Alternative polyadenylation of mrna precursors

feature-image

Play all audios:

Loading...

KEY POINTS * Alternative polyadenylation (APA) is a widespread mechanism of gene regulation that generates distinct 3′ ends in transcripts made by RNA polymerase II. * APA is tissue specific


and globally regulated in various conditions, such as cell proliferation and differentiation, and in response to extracellular cues. * APA occurring in 3′ untranslated regions (3′ UTRs)


leads to the production of mRNA isoforms with different metabolisms and can also affect protein localization. * APA occurring in the region upstream of the 3′ UTR is often coupled with


splicing and can lead to the production of distinct protein isoforms. It can also function by repressing gene expression. * APA is regulated by several known mechanisms, including regulation


of the levels of core RNA-processing factors and other RNA-binding proteins, as well as by splicing and transcriptional dynamics. ABSTRACT Alternative polyadenylation (APA) is an


RNA-processing mechanism that generates distinct 3′ termini on mRNAs and other RNA polymerase II transcripts. It is widespread across all eukaryotic species and is recognized as a major


mechanism of gene regulation. APA exhibits tissue specificity and is important for cell proliferation and differentiation. In this Review, we discuss the roles of APA in diverse cellular


processes, including mRNA metabolism, protein diversification and protein localization, and more generally in gene regulation. We also discuss the molecular mechanisms underlying APA, such


as variation in the concentration of core processing factors and RNA-binding proteins, as well as transcription-based regulation. Access through your institution Buy or subscribe This is a


preview of subscription content, access via your institution ACCESS OPTIONS Access through your institution Subscribe to this journal Receive 12 print issues and online access $209.00 per


year only $17.42 per issue Learn more Buy this article * Purchase on SpringerLink * Instant access to full article PDF Buy now Prices may be subject to local taxes which are calculated


during checkout ADDITIONAL ACCESS OPTIONS: * Log in * Learn about institutional subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS ALTERNATIVE


POLYADENYLATION BY SEQUENTIAL ACTIVATION OF DISTAL AND PROXIMAL POLYA SITES Article 10 January 2022 CONTEXT-SPECIFIC REGULATION AND FUNCTION OF MRNA ALTERNATIVE POLYADENYLATION Article 07


July 2022 EXTENSIVE 5′-SURVEILLANCE GUARDS AGAINST NON-CANONICAL NAD-CAPS OF NUCLEAR MRNAS IN YEAST Article Open access 02 November 2020 REFERENCES * Richard, P. & Manley, J. L.


Transcription termination by nuclear RNA polymerases. _Genes Dev._ 23, 1247–1269 (2009). Article  CAS  PubMed  PubMed Central  Google Scholar  * Marzluff, W. F., Wagner, E. J. & Duronio,


R. J. Metabolism and regulation of canonical histone mRNAs: life without a poly(A) tail. _Nat. Rev. Genet._ 9, 843–854 (2008). Article  CAS  PubMed  PubMed Central  Google Scholar  * Tian,


B. & Graber, J. H. Signals for pre-mRNA cleavage and polyadenylation. _Wiley Interdiscip. Rev. RNA_ 3, 385–396 (2012). Article  CAS  PubMed  Google Scholar  * Mandel, C. R., Bai, Y.


& Tong, L. Protein factors in pre-mRNA 3′-end processing. _Cell. Mol. Life Sci._ 65, 1099–1122 (2008). Article  CAS  PubMed  PubMed Central  Google Scholar  * Zhao, J., Hyman, L. &


Moore, C. Formation of mRNA 3′ ends in eukaryotes: mechanism, regulation, and interrelationships with other steps in mRNA synthesis. _Microbiol. Mol. Biol. Rev._ 63, 405–445 (1999). Article


  CAS  PubMed  PubMed Central  Google Scholar  * Shi, Y. & Manley, J. L. The end of the message: multiple protein–RNA interactions define the mRNA polyadenylation site. _Genes Dev._ 29,


889–897 (2015). Article  CAS  PubMed  PubMed Central  Google Scholar  * Colgan, D. F. & Manley, J. L. Mechanism and regulation of mRNA polyadenylation. _Genes Dev._ 11, 2755–2766 (1997).


Article  CAS  PubMed  Google Scholar  * Edwalds-Gilbert, G., Veraldi, K. L. & Milcarek, C. Alternative poly(A) site selection in complex transcription units: means to an end? _Nucleic


Acids Res._ 25, 2547–2561 (1997). Article  CAS  PubMed  PubMed Central  Google Scholar  * Barabino, S. M. & Keller, W. Last but not least: regulated poly(A) tail formation. _Cell_ 99,


9–11 (1999). Article  CAS  PubMed  Google Scholar  * Gautheret, D., Poirot, O., Lopez, F., Audic, S. & Claverie, J. M. Alternate polyadenylation in human mRNAs: a large-scale analysis by


EST clustering. _Genome Res._ 8, 524–530 (1998). THIS PAPER REPORTS THE FIRST USE OF EXPRESSED SEQUENCE TAGS TO IDENTIFY APA SITES GENOME-WIDE. Article  CAS  PubMed  Google Scholar  * Tian,


B., Hu, J., Zhang, H. & Lutz, C. S. A large-scale analysis of mRNA polyadenylation of human and mouse genes. _Nucleic Acids Res._ 33, 201–212 (2005). CAS  PubMed  PubMed Central  Google


Scholar  * Derti, A. et al. A quantitative atlas of polyadenylation in five mammals. _Genome Res._ 22, 1173–1183 (2012). Article  CAS  PubMed  PubMed Central  Google Scholar  * Hoque, M. et


al. Analysis of alternative cleavage and polyadenylation by 3′ region extraction and deep sequencing. _Nat. Methods_ 10, 133–139 (2013). Article  CAS  PubMed  Google Scholar  * Mayr, C.


