture of the ring formed by the tubulin homologue FtsZ in bacterial cell division. _eLife_ 3,


e04601 (2014). Article  PubMed  PubMed Central  Google Scholar  * Hernandez-Rocamora, V. M. et al. Dynamic interaction of the _Escherichia coli_ cell division ZipA and FtsZ proteins


evidenced in nanodiscs. _J. Biol. Chem._ 287, 30097–30104 (2012). Article  CAS  PubMed  PubMed Central  Google Scholar  * Skoog, K. & Daley, D. O. The _Escherichia coli_ cell division


protein ZipA forms homodimers prior to association with FtsZ. _Biochemistry_ 51, 1407–1415 (2012). Article  CAS  PubMed  Google Scholar  * Jaiswal, R. et al. E93R substitution of


_Escherichia coli_ FtsZ induces bundling of protofilaments, reduces GTPase activity, and impairs bacterial cytokinesis. _J. Biol. Chem._ 285, 31796–31805 (2010). Article  CAS  PubMed  PubMed


Central  Google Scholar  * Haeusser, D. P., Rowlett, V. W. & Margolin, W. A mutation in _Escherichia coli ftsZ_ bypasses the requirement for the essential division gene _zipA_ and


confers resistance to FtsZ assembly inhibitors by stabilizing protofilament bundling. _Mol. Microbiol._ 97, 988–1005 (2015). Article  CAS  PubMed  PubMed Central  Google Scholar  * Dewar, S.


J., Begg, K. J. & Donachie, W. D. Inhibition of cell division initiation by an imbalance in the ratio of FtsA to FtsZ. _J. Bacteriol._ 174, 6314–6316 (1992). Article  CAS  PubMed 


PubMed Central  Google Scholar  * Mukherjee, A. & Lutkenhaus, J. Dynamic assembly of FtsZ regulated by GTP hydrolysis. _EMBO J._ 17, 462–469 (1998). Article  CAS  PubMed  PubMed Central


  Google Scholar  * Scheffers, D. J., de Wit, J. G., den Blaauwen, T. & Driessen, A. J. GTP hydrolysis of cell division protein FtsZ: evidence that the active site is formed by the


association of monomers. _Biochemistry_ 41, 521–529 (2002). Article  CAS  PubMed  Google Scholar  * Huang, K. H., Durand-Heredia, J. & Janakiraman, A. FtsZ ring stability: of bundles,


tubules, crosslinks, and curves. _J. Bacteriol._ 195, 1859–1868 (2013). Article  CAS  PubMed  PubMed Central  Google Scholar  * Meier, E. L. & Goley, E. D. Form and function of the


bacterial cytokinetic ring. _Curr. Opin. Cell Biol._ 26, 147 (2014). Article  CAS  Google Scholar  * Rowlett, V. W. & Margolin, W. The bacterial divisome: ready for its close-up. _Phil.


Trans. R. Soc. Lond. B Biol. Sci._ 370, 20150028 (2015). Article  CAS  Google Scholar  * Li, Z., Trimble, M. J., Brun, Y. V. & Jensen, G. J. The structure of FtsZ filaments _in vivo_


suggests a force-generating role in cell division. _EMBO J._ 26, 4694–4708 (2007).THIS STUDY PROVIDES A GLIMPSE OF THE Z RING AT HIGH RESOLUTION BY ELECTRON TOMOGRAPHY. Article  CAS  PubMed


  PubMed Central  Google Scholar  * Holden, S. J. et al. High throughput 3D super-resolution microscopy reveals _Caulobacter crescentus in vivo_ Z-ring organization. _Proc. Natl Acad. Sci.


USA_ 111, 4566–4571 (2014). Article  CAS  PubMed  PubMed Central  Google Scholar  * Jacq, M. et al. Remodeling of the Z-ring nanostructure during the _Streptococcus pneumoniae_ cell cycle


revealed by photoactivated localization microscopy. _mBio_ 6, e01108-15 (2015). Article  PubMed  PubMed Central  CAS  Google Scholar  * Strauss, M. P. et al. 3D-SIM super resolution


microscopy reveals a bead-like arrangement for FtsZ and the division machinery: implications for triggering cytokinesis. _PLoS Biol._ 10, e1001389 (2012).THIS PAPER PROVIDES THE DIRECT


VISUAL EVIDENCE THAT THE Z RING MAY BE A NON-UNIFORM STRUCTURE. Article  CAS  PubMed  PubMed Central  Google Scholar  * Rowlett, V. W. & Margolin, W. 3D-SIM super-resolution of FtsZ and


its membrane tethers in _Escherichia coli_ cells. _Biophys. J._ 107, L17–L20 (2014). Article  CAS  PubMed  PubMed Central  Google Scholar  * Tsui, H. C. T. et al. Pbp2x localizes separately


from Pbp2b and other peptidoglycan synthesis proteins during later stages of cell division of _Streptococcus pneumoniae_ D39. _Mol. Microbiol._ 94, 21–40 (2014). Article  CAS  PubMed  PubMed


Central  Google Scholar  * Piro, O., Carmon, G., Feingold, M. & Fishov, I. Three-dimensional structure of the Z-ring as a random network of FtsZ filaments. _Env. Microbiol._ 15,


3252–3258 (2013). Article  CAS  Google Scholar  * Si, F., Busiek, K., Margolin, W. & Sun, S. X. Organization of FtsZ filaments in the bacterial division ring measured from polarized


fluorescence microscopy. _Biophys. J._ 105, 1976–1986 (2013). Article  CAS  PubMed  PubMed Central  Google Scholar  * Judd, E. M. et al. Distinct constrictive processes, separated in time


and space, divide _Caulobacter_ inner and outer membranes. _J. Bacteriol._ 187, 6874–6882 (2005). Article  CAS  PubMed  PubMed Central  Google Scholar  * Gundogdu, M. E. et al. Large ring


polymers align FtsZ polymers for normal septum formation. _EMBO J._ 30, 617–626 (2011). Article  PubMed  PubMed Central  CAS  Google Scholar  * Hale, C. A., Rhee, A. C. & de Boer, P. A.


ZipA-induced bundling of FtsZ polymers mediated by an interaction between C-terminal domains. _J. Bacteriol._ 182, 5153–5166 (2000). Article  CAS  PubMed  PubMed Central  Google Scholar  *


Roach, E. J., Kimber, M. S. & Khursigara, C. M. Crystal structure and site-directed mutational analysis reveals key residues involved in _Escherichia coli_ ZapA function. _J. Biol.


Chem._ 289, 23276–23286 (2014). Article  CAS  PubMed  PubMed Central  Google Scholar  * Durand-Heredia, J. M., Yu, H. H., De Carlo, S., Lesser, C. F. & Janakiraman, A. Identification and


characterization of ZapC, a stabilizer of the FtsZ ring in _Escherichia coli_. _J. Bacteriol._ 193, 1405–1413 (2011). Article  CAS  PubMed  PubMed Central  Google Scholar  * Hale, C. A. et


al. Identification of _Escherichia coli_ ZapC (YcbW) as a component of the division apparatus that binds and bundles FtsZ polymers. _J. Bacteriol._ 193, 1393–1404 (2011). Article  CAS 


PubMed  PubMed Central  Google Scholar  * Durand-Heredia, J., Rivkin, E., Fan, G., Morales, J. & Janakiraman, A. Identification of ZapD as a cell division factor that promotes the


assembly of FtsZ in _Escherichia coli_. _J. Bacteriol._ 194, 3189–3198 (2012). Article  CAS  PubMed  PubMed Central  Google Scholar  * Buss, J. et al. _In vivo_ organization of the FtsZ-ring


by ZapA and ZapB revealed by quantitative super-resolution microscopy. _Mol. Microbiol._ 89, 1099–1120 (2013). Article  CAS  PubMed  PubMed Central  Google Scholar  * Gardner, K. A., Moore,


D. A. & Erickson, H. P. The C-terminal linker of _Escherichia coli_ FtsZ functions as an intrinsically disordered peptide. _Mol. Microbiol._ 89, 264–275 (2013). Article  CAS  PubMed 


PubMed Central  Google Scholar  * Buske, P. J. & Levin, P. A. A flexible C-terminal linker is required for proper FtsZ assembly _in vitro_ and cytokinetic ring formation _in vivo_. _Mol.