Evolution and biological roles of alternative 3′ UTRs. _Trends Cell Biol._ 26, 227–237 (2016). Article  CAS  PubMed  Google Scholar  * Proudfoot, N. J. Ending the message: poly(A) signals


then and now. _Genes Dev._ 25, 1770–1782 (2011). Article  CAS  PubMed  PubMed Central  Google Scholar  * Elkon, R., Ugalde, A. P. & Agami, R. Alternative cleavage and polyadenylation:


extent, regulation and function. _Nat. Rev. Genet._ 14, 496–506 (2013). Article  CAS  PubMed  Google Scholar  * Di Giammartino, D. C., Nishida, K. & Manley, J. L. Mechanisms and


consequences of alternative polyadenylation. _Mol. Cell_ 43, 853–866 (2011). Article  CAS  PubMed  PubMed Central  Google Scholar  * Tian, B. & Manley, J. L. Alternative cleavage and


polyadenylation: the long and short of it. _Trends Biochem. Sci._ 38, 312–320 (2013). Article  CAS  PubMed  PubMed Central  Google Scholar  * Hunt, A. G. Messenger RNA 3′ end formation in


plants. _Curr. Top. Microbiol. Immunol._ 326, 151–177 (2008). CAS  PubMed  Google Scholar  * Bartel, D. P. MicroRNAs: target recognition and regulatory functions. _Cell_ 136, 215–233 (2009).


Article  CAS  PubMed  PubMed Central  Google Scholar  * Sandberg, R., Neilson, J. R., Sarma, A., Sharp, P. A. & Burge, C. B. Proliferating cells express mRNAs with shortened 3′


untranslated regions and fewer microRNA target sites. _Science_ 320, 1643–1647 (2008). THIS IS THE FIRST REPORT THAT GLOBAL CHANGES IN APA OCCUR AS A CONSEQUENCE OF CHANGES IN CELL


PROLIFERATION, SPECIFICALLY DEMONSTRATING THE USE OF PROXIMAL 3′ UTR PASS DURING THE ACTIVATION OF T CELLS. Article  CAS  PubMed  PubMed Central  Google Scholar  * Ji, Z., Lee, J. Y., Pan,


Z., Jiang, B. & Tian, B. Progressive lengthening of 3′ untranslated regions of mRNAs by alternative polyadenylation during mouse embryonic development. _Proc. Natl Acad. Sci. USA_ 106,


7028–7033 (2009). THIS ARTICLE DESCRIBES GLOBAL APA REGULATION IN EMBRYONIC DEVELOPMENT, CONNECTING POLYADENYLATION ACTIVITY WITH APA DURING CELL DIFFERENTIATION. Article  CAS  PubMed 


PubMed Central  Google Scholar  * Mayr, C. & Bartel, D. P. Widespread shortening of 3′ UTRs by alternative cleavage and polyadenylation activates oncogenes in cancer cells. _Cell_ 138,


673–684 (2009). THIS PUBLICATION REPORTS A CONNECTION BETWEEN 3′ UTR SHORTENING, ESPECIALLY IN THE TRANSCRIPTS OF SEVERAL PROTO-ONCOGENES, AND CELL TRANSFORMATION. Article  CAS  PubMed 


PubMed Central  Google Scholar  * Nam, J. W. et al. Global analyses of the effect of different cellular contexts on microRNA targeting. _Mol. Cell_ 53, 1031–1043 (2014). Article  CAS  PubMed


  PubMed Central  Google Scholar  * Hoffman, Y. et al. 3′ UTR shortening potentiates microRNA-based repression of pro-differentiation genes in proliferating human cells. _PLoS Genet._ 12,


e1005879 (2016). Article  PubMed  PubMed Central  CAS  Google Scholar  * Garneau, N. L., Wilusz, J. & Wilusz, C. J. The highways and byways of mRNA decay. _Nat. Rev. Mol. Cell Biol._ 8,


113–126 (2007). Article  CAS  PubMed  Google Scholar  * Graham, R. R. et al. Three functional variants of IFN regulatory factor 5 (_IRF5_) define risk and protective haplotypes for human


lupus. _Proc. Natl Acad. Sci. USA_ 104, 6758–6763 (2007). Article  CAS  PubMed  PubMed Central  Google Scholar  * Gong, C. & Maquat, L. E. lncRNAs transactivate STAU1-mediated mRNA decay


by duplexing with 3′ UTRs via Alu elements. _Nature_ 470, 284–288 (2011). Article  CAS  PubMed  PubMed Central  Google Scholar  * Hogg, J. R. & Goff, S. P. Upf1 senses 3′ UTR length to


potentiate mRNA decay. _Cell_ 143, 379–389 (2010). Article  CAS  PubMed  PubMed Central  Google Scholar  * Spies, N., Burge, C. B. & Bartel, D. P. 3′ UTR-isoform choice has limited


influence on the stability and translational efficiency of most mRNAs in mouse fibroblasts. _Genome Res._ 23, 2078–2090 (2013). THIS REPORT PRESENTS A GLOBAL ANALYSIS OF THE DIFFERENT


EFFECTS OF SHORT AND LONG 3′ UTRS ON MRNA DECAY AND TRANSLATION. Article  CAS  PubMed  PubMed Central  Google Scholar  * Ulitsky, I. et al. Extensive alternative polyadenylation during


zebrafish development. _Genome Res._ 22, 2054–2066 (2012). Article  CAS  PubMed  PubMed Central  Google Scholar  * Geisberg, J. V., Moqtaderi, Z., Fan, X., Ozsolak, F. & Struhl, K.