Microbiol._ 89, 249–263 (2013). Article  CAS  PubMed  PubMed Central  Google Scholar  * Sundararajan, K. et al. The bacterial tubulin FtsZ requires its intrinsically disordered linker to


direct robust cell wall construction. _Nat. Commun._ 6, 7281 (2015). Article  CAS  PubMed  Google Scholar  * Buske, P. J. & Levin, P. A. Extreme C-terminus of bacterial cytoskeletal


protein FtsZ plays fundamental role in assembly independent of modulatory proteins. _J. Biol. Chem._ 287, 10945–10957 (2012). Article  CAS  PubMed  PubMed Central  Google Scholar  * Fu, G.


et al. _in vivo_ structure of the _E. coli_ FtsZ-ring revealed by photoactivated localization microscopy (PALM). _PLoS ONE_ 5, e12682 (2010). Article  PubMed  CAS  Google Scholar  * Aarsman,


M. E. et al. Maturation of the _Escherichia coli_ divisome occurs in two steps. _Mol. Microbiol._ 55, 1631–1645 (2005). Article  CAS  PubMed  Google Scholar  * Gamba, P., Veening, J. W.,


Saunders, N. J., Hamoen, L. W. & Daniel, R. A. Two-step assembly dynamics of the _Bacillus subtilis_ divisome. _J. Bacteriol._ 191, 4186–4194 (2009). Article  CAS  PubMed  PubMed Central


  Google Scholar  * Mohammadi, T. et al. Identification of FtsW as a transporter of lipid-linked cell wall precursors across the membrane. _EMBO J._ 30, 1425–1432 (2011). Article  CAS 


PubMed  PubMed Central  Google Scholar  * Sham, L. T. et al. Bacterial cell wall. MurJ is the flippase of lipid-linked precursors for peptidoglycan biogenesis. _Science_ 345, 220–222 (2014).


Article  CAS  PubMed  PubMed Central  Google Scholar  * Van den Berg van Saparoea, H. B. et al. Fine-mapping the contact sites of the _Escherichia coli_ cell division proteins FtsB and FtsL


on the FtsQ protein. _J. Biol. Chem._ 288, 24340–24350 (2013). Article  CAS  PubMed  PubMed Central  Google Scholar  * Khadria, A. S. & Senes, A. The transmembrane domains of the


bacterial cell division proteins FtsB and FtsL form a stable high-order oligomer. _Biochemistry_ 52, 7542–7550 (2013). Article  CAS  PubMed  Google Scholar  * Glas, M. et al. The soluble


periplasmic domains of _E. coli_ cell division proteins FtsQ/FtsB/FtsL form a trimeric complex with sub-micromolar affinity. _J. Biol. Chem._ 290, 21498–21509 (2015). Article  CAS  PubMed 


PubMed Central  Google Scholar  * Bottomley, A. L. et al. _Staphylococcus aureus_ DivIB is a peptidoglycan-binding protein that is required for a morphological checkpoint in cell division.


_Mol. Microbiol._ 94, 1041–1064 (2014). Article  CAS  Google Scholar  * Grenga, L., Rizzo, A., Paolozzi, L. & Ghelardini, P. Essential and non-essential interactions in interactome


networks: the _Escherichia coli_ division proteins FtsQ–FtsN interaction. _Env. Microbiol._ 15, 3210–3217 (2013). Article  CAS  Google Scholar  * Alexeeva, S. et al. Direct interactions of


early and late assembling division proteins in _Escherichia coli_ cells resolved by FRET. _Mol. Microbiol._ 77, 384–398 (2010). Article  CAS  PubMed  Google Scholar  * Busiek, K. K., Eraso,


J. M., Wang, Y. & Margolin, W. The early divisome protein FtsA interacts directly through its 1c subdomain with the cytoplasmic domain of the late divisome protein FtsN. _J. Bacteriol._


194, 1989–2000 (2012). Article  CAS  PubMed  PubMed Central  Google Scholar  * Rico, A. I., Garcia-Ovalle, M., Mingorance, J. & Vicente, M. Role of two essential domains of _Escherichia


coli_ FtsA in localization and progression of the division ring. _Mol. Microbiol._ 53, 1359–1371 (2004). Article  CAS  PubMed  Google Scholar  * Yahashiri, A., Jorgenson, M. A. & Weiss,


D. S. Bacterial SPOR domains are recruited to septal peptidoglycan by binding to glycan strands that lack stem peptides. _Proc. Natl Acad. Sci. USA_ 112, 11347–11352 (2015). Article  CAS 


PubMed  PubMed Central  Google Scholar  * Gerding, M. A. et al. Self-enhanced accumulation of FtsN at division sites and roles for other proteins with a SPOR domain (DamX, DedD, and RlpA) in


_Escherichia coli_ cell constriction. _J. Bacteriol._ 191, 7383–7401 (2009). Article  CAS  PubMed  PubMed Central  Google Scholar  * Busiek, K. K. & Margolin, W. A role for FtsA in


SPOR-independent localization of the essential _Escherichia coli_ cell division protein FtsN. _Mol. Microbiol._ 92, 1212–1226 (2014). Article  CAS  PubMed  PubMed Central  Google Scholar  *


Bernard, C. S., Sadasivam, M., Shiomi, D. & Margolin, W. An altered FtsA can compensate for the loss of essential cell division protein FtsN in _Escherichia coli_. _Mol. Microbiol._ 64,


1289–1305 (2007). Article  CAS  PubMed  PubMed Central  Google Scholar  * Liu, B., Persons, L., Lee, L. & de Boer, P. Roles for both FtsA and the FtsBLQ subcomplex in FtsN-stimulated


cell constriction in _Escherichia coli_. _Mol. Microbiol._ 95, 945–970 (2015).TOGETHER WITH REFERENCES 89, 93 AND 97, THIS STUDY PROVIDES ADDITIONAL EVIDENCE FOR SEVERAL SIGNALLING PATHWAYS


IN THE DIVISOME TO ACTIVATE CYTOKINESIS. Article  CAS  PubMed  PubMed Central  Google Scholar  * Pichoff, S., Du, S. & Lutkenhaus, J. The bypass of ZipA by overexpression of FtsN


requires a previously unknown conserved FtsN motif essential for FtsA–FtsN interaction supporting a model in which FtsA monomers recruit late cell division proteins to the Z ring. _Mol.


Microbiol._ 95, 971–987 (2015). Article  CAS  PubMed  PubMed Central  Google Scholar  * Tsang, M. J. & Bernhardt, T. G. A role for the FtsQLB complex in cytokinetic ring activation


revealed by an _ftsL_ allele that accelerates division. _Mol. Microbiol._ 95, 925–944 (2015). Article  CAS  PubMed  PubMed Central  Google Scholar  * Potluri, L. P., Kannan, S. & Young,


K. D. ZipA is required for FtsZ-dependent preseptal peptidoglycan synthesis prior to invagination during cell division. _J. Bacteriol._ 194, 5334–5342 (2012). Article  CAS  PubMed  PubMed


Central  Google Scholar  * Claessen, D. et al. Control of the cell elongation–division cycle by shuttling of PBP1 protein in _Bacillus subtilis_. _Mol. Microbiol._ 68, 1029–1046 (2008).


Article  CAS  PubMed  Google Scholar  * Land, A. D. et al. Requirement of essential Pbp2x and GpsB for septal ring closure in _Streptococcus pneumoniae_ D39. _Mol. Microbiol._ 90, 939–955


(2013). Article  CAS  PubMed  PubMed Central  Google Scholar  * Fleurie, A. et al. Interplay of the serine/threonine-kinase StkP and the paralogs DivIVA and GpsB in pneumococcal cell


elongation and division. _PLoS Genet._ 10, e1004275 (2014). Article  PubMed  PubMed Central  CAS  Google Scholar  * Pompeo, F., Foulquier, E., Serrano, B., Grangeasse, C. & Galinier, A.


Phosphorylation of the cell division protein GpsB regulates PrkC kinase activity through a negative feedback loop in _Bacillus subtilis_. _Mol. Microbiol._ 97, 139–150 (2015). Article  CAS 


PubMed  Google Scholar  * Gerding, M. A., Ogata, Y., Pecora, N. D., Niki, H. & de Boer, P. A. The _trans_-envelope Tol–Pal complex is part of the cell division machinery and required for


proper outer-membrane invagination during cell constriction in _E. coli_. _Mol. Microbiol._ 63, 1008–1025 (2007).THE FIRST MECHANISM FOR COORDINATING INNER MEMBRANE AND OUTER MEMBRANE


CONSTRICTION DURING CYTOKINESIS IN A GRAM-NEGATIVE BACTERIUM. Article  CAS  PubMed  PubMed Central  Google Scholar  * Gray, A. N. et al. Coordination of peptidoglycan synthesis and outer


membrane constriction during _Escherichia coli_ cell division. _eLife_ 4, e07118 (2015). Article  PubMed Central  Google Scholar  * Corbin, B. D., Wang, Y., Beuria, T. K. & Margolin, W.