Global analysis of mRNA isoform half-lives reveals stabilizing and destabilizing elements in yeast. _Cell_ 156, 812–824 (2014). Article  CAS  PubMed  PubMed Central  Google Scholar  *


Tycowski, K. T., Shu, M. D. & Steitz, J. A. Myriad triple-helix-forming structures in the transposable element RNAs of plants and fungi. _Cell Rep._ 15, 1266–1276 (2016). Article  CAS 


PubMed  PubMed Central  Google Scholar  * Lee, J. E., Lee, J. Y., Wilusz, J., Tian, B. & Wilusz, C. J. Systematic analysis of _cis_-elements in unstable mRNAs demonstrates that CUGBP1 is


a key regulator of mRNA decay in muscle cells. _PLoS ONE_ 5, e11201 (2010). Article  PubMed  PubMed Central  CAS  Google Scholar  * Floor, S. N. & Doudna, J. A. Tunable protein


synthesis by transcript isoforms in human cells. _eLife_ 5, e10921 (2016). Article  PubMed  PubMed Central  Google Scholar  * Neve, J. et al. Subcellular RNA profiling links splicing and


nuclear DICER1 to alternative cleavage and polyadenylation. _Genome Res._ 26, 24–35 (2016). Article  CAS  PubMed  PubMed Central  Google Scholar  * Djebali, S. et al. Landscape of


transcription in human cells. _Nature_ 489, 101–108 (2012). Article  CAS  PubMed  PubMed Central  Google Scholar  * Chen, L. L. & Carmichael, G. G. Altered nuclear retention of mRNAs


containing inverted repeats in human embryonic stem cells: functional role of a nuclear noncoding RNA. _Mol. Cell_ 35, 467–478 (2009). Article  CAS  PubMed  PubMed Central  Google Scholar  *


Martin, K. C. & Ephrussi, A. mRNA localization: gene expression in the spatial dimension. _Cell_ 136, 719–730 (2009). Article  CAS  PubMed  PubMed Central  Google Scholar  * An, J. J.


et al. Distinct role of long 3′ UTR BDNF mRNA in spine morphology and synaptic plasticity in hippocampal neurons. _Cell_ 134, 175–187 (2008). Article  CAS  PubMed  PubMed Central  Google


Scholar  * Andreassi, C. & Riccio, A. To localize or not to localize: mRNA fate is in 3′ UTR ends. _Trends Cell Biol._ 19, 465–474 (2009). Article  CAS  PubMed  Google Scholar  * Yudin,


D. et al. Localized regulation of axonal RanGTPase controls retrograde injury signaling in peripheral nerve. _Neuron_ 59, 241–252 (2008). Article  CAS  PubMed  PubMed Central  Google Scholar


  * Taliaferro, J. M. et al. Distal alternative last exons localize mRNAs to neural projections. _Mol. Cell_ 61, 821–833 (2016). Article  CAS  PubMed  PubMed Central  Google Scholar  * Loya,


A. et al. The 3′-UTR mediates the cellular localization of an mRNA encoding a short plasma membrane protein. _RNA_ 14, 1352–1365 (2008). Article  CAS  PubMed  PubMed Central  Google Scholar


  * Reid, D. W. & Nicchitta, C. V. Diversity and selectivity in mRNA translation on the endoplasmic reticulum. _Nat. Rev. Mol. Cell Biol._ 16, 221–231 (2015). Article  CAS  PubMed 


PubMed Central  Google Scholar  * Berkovits, B. D. & Mayr, C. Alternative 3′ UTRs act as scaffolds to regulate membrane protein localization. _Nature_ 522, 363–367 (2015). THIS WORK


DISCOVERS A NOVEL MECHANISM BY WHICH THE AUTR OF A TRANSCRIPT FUNCTIONS AS A SCAFFOLD FOR THE ASSEMBLY OF SPECIFIC PROTEIN COMPLEXES, WHICH THEN MODULATE THE SUBCELLULAR LOCALIZATION OF THE


ENCODED PROTEIN. Article  CAS  PubMed  PubMed Central  Google Scholar  * Vasudevan, S., Peltz, S. W. & Wilusz, C. J. Non-stop decay — a new mRNA surveillance pathway. _Bioessays_ 24,


785–788 (2002). Article  CAS  PubMed  Google Scholar  * Yao, P. et al. Coding region polyadenylation generates a truncated tRNA synthetase that counters translation repression. _Cell_ 149,


88–100 (2012). Article  CAS  PubMed  PubMed Central  Google Scholar  * Elkon, R. et al. E2F mediates enhanced alternative polyadenylation in proliferation. _Genome Biol._ 13, R59 (2012).


Article  CAS  PubMed  PubMed Central  Google Scholar  * Amara, S. G., Jonas, V., Rosenfeld, M. G., Ong, E. S. & Evans, R. M. Alternative RNA processing in calcitonin gene expression


generates mRNAs encoding different polypeptide products. _Nature_ 298, 240–244 (1982). Article  CAS  PubMed  Google Scholar  * Alt, F. W. et al. Synthesis of secreted and membrane-bound


immunoglobulin mu heavy chains is directed by mRNAs that differ at their 3′ ends. _Cell_ 20, 293–301 (1980). Article  CAS  PubMed  Google Scholar  * Davis, M. J. et al. Differential use of


signal peptides and membrane domains is a common occurrence in the protein output of transcriptional units. _PLoS Genet._ 2, e46 (2006). Article  PubMed  PubMed Central  CAS  Google Scholar


  * Vorlova, S. et al. Induction of antagonistic soluble decoy receptor tyrosine kinases by intronic polyA activation. _Mol. Cell_ 43, 927–939 (2011). Article  CAS  PubMed  PubMed Central 


Google Scholar  * Di Giammartino, D. C. et al. RBBP6 isoforms regulate the human polyadenylation machinery and modulate expression of mRNAs with AU-rich 3′ UTRs. _Gene Dev._ 28, 2248–2260


(2014). Article  PubMed  CAS  PubMed Central  Google Scholar  * Mbita, Z. et al. De-regulation of the RBBP6 isoform 3/DWNN in human cancers. _Mol. Cell Biochem._ 362, 249–262 (2012). Article