Interaction between cell division proteins FtsE and FtsZ. _J. Bacteriol._ 189, 3026–3035 (2007). Article  CAS  PubMed  PubMed Central  Google Scholar  * Yang, D. C. et al. An ATP-binding


cassette transporter-like complex governs cell-wall hydrolysis at the bacterial cytokinetic ring. _Proc. Natl Acad. Sci. USA_ 108, E1052–E1060 (2011). Article  PubMed  PubMed Central  Google


Scholar  * Jorgenson, M. A., Chen, Y., Yahashiri, A., Popham, D. L. & Weiss, D. S. The bacterial septal ring protein RlpA is a lytic transglycosylase that contributes to rod shape and


daughter cell separation in _Pseudomonas aeruginosa_. _Mol. Microbiol._ 93, 113–128 (2014). Article  CAS  PubMed  PubMed Central  Google Scholar  * Osawa, M., Anderson, D. E. & Erickson,


H. P. Reconstitution of contractile FtsZ rings in liposomes. _Science_ 320, 792–794 (2008).THE FIRST STUDY TO DEMONSTRATE THAT Z RINGS CAN BE RECONSTITUTED _IN VITRO_. Article  CAS  PubMed


  PubMed Central  Google Scholar  * Osawa, M. & Erickson, H. P. Liposome division by a simple bacterial division machinery. _Proc. Natl Acad. Sci. USA_ 110, 11000–11004 (2013).THIS STUDY


SHOWS THAT PURIFIED FTSZ AND FTSA* ARE SUFFICIENT TO CONSTRICT LIPOSOMES. Article  CAS  PubMed  PubMed Central  Google Scholar  * Dow, C. E., van den Berg, H. A., Roper, D. I. & Rodger,


A. Biological insights from a simulation model of the critical FtsZ accumulation required for prokaryotic cell division. _Biochemistry_ 54, 3803–3813 (2015). Article  CAS  PubMed  Google


Scholar  * Li, Y. et al. FtsZ protofilaments use a hinge-opening mechanism for constrictive force generation. _Science_ 341, 392–395 (2013).THIS PAPER PROPOSES A MECHANISM FOR FORCE


GENERATION BY FTSZ FILAMENTS ATTACHED TO MEMBRANES. Article  CAS  PubMed  Google Scholar  * Söderström, B. et al. Disassembly of the divisome in _Escherichia coli_: evidence that FtsZ


dissociates before compartmentalization. _Mol. Microbiol._ 92, 1–9 (2014). Article  PubMed  PubMed Central  CAS  Google Scholar  * Krupka, M. et al. Role of the FtsA C-terminus as a switch


for polymerization and membrane association. _mBio_ 5, e02221 (2014).THIS STUDY FURTHER DEFINES THE ROLE OF ATP BINDING FOR FTSA ACTIVITY. Article  CAS  PubMed  PubMed Central  Google


Scholar  * Cabre, E. J. et al. Bacterial division proteins FtsZ and ZipA induce vesicle shrinkage and cell membrane invagination. _J. Biol. Chem._ 288, 26625–26634 (2013). Article  CAS 


PubMed  PubMed Central  Google Scholar  * Weiss, D. S. Last but not least: new insights into how FtsN triggers constriction during _Escherichia coli_ cell division. _Mol. Microbiol._ 903–909


(2015). Article  CAS  PubMed  Google Scholar  * Tsang, M. J. & Bernhardt, T. G. Guiding divisome assembly and controlling its activity. _Curr. Opin. Microbiol._ 24, 60–65 (2015).


Article  CAS  PubMed  PubMed Central  Google Scholar  * Weart, R. B. et al. A metabolic sensor governing cell size in bacteria. _Cell_ 130, 335–347 (2007).THIS STUDY IS THE FIRST TO


DEMONSTRATE A MECHANISM FOR METABOLIC REGULATION OF BACTERIAL CELL DIVISION. Article  CAS  PubMed  PubMed Central  Google Scholar  * Chien, A. C., Zareh, S. K., Wang, Y. M. & Levin, P.


A. Changes in the oligomerization potential of the division inhibitor UgtP co-ordinate _Bacillus subtilis_ cell size with nutrient availability. _Mol. Microbiol._ 86, 594–610 (2012). Article


  CAS  PubMed  PubMed Central  Google Scholar  * Hill, N. S., Buske, P. J., Shi, Y. & Levin, P. A. A moonlighting enzyme links _Escherichia coli_ cell size with central metabolism. _PLoS


Genet._ 9, e1003663 (2013). Article  CAS  PubMed  PubMed Central  Google Scholar  * Surdova, K. et al. The conserved DNA-binding protein WhiA is involved in cell division in _Bacillus


subtilis_. _J. Bacteriol._ 195, 5450–5460 (2013). Article  CAS  PubMed  PubMed Central  Google Scholar  * Monahan, L. G., Hajduk, I. V., Blaber, S. P., Charles, I. G. & Harry, E. J.


Coordinating bacterial cell division with nutrient availability: a role for glycolysis. _mBio_ 5, e00935-14 (2014). Article  PubMed  PubMed Central  CAS  Google Scholar  * Radhakrishnan, S.


K., Pritchard, S. & Viollier, P. H. Coupling prokaryotic cell fate and division control with a bifunctional and oscillating oxidoreductase homolog. _Dev. Cell_ 18, 90–101 (2010). Article


  CAS  PubMed  Google Scholar  * Beaufay, F. et al. A NAD-dependent glutamate dehydrogenase coordinates metabolism with cell division in _Caulobacter crescentus_. _EMBO J._ 34, 1786–1800


(2015). Article  CAS  PubMed  PubMed Central  Google Scholar  * Takada, H. et al. An essential enzyme for phospholipid synthesis associates with the _Bacillus subtilis_ divisome. _Mol.


Microbiol._ 91, 242–255 (2014). Article  CAS  PubMed  Google Scholar  * Weart, R. B., Nakano, S., Lane, B. E., Zuber, P. & Levin, P. A. The ClpX chaperone modulates assembly of the


tubulin-like protein FtsZ. _Mol. Microbiol._ 57, 238–249 (2005). Article  CAS  PubMed  PubMed Central  Google Scholar  * Camberg, J. L., Hoskins, J. R. & Wickner, S. The interplay of


ClpXP with the cell division machinery in _Escherichia coli_. _J. Bacteriol._ 193, 1911–1918 (2011). Article  CAS  PubMed  PubMed Central  Google Scholar  * Williams, B., Bhat, N., Chien, P.


& Shapiro, L. ClpXP and ClpAP proteolytic activity on divisome substrates is differentially regulated following the _Caulobacter_ asymmetric cell division. _Mol. Microbiol._ 93, 853–866


(2014). Article  CAS  PubMed  PubMed Central  Google Scholar  * Chen, Y., Milam, S. L. & Erickson, H. P. SulA inhibits assembly of FtsZ by a simple sequestration mechanism.


_Biochemistry_ 51, 3100–3109 (2012). Article  CAS  PubMed  Google Scholar  * Modell, J. W., Hopkins, A. C. & Laub, M. T. DNA damage checkpoint in _Caulobacter crescentus_ inhibits cell


division through a direct interaction with FtsW. _Genes Dev._ 25, 1328–1343 (2011). Article  CAS  PubMed  PubMed Central  Google Scholar  * Modell, J. W., Kambara, T. K., Perchuk, B. S.


& Laub, M. T. DNA damage-induced, SOS-independent checkpoint regulates cell division in _Caulobacter crescentus_. _PLoS Biol._ 12, e1001977 (2014). Article  PubMed  PubMed Central  CAS 


Google Scholar  * Mo, A. H. & Burkholder, W. F. YneA, an SOS-induced inhibitor of cell division in _Bacillus subtilis_, is regulated posttranslationally and requires the transmembrane


region for activity. _J. Bacteriol._ 192, 3159–3173 (2010). Article  CAS  PubMed  PubMed Central  Google Scholar  * Buchholz, M., Nahrstedt, H., Pillukat, M. H., Deppe, V. & Meinhardt,


F. _yneA_ mRNA instability is involved in temporary inhibition of cell division during the SOS response of _Bacillus megaterium_. _Microbiology_ 159, 1564–1574 (2013). Article  CAS  PubMed 


Google Scholar  * Marteyn, B. S. et al. ZapE is a novel cell division protein interacting with FtsZ and modulating the Z-ring dynamics. _mBio_ 5, e00022-14 (2014). Article  PubMed  PubMed


Central  CAS  Google Scholar  * Koprowski, P. et al. Cytoplasmic domain of MscS interacts with cell division protein FtsZ: A possible non-channel function of the mechanosensitive channel in


_Escherichia coli_. _PLoS ONE_ 10, e0127029 (2015). Article  PubMed  PubMed Central  CAS  Google Scholar  * Wilson, M. E., Jensen, G. S. & Haswell, E. S. Two mechanosensitive channel


homologs influence division ring placement in _Arabidopsis_ chloroplasts. _Plant Cell_ 23, 2939–2949 (2011). Article  CAS  PubMed  PubMed Central  Google Scholar  * Mercier, R., Kawai, Y.