  CAS  PubMed  Google Scholar  * Pan, Z. et al. An intronic polyadenylation site in human and mouse CstF-77 genes suggests an evolutionarily conserved regulatory mechanism. _Gene_ 366,


325–334 (2006). Article  CAS  PubMed  Google Scholar  * Luo, W. et al. The conserved intronic cleavage and polyadenylation site of CstF-77 gene imparts control of 3′ end processing activity


through feedback autoregulation and by U1 snRNP. _PLoS Genet._ 9, e1003613 (2013). Article  CAS  PubMed  PubMed Central  Google Scholar  * Audibert, A. & Simonelig, M. Autoregulation at


the level of mRNA 3′ end formation of the _suppressor of forked_ gene of _Drosophila melanogaster_ is conserved in _Drosophila virilis_. _Proc. Natl Acad. Sci. USA_ 95, 14302–14307 (1998).


Article  CAS  PubMed  PubMed Central  Google Scholar  * Zhao, W. & Manley, J. L. Complex alternative RNA processing generates an unexpected diversity of poly(A) polymerase isoforms.


_Mol. Cell. Biol._ 16, 2378–2386 (1996). Article  CAS  PubMed  PubMed Central  Google Scholar  * Takagaki, Y., Seipelt, R. L., Peterson, M. L. & Manley, J. L. The polyadenylation factor


CstF-64 regulates alternative processing of IgM heavy chain pre-mRNA during B cell differentiation. _Cell_ 87, 941–952 (1996). THIS STUDY UNCOVERS A MECHANISM OF APA REGULATION IN WHICH


INCREASED EXPRESSION OF A CORE POLYADENYLATION FACTOR, CSTF64, DURING B CELL DIFFERENTIATION SHIFTS PAS USAGE TO AN UPSTREAM SITE IN THE IGM HEAVY CHAIN PRE-MRNA. Article  CAS  PubMed 


Google Scholar  * Yao, C. et al. Overlapping and distinct functions of CstF64 and CstF64τ in mammalian mRNA 3′ processing. _RNA_ 19, 1781–1790 (2013). Article  CAS  PubMed  PubMed Central 


Google Scholar  * Li, W. et al. Systematic profiling of poly(A)+ transcripts modulated by core 3′ end processing and splicing factors reveals regulatory rules of alternative cleavage and


polyadenylation. _PLoS Genet._ 11, e1005166 (2015). Article  PubMed  PubMed Central  CAS  Google Scholar  * Xia, Z. et al. Dynamic analyses of alternative polyadenylation from RNA-seq reveal


a 3′-UTR landscape across seven tumour types. _Nat. Commun._ 5, 5274 (2014). Article  CAS  PubMed  Google Scholar  * Ji, Z. & Tian, B. Reprogramming of 3′ untranslated regions of mRNAs


by alternative polyadenylation in generation of pluripotent stem cells from different cell types. _PLoS ONE_ 4, e8419 (2009). Article  PubMed  PubMed Central  CAS  Google Scholar  *


Lackford, B. et al. Fip1 regulates mRNA alternative polyadenylation to promote stem cell self-renewal. _EMBO J._ 33, 878–889 (2014). Article  CAS  PubMed  PubMed Central  Google Scholar  *


Martin, G., Gruber, A. R., Keller, W. & Zavolan, M. Genome-wide analysis of pre-mRNA 3′ end processing reveals a decisive role of human cleavage factor I in the regulation of 3′ UTR


length. _Cell Rep._ 1, 753–763 (2012). Article  CAS  PubMed  Google Scholar  * Gruber, A. R., Martin, G., Keller, W. & Zavolan, M. Cleavage factor Im is a key regulator of 3′ UTR length.


_RNA Biol._ 9, 1405–1412 (2012). Article  CAS  PubMed  Google Scholar  * Brown, K. M. & Gilmartin, G. M. A mechanism for the regulation of pre-mRNA 3′ processing by human cleavage


factor Im . _Mol. Cell_ 12, 1467–1476 (2003). Article  CAS  PubMed  Google Scholar  * Yang, Q., Gilmartin, G. M. & Doublié, S. The structure of human Cleavage Factor Im hints at


functions beyond UGUA-specific RNA binding: a role in alternative polyadenylation and a potential link to 5′ capping and splicing. _RNA Biol._ 8, 748–753 (2011). Article  CAS  PubMed  PubMed


Central  Google Scholar  * Masamha, C. P. et al. CFIm25 links alternative polyadenylation to glioblastoma tumour suppression. _Nature_ 510, 412–416 (2014). Article  CAS  PubMed  PubMed


Central  Google Scholar  * Gennarino, V. A. et al. _NUDT21_-spanning CNVs lead to neuropsychiatric disease and altered MeCP2 abundance via alternative polyadenylation. _eLife_ 4, e10782


(2015). Article  PubMed Central  Google Scholar  * Kuhn, U. et al. Poly(A) tail length is controlled by the nuclear poly(A)-binding protein regulating the interaction between poly(A)


polymerase and the cleavage and polyadenylation specificity factor. _J. Biol. Chem._ 284, 22803–22814 (2009). Article  PubMed  PubMed Central  CAS  Google Scholar  * Jenal, M. et al. The


poly(A)-binding protein nuclear 1 suppresses alternative cleavage and polyadenylation sites. _Cell_ 149, 538–553 (2012). Article  CAS  PubMed  Google Scholar  * de Klerk, E. et al. Poly(A)


binding protein nuclear 1 levels affect alternative polyadenylation. _Nucleic Acids Res._ 40, 9089–9101 (2012). Article  PubMed  PubMed Central  CAS  Google Scholar  * Bresson, S. M. &


Conrad, N. K. The human nuclear poly(A)-binding protein promotes RNA hyperadenylation and decay. _PLoS Genet._ 9, e1003893 (2013). Article  PubMed  PubMed Central  CAS  Google Scholar  *