& Errington, J. General principles for the formation and proliferation of a wall-free (L-form) state in bacteria. _eLife_ 3, e04629 (2014). Article  PubMed Central  Google Scholar  *


Lock, R. L. & Harry, E. J. Cell-division inhibitors: new insights for future antibiotics. _Nat. Rev. Drug Discov._ 7, 324–338 (2008). Article  CAS  PubMed  Google Scholar  * Ojima, I.,


Kumar, K., Awasthi, D. & Vineberg, J. G. Drug discovery targeting cell division proteins, microtubules and FtsZ. _Bioorg. Med. Chem._ 22, 5060–5077 (2014). Article  CAS  PubMed  PubMed


Central  Google Scholar  * Sass, P. & Brotz-Oesterhelt, H. Bacterial cell division as a target for new antibiotics. _Curr. Opin. Microbiol._ 16, 522–530 (2013). Article  CAS  PubMed 


Google Scholar  * Artola, M. et al. Effective GTP-replacing FtsZ inhibitors and antibacterial mechanism of action. _ACS Chem. Biol._ 10, 834–843 (2014). Article  PubMed  CAS  Google Scholar


  * Haeusser, D. P. et al. The Kil peptide of bacteriophage λ blocks _Escherichia coli_ cytokinesis via ZipA-dependent inhibition of FtsZ assembly. _PLoS Genet._ 10, e1004217 (2014). Article


  PubMed  PubMed Central  CAS  Google Scholar  * Kiro, R. et al. Gene product 0.4 increases bacteriophage T7 competitiveness by inhibiting host cell division. _Proc. Natl Acad. Sci. USA_


110, 19549–19554 (2013). Article  CAS  PubMed  PubMed Central  Google Scholar  * Hernandez-Rocamora, V. M., Alfonso, C., Margolin, W., Zorrilla, S. & Rivas, G. Evidence that


bacteriophage λ Kil peptide inhibits bacterial cell division by disrupting FtsZ protofilaments and sequestering protein subunits. _J. Biol. Chem._ 290, 20325–20335 (2015). Article  CAS 


PubMed  PubMed Central  Google Scholar  * Ballesteros-Plaza, D., Holguera, I., Scheffers, D. J., Salas, M. & Munoz-Espin, D. Phage ϕ29 protein p1 promotes replication by associating with


the FtsZ ring of the divisome in _Bacillus subtilis_. _Proc. Natl Acad. Sci. USA_ 110, 12313–12318 (2013). Article  CAS  PubMed  PubMed Central  Google Scholar  * Bisson-Filho, A. W. et al.


FtsZ filament capping by MciZ, a developmental regulator of bacterial division. _Proc. Natl Acad. Sci. USA_ 112, E2130–E2138 (2015). Article  CAS  PubMed  PubMed Central  Google Scholar  *


Pende, N. et al. Size-independent symmetric division in extraordinarily long cells. _Nat. Commun._ 5, 4803 (2014). Article  CAS  PubMed  Google Scholar  * Donovan, C. & Bramkamp, M. Cell


division in Corynebacterineae. _Front. Microbiol._ 5, 132 (2014). Article  PubMed  PubMed Central  Google Scholar  * Kieser, K. J. & Rubin, E. J. How sisters grow apart: mycobacterial


growth and division. _Nat. Rev. Microbiol._ 12, 550–562 (2014). Article  CAS  PubMed  PubMed Central  Google Scholar  * Ramos-Leon, F., Mariscal, V., Frias, J. E., Flores, E. & Herrero,


A. Divisome-dependent subcellular localization of cell-cell joining protein SepJ in the filamentous cyanobacterium _Anabaena_. _Mol. Microbiol._ 96, 566–580 (2015). Article  CAS  PubMed 


Google Scholar  * Pinho, M. G., Kjos, M. & Veening, J.-W. How to get (a)round: mechanisms controlling growth and division of coccoid bacteria. _Nat. Rev. Microbiol._ 11, 601–614 (2013).


Article  CAS  PubMed  Google Scholar  * Angert, E. R. Alternatives to binary fission in bacteria. _Nat. Rev. Microbiol._ 3, 214–224 (2005). Article  CAS  PubMed  Google Scholar  * Tuson, H.


H. & Biteen, J. S. Unveiling the inner workings of live bacteria using super-resolution microscopy. _Anal. Chem._ 87, 42–63 (2015). Article  CAS  PubMed  Google Scholar  * Asano, S.,


Engel, B. D. & Baumeister, W. _In situ_ cryo-electron tomography: A post-reductionist approach to structural biology. _J. Mol. Biol._ 428, 332–343 (2015). Article  PubMed  CAS  Google


Scholar  * Busiek, K. K. & Margolin, W. Bacterial actin and tubulin homologs in cell growth and division. _Curr. Biol._ 25, 245–254 (2015). Article  CAS  Google Scholar  * Grainge, I.


FtsK–a bacterial cell division checkpoint? _Mol. Microbiol._ 78, 1055–1057 (2010). Article  CAS  PubMed  Google Scholar  * Buss, J. et al. A multi-layered protein network stabilizes the


_Escherichia coli_ FtsZ-ring and modulates constriction dynamics. _PLoS Genet._ 11, e1005128 (2015). Article  PubMed  PubMed Central  CAS  Google Scholar  Download references


ACKNOWLEDGEMENTS The authors gratefully acknowledge support from the US National Institute of General Medical Sciences (R01-GM61074 to W.M.) and the US National Institute of Research


Resources (S10RR029552) for the use of the 3D-SIM microscope. AUTHOR INFORMATION AUTHORS AND AFFILIATIONS * Department of Microbiology and Molecular Genetics, McGovern Medical School, 6431


Fannin Street, Houston, 77030, Texas, USA Daniel P. Haeusser & William Margolin * Biology Department, Canisius College, 2001 Main Street, Buffalo, 14208, New York, USA Daniel P. Haeusser


Authors * Daniel P. Haeusser View author publications You can also search for this author inPubMed Google Scholar * William Margolin View author publications You can also search for this


author inPubMed Google Scholar CORRESPONDING AUTHOR Correspondence to William Margolin. ETHICS DECLARATIONS COMPETING INTERESTS The authors declare no competing financial interests.


POWERPOINT SLIDES POWERPOINT SLIDE FOR FIG. 1 POWERPOINT SLIDE FOR FIG. 2 POWERPOINT SLIDE FOR FIG. 3 POWERPOINT SLIDE FOR FIG. 4 POWERPOINT SLIDE FOR FIG. 5 GLOSSARY * Cytokinesis The


splitting of the contents of a cell to make two cells. * Nucleoids The nucleus-like organized structures of bacterial chromosomes. * Mycelium A filamentous, branched network of multinucleate


cells growing on a surface. * Lipid II flippase A membrane protein that transfers lipid-linked peptidoglycan precursors from the inner leaflet of the cytoplasmic membrane to the outer


leaflet of the cytoplasmic membrane, so that they can be incorporated into the cell wall. * Sidewall The peptidoglycan layer in many rod-shaped bacteria that is active in elongating the cell


and comprises most of the straight wall of the cell with the exception of cell poles and the division septum. * Thermosensitive _ftsZ_ mutant A point mutation in the _ftsZ_ gene that


permits normal growth and division at 30 °C but stops division at 42 °C despite continued growth, resulting in filamentous, multinucleate cells (hence the term _fts_ for filamentous


temperature sensitive mutants). * Central metabolism Metabolic pathways, such as the tricarboxylic acid (TCA) cycle, that provide precursor metabolites for all other pathways that are


required for growth. * ClpXP A protein chaperone–protease machine that targets certain proteins for unfolding and degradation. * SOS response Induced by DNA damage, the SOS response is a


stress response that results in the expression of many genes that are important for the protection of chromosomal DNA. RIGHTS AND PERMISSIONS Reprints and permissions ABOUT THIS ARTICLE CITE


THIS ARTICLE Haeusser, D., Margolin, W. Splitsville: structural and functional insights into the dynamic bacterial Z ring. _Nat Rev Microbiol_ 14, 305–319 (2016).


https://doi.org/10.1038/nrmicro.2016.26 Download citation * Published: 04 April 2016 * Issue Date: May 2016 * DOI: https://doi.org/10.1038/nrmicro.2016.26 SHARE THIS ARTICLE Anyone you share


the following link with will be able to read this content: Get shareable link Sorry, a shareable link is not currently available for this article. Copy to clipboard Provided by the Springer


Nature SharedIt content-sharing initiative