Beaulieu, Y. B., Kleinman, C. L., Landry-Voyer, A. M., Majewski, J. & Bachand, F. Polyadenylation-dependent control of long noncoding RNA expression by the poly(A)-binding protein


nuclear 1. _PLoS Genet._ 8, e1003078 (2012). Article  CAS  PubMed  PubMed Central  Google Scholar  * Bresson, S. M., Hunter, O. V., Hunter, A. C. & Conrad, N. K. Canonical poly(A)


polymerase activity promotes the decay of a wide variety of mammalian nuclear RNAs. _PLoS Genet._ 11, e1005610 (2015). Article  PubMed  PubMed Central  CAS  Google Scholar  * Thomas, P. E.


et al. Genome-wide control of polyadenylation site choice by CPSF30 in _Arabidopsis_. _Plant Cell_ 24, 4376–4388 (2012). Article  CAS  PubMed  PubMed Central  Google Scholar  * Niwa, M.,


Rose, S. D. & Berget, S. M. _In vitro_ polyadenylation is stimulated by the presence of an upstream intron. _Genes Dev._ 4, 1552–1559 (1990). Article  CAS  PubMed  Google Scholar  *


Tian, B., Pan, Z. & Lee, J. Y. Widespread mRNA polyadenylation events in introns indicate dynamic interplay between polyadenylation and splicing. _Genome Res._ 17, 156–165 (2007).


Article  CAS  PubMed  PubMed Central  Google Scholar  * Lutz, C. S. et al. Interaction between the U1 snRNP-A protein and the 160-kD subunit of cleavage-polyadenylation specificity factor


increases polyadenylation efficiency _in vitro_. _Genes Dev._ 10, 325–337 (1996). Article  CAS  PubMed  Google Scholar  * Kyburz, A., Friedlein, A., Langen, H. & Keller, W. Direct


interactions between subunits of CPSF and the U2 snRNP contribute to the coupling of pre-mRNA 3′ end processing and splicing. _Mol. Cell_ 23, 195–205 (2006). Article  CAS  PubMed  Google


Scholar  * Millevoi, S. et al. An interaction between U2AF 65 and CF Im links the splicing and 3′ end processing machineries. _EMBO J._ 25, 4854–4864 (2006). Article  CAS  PubMed  PubMed


Central  Google Scholar  * Gunderson, S. I., Polycarpou-Schwarz, M. & Mattaj, I. W. U1 snRNP inhibits pre-mRNA polyadenylation through a direct interaction between U1 70K and poly(A)


polymerase. _Mol. Cell_ 1, 255–264 (1998). Article  CAS  PubMed  Google Scholar  * Kaida, D. et al. U1 snRNP protects pre-mRNAs from premature cleavage and polyadenylation. _Nature_ 468,


664–668 (2010). THIS ARTICLE DESCRIBES A GLOBAL ACTIVITY OF U1 SNRNP IN SUPPRESSING PROMOTER-PROXIMAL PASS. Article  CAS  PubMed  PubMed Central  Google Scholar  * Berg, M. G. et al. U1


snRNP determines mRNA length and regulates isoform expression. _Cell_ 150, 53–64 (2012). Article  CAS  PubMed  PubMed Central  Google Scholar  * Engreitz, J. M. et al. RNA−RNA interactions


enable specific targeting of noncoding RNAs to nascent pre-mRNAs and chromatin sites. _Cell_ 159, 188–199 (2014). Article  CAS  PubMed  PubMed Central  Google Scholar  * Wahl, M. C., Will,


C. L. & Luhrmann, R. The spliceosome: design principles of a dynamic RNP machine. _Cell_ 136, 701–718 (2009). Article  CAS  PubMed  Google Scholar  * Devany, E. et al. Intronic cleavage


and polyadenylation regulates gene expression during DNA damage response through U1 snRNA. _Cell Discov._ 2, 16013 (2016). Article  CAS  PubMed  PubMed Central  Google Scholar  * Licatalosi,


D. D. et al. HITS-CLIP yields genome-wide insights into brain alternative RNA processing. _Nature_ 456, 464–469 (2008). THIS IS THE FIRST DEMONSTRATION THAT A SPLICING-REGULATORY RBP, NOVA,


CAN ALSO REGULATE APA. Article  CAS  PubMed  PubMed Central  Google Scholar  * Zheng, D. & Tian, B. RNA-binding proteins in regulation of alternative cleavage and polyadenylation. _Adv.


Exp. Med. Biol._ 825, 97–127 (2014). Article  CAS  PubMed  Google Scholar  * Hilgers, V., Lemke, S. B. & Levine, M. ELAV mediates 3′ UTR extension in the _Drosophila_ nervous system.


_Genes Dev._ 26, 2259–2264 (2012). Article  CAS  PubMed  PubMed Central  Google Scholar  * Oktaba, K. et al. ELAV links paused Pol II to alternative polyadenylation in the _Drosophila_


nervous system. _Mol. Cell_ 57, 341–348 (2015). Article  CAS  PubMed  Google Scholar  * Zhu, H., Zhou, H. L., Hasman, R. A. & Lou, H. Hu proteins regulate polyadenylation by blocking


sites containing U-rich sequences. _J. Biol. Chem._ 282, 2203–2210 (2007). Article  CAS  PubMed  Google Scholar  * Dai, W., Zhang, G. & Makeyev, E. V. RNA-binding protein HuR


autoregulates its expression by promoting alternative polyadenylation site usage. _Nucleic Acids Res._ 40, 787–800 (2012). Article  CAS  PubMed  Google Scholar  * Mansfield, K. D. &


Keene, J. D. Neuron-specific ELAV/Hu proteins suppress HuR mRNA during neuronal differentiation by alternative polyadenylation. _Nucleic Acids Res._ 40, 2734–2746 (2012). Article  CAS 


PubMed  Google Scholar  * Manley, J. L. & Tacke, R. SR proteins and splicing control. _Genes Dev._ 10, 1569–1579 (1996). Article  CAS  PubMed  Google Scholar  * Howard, J. M. &


Sanford, J. R. The RNAissance family: SR proteins as multifaceted regulators of gene expression. _Wiley Interdiscip. Rev. RNA_ 6, 93–110 (2015). Article  CAS  PubMed  Google Scholar  *


Muller-McNicoll, M. et al. SR proteins are NXF1 adaptors that link alternative RNA processing to mRNA export. _Genes Dev._ 30, 553–566 (2016). Article  PubMed  PubMed Central  Google Scholar


  * Tran, D. D. et al. THOC5 controls 3′ end-processing of immediate early genes via interaction with polyadenylation specific factor 100 (CPSF100). _Nucleic Acids Res._ 42, 12249–12260


(2014). Article  CAS  PubMed  PubMed Central  Google Scholar  * Johnson, S. A., Kim, H., Erickson, B. & Bentley, D. L. The export factor Yra1 modulates mRNA 3′ end processing. _Nat.


Struct. Mol. Biol._ 18, 1164–1171 (2011). Article  CAS  PubMed  PubMed Central  Google Scholar  * Ling, S. C., Polymenidou, M. & Cleveland, D. W. Converging mechanisms in ALS and FTD:


disrupted RNA and protein homeostasis. _Neuron_ 79, 416–438 (2013). Article  CAS  PubMed  PubMed Central  Google Scholar  * Masuda, A. et al. Position-specific binding of FUS to nascent RNA


regulates mRNA length. _Genes Dev._ 29, 1045–1057 (2015). Article  CAS  PubMed  PubMed Central  Google Scholar  * Schwartz, J. C. et al. FUS binds the CTD of RNA polymerase II and regulates


its phosphorylation at Ser2. _Genes Dev._ 26, 2690–2695 (2012). Article  CAS  PubMed  PubMed Central  Google Scholar  * Hoell, J. I. et al. RNA targets of wild-type and mutant FET family


proteins. _Nat. Struct. Mol. Biol._ 18, 1428–1431 (2011). Article  CAS  PubMed  PubMed Central  Google Scholar  * Prudencio, M. et al. Distinct brain transcriptome profiles in


_C9orf72_-associated and sporadic ALS. _Nat. Neurosci._ 18, 1175–1182 (2015). Article  CAS  PubMed  PubMed Central  Google Scholar  * Lee, Y. B. et al. Hexanucleotide repeats in ALS/FTD form


length-dependent RNA foci, sequester RNA binding proteins, and are neurotoxic. _Cell Rep._ 5, 1178–1186 (2013). Article  CAS  PubMed  PubMed Central  Google Scholar  * Batra, R. et al. Loss


of MBNL leads to disruption of developmentally regulated alternative polyadenylation in RNA-mediated disease. _Mol. Cell_ 56, 311–322 (2014). Article  CAS  PubMed  PubMed Central  Google


Scholar  * Naftelberg, S., Schor, I. E., Ast, G. & Kornblihtt, A. R. Regulation of alternative splicing through coupling with transcription and chromatin structure. _Annu. Rev. Biochem._


84, 165–198 (2015). Article  CAS  PubMed  Google Scholar  * Yonaha, M. & Proudfoot, N. J. Specific transcriptional pausing activates polyadenylation in a coupled _in vitro_ system.


_Mol. Cell_ 3, 593–600 (1999). Article  CAS  PubMed  Google Scholar  * Cui, Y. & Denis, C. L. _In vivo_ evidence that defects in the transcriptional elongation factors RPB2, TFIIS, and


SPT5 enhance upstream poly(A) site utilization. _Mol. Cell. Biol._ 23, 7887–7901 (2003). Article  CAS  PubMed  PubMed Central  Google Scholar  * Martincic, K., Alkan, S. A., Cheatle, A.,


Borghesi, L. & Milcarek, C. Transcription elongation factor ELL2 directs immunoglobulin secretion in plasma cells by stimulating altered RNA processing. _Nat. Immunol._ 10, 1102–1109


(2009). Article  CAS  PubMed  PubMed Central  Google Scholar  * Pinto, P. A. et al. RNA polymerase II kinetics in _polo_ polyadenylation signal selection. _EMBO J._ 30, 2431–2444 (2011).


Article  CAS  PubMed  PubMed Central  Google Scholar  * Rosonina, E., Bakowski, M. A., McCracken, S. & Blencowe, B. J. Transcriptional activators control splicing and 3′ -end cleavage


levels. _J. Biol. Chem._ 278, 43034–43040 (2003). Article  CAS  PubMed  Google Scholar  * Nagaike, T. et al. Transcriptional activators enhance polyadenylation of mRNA precursors. _Mol.


Cell_ 41, 409–418 (2011). Article  CAS  PubMed  PubMed Central  Google Scholar  * Ji, Z. et al. Transcriptional activity regulates alternative cleavage and polyadenylation. _Mol. Syst.


Biol._ 7, 534 (2011). Article  PubMed  PubMed Central  CAS  Google Scholar  * Ni, T. et al. Distinct polyadenylation landscapes of diverse human tissues revealed by a modified PA-seq


strategy. _BMC Genomics_ 14, 615 (2013). Article  CAS  PubMed  PubMed Central  Google Scholar  * Glover-Cutter, K., Kim, S., Espinosa, J. & Bentley, D. L. RNA polymerase II pauses and


associates with pre-mRNA processing factors at both ends of genes. _Nat. Struct. Mol. Biol._ 15, 71–78 (2008). Article  CAS  PubMed  Google Scholar  * Venkataraman, K., Brown, K. M. &


Gilmartin, G. M. Analysis of a noncanonical poly(A) site reveals a tripartite mechanism for vertebrate poly(A) site recognition. _Genes Dev._ 19, 1315–1327 (2005). Article  CAS  PubMed 


PubMed Central  Google Scholar  * Rozenblatt-Rosen, O. et al. The tumor suppressor Cdc73 functionally associates with CPSF and CstF 3′ mRNA processing factors. _Proc. Natl Acad. Sci. USA_


106, 755–760 (2009). Article  CAS  PubMed  PubMed Central  Google Scholar  * Calvo, O. & Manley, J. L. Strange bedfellows: polyadenylation factors at the promoter. _Genes Dev._ 17,


1321–1327 (2003). Article  CAS  PubMed  Google Scholar  * Uhlmann, T., Boeing, S., Lehmbacher, M. & Meisterernst, M. The VP16 activation domain establishes an active mediator lacking


CDK8 _in vivo_. _J. Biol. Chem._ 282, 2163–2173 (2007). Article  CAS  PubMed  Google Scholar  * Yang, Y. et al. PAF complex plays novel subunit-specific roles in alternative cleavage and


polyadenylation. _PLoS Genet._ 12, e1005794 (2016). Article  PubMed  PubMed Central  CAS  Google Scholar  * Yu, M. et al. RNA polymerase II-associated factor 1 regulates the release and


phosphorylation of paused RNA polymerase II. _Science_ 350, 1383–1386 (2015). Article  CAS  PubMed  PubMed Central  Google Scholar  * Jiang, C. & Pugh, B. F. Nucleosome positioning and


gene regulation: advances through genomics. _Nat. Rev. Genet._ 10, 161–172 (2009). Article  CAS  PubMed  PubMed Central  Google Scholar  * Kaplan, N. et al. The DNA-encoded nucleosome


organization of a eukaryotic genome. _Nature_ 458, 362–366 (2009). Article  CAS  PubMed  Google Scholar  * Spies, N., Nielsen, C. B., Padgett, R. A. & Burge, C. B. Biased chromatin


signatures around polyadenylation sites and exons. _Mol. Cell_ 36, 245–254 (2009). Article  CAS  PubMed  PubMed Central  Google Scholar  * Grosso, A. R., de Almeida, S. F., Braga, J. &


Carmo-Fonseca, M. Dynamic transitions in RNA polymerase II density profiles during transcription termination. _Genome Res._ 22, 1447–1456 (2012). Article  CAS  PubMed  PubMed Central  Google


Scholar  * Li, W. et al. Alternative cleavage and polyadenylation in spermatogenesis connects chromatin regulation with post-transcriptional control. _BMC Biol._ 14, 6 (2016). Article 


PubMed  PubMed Central  CAS  Google Scholar  * Ke, S. et al. A majority of m6A residues are in the last exons, allowing the potential for 3′ UTR regulation. _Genes Dev._ 29, 2037–2053


(2015). Article  CAS  PubMed  PubMed Central  Google Scholar  * Eckmann, C. R., Rammelt, C. & Wahle, E. Control of poly(A) tail length. _Wiley Interdiscip. Rev. RNA_ 2, 348–361 (2011).


Article  CAS  PubMed  Google Scholar  * Schmidt, M. J. & Norbury, C. J. Polyadenylation and beyond: emerging roles for noncanonical poly(A) polymerases. _Wiley Interdiscip. Rev. RNA_ 1,


142–151 (2010). Article  CAS  PubMed  Google Scholar  * Mendez, R. & Richter, J. D. Translational control by CPEB: a means to the end. _Nat. Rev. Mol. Cell Biol._ 2, 521–529 (2001).


Article  CAS  PubMed  Google Scholar  * Subtelny, A. O., Eichhorn, S. W., Chen, G. R., Sive, H. & Bartel, D. P. Poly(A)-tail profiling reveals an embryonic switch in translational


control. _Nature_ 508, 66–71 (2014). Article  CAS  PubMed  PubMed Central  Google Scholar  * Chang, H., Lim, J., Ha, M. & Kim, V. N. TAIL-seq: genome-wide determination of poly(A) tail


length and 3′ end modifications. _Mol. Cell_ 53, 1044–1052 (2014). Article  CAS  PubMed  Google Scholar  * Wang, K. C. & Chang, H. Y. Molecular mechanisms of long noncoding RNAs. _Mol.


Cell_ 43, 904–914 (2011). Article  CAS  PubMed  PubMed Central  Google Scholar  * Naganuma, T. et al. Alternative 3′-end processing of long noncoding RNA initiates construction of nuclear


paraspeckles. _EMBO J._ 31, 4020–4034 (2012). Article  CAS  PubMed  PubMed Central  Google Scholar  * Higgs, D. R. et al. α-Thalassaemia caused by a polyadenylation signal mutation. _Nature_


306, 398–400 (1983). Article  CAS  PubMed  Google Scholar  * Prasad, M. K. et al. A polymorphic 3′ UTR element in ATP1B1 regulates alternative polyadenylation and is associated with blood


pressure. _PLoS ONE_ 8, e76290 (2013). Article  CAS  PubMed  PubMed Central  Google Scholar  * Singh, P. et al. Global changes in processing of mRNA 3′ untranslated regions characterize


clinically distinct cancer subtypes. _Cancer Res._ 69, 9422–9430 (2009). Article  CAS  PubMed  PubMed Central  Google Scholar  * Creemers, E. E. et al. Genome-wide polyadenylation maps


reveal dynamic mRNA 3′-end formation in the failing human heart. _Circ. Res._ 118, 433–438 (2016). Article  CAS  PubMed  Google Scholar  * Soetanto, R. et al. Role of miRNAs and alternative


mRNA 3′-end cleavage and polyadenylation of their mRNA targets in cardiomyocyte hypertrophy. _Biochim. Biophys. Acta_ 1859, 744–756 (2016). Article  CAS  PubMed  Google Scholar  * Park, J.


Y. et al. Comparative analysis of mRNA isoform expression in cardiac hypertrophy and development reveals multiple post-transcriptional regulatory modules. _PLoS ONE_ 6, e22391 (2011).


Article  CAS  PubMed  PubMed Central  Google Scholar  * Hu, J., Lutz, C. S., Wilusz, J. & Tian, B. Bioinformatic identification of candidate _cis_-regulatory elements involved in human


mRNA polyadenylation. _RNA_ 11, 1485–1493 (2005). Article  CAS  PubMed  PubMed Central  Google Scholar  * Cheng, Y., Miura, R. M. & Tian, B. Prediction of mRNA polyadenylation sites by


support vector machine. _Bioinformatics_ 22, 2320–2325 (2006). Article  CAS  PubMed  Google Scholar  * Nunes, N. M., Li, W., Tian, B. & Furger, A. A functional human poly(A) site


requires only a potent DSE and an A-rich upstream sequence. _EMBO J._ 29, 1523–1536 (2010). Article  CAS  PubMed  PubMed Central  Google Scholar  * Sheets, M. D., Ogg, S. C. & Wickens,


M. P. Point mutations in AAUAAA and the poly (A) addition site: effects on the accuracy and efficiency of cleavage and polyadenylation _in vitro_. _Nucleic Acids Res._ 18, 5799–5805 (1990).


Article  CAS  PubMed  PubMed Central  Google Scholar  * Shi, Y. et al. Molecular architecture of the human pre-mRNA 3′ processing complex. _Mol. Cell_ 33, 365–376 (2009). THIS REPORT DETAILS


THE PURIFICATION OF AN ACTIVE POLYADENYLATION COMPLEX ON SUBSTRATE RNA AND THE IDENTIFICATION OF MORE THAN 80 CORE AND ASSOCIATED PROTEINS. Article  CAS  PubMed  PubMed Central  Google


Scholar  * Chan, S. L. et al. CPSF30 and Wdr33 directly bind to AAUAAA in mammalian mRNA 3′ processing. _Genes Dev._ 28, 2370–2380 (2014). Article  PubMed  PubMed Central  CAS  Google


Scholar  * Schonemann, L. et al. Reconstitution of CPSF active in polyadenylation: recognition of the polyadenylation signal by WDR33. _Genes Dev._ 28, 2381–2393 (2014). Article  PubMed 


PubMed Central  CAS  Google Scholar  * Kaufmann, I., Martin, G., Friedlein, A., Langen, H. & Keller, W. Human Fip1 is a subunit of CPSF that binds to U-rich RNA elements and stimulates


poly(A) polymerase. _EMBO J._ 23, 616–626 (2004). Article  CAS  PubMed  PubMed Central  Google Scholar  * Takagaki, Y. & Manley, J. L. RNA recognition by the human polyadenylation factor


CstF. _Mol. Cell. Biol._ 17, 3907–3914 (1997). Article  CAS  PubMed  PubMed Central  Google Scholar  * Chen, F. & Wilusz, J. Auxiliary downstream elements are required for efficient


polyadenylation of mammalian pre-mRNAs. _Nucleic Acids Res._ 26, 2891–2898 (1998). Article  CAS  PubMed  PubMed Central  Google Scholar  * Mandel, C. R. et al. Polyadenylation factor CPSF-73


is the pre-mRNA 3′-end-processing endonuclease. _Nature_ 444, 953–956 (2006). Article  CAS  PubMed  Google Scholar  * Bai, Y. et al. Crystal structure of murine CstF-77: dimeric association


and implications for polyadenylation of mRNA precursors. _Mol. Cell_ 25, 863–875 (2007). Article  CAS  PubMed  Google Scholar  * Yang, Q., Gilmartin, G. M. & Doublié, S. Structural


basis of UGUA recognition by the Nudix protein CFIm25 and implications for a regulatory role in mRNA 3′ processing. _Proc. Natl Acad. Sci. USA_ 107, 10062–10067 (2010). Article  CAS  PubMed


  PubMed Central  Google Scholar  * Hunt, A. G., Xing, D. & Li, Q. Q. Plant polyadenylation factors: conservation and variety in the polyadenylation complex in plants. _BMC Genomics_ 13,


641 (2012). Article  CAS  PubMed  PubMed Central  Google Scholar  * Zhang, H., Lee, J. Y. & Tian, B. Biased alternative polyadenylation in human tissues. _Genome Biol._ 6, R100 (2005).


THIS IS THE FIRST DEMONSTRATION THAT ISOFORMS USING PROXIMAL AND DISTAL PASS ARE EXPRESSED WITH BIAS IN CERTAIN TISSUES, FOR EXAMPLE IN THE BRAIN AND BLOOD. Article  PubMed  PubMed Central 


CAS  Google Scholar  * Beaudoing, E. & Gautheret, D. Identification of alternate polyadenylation sites and analysis of their tissue distribution using EST data. _Genome Res._ 11,


1520–1526 (2001). Article  CAS  PubMed  PubMed Central  Google Scholar  * Lianoglou, S., Garg, V., Yang, J. L., Leslie, C. S. & Mayr, C. Ubiquitously transcribed genes use alternative


polyadenylation to achieve tissue-specific expression. _Genes Dev._ 27, 2380–2396 (2013). Article  CAS  PubMed  PubMed Central  Google Scholar  * Liu, D. et al. Systematic variation in mRNA


3′-processing signals during mouse spermatogenesis. _Nucleic Acids Res._ 35, 234–246 (2007). Article  CAS  PubMed  Google Scholar  * Smibert, P. et al. Global patterns of tissue-specific


alternative polyadenylation in _Drosophila_. _Cell Rep._ 1, 277–289 (2012). Article  CAS  PubMed  PubMed Central  Google Scholar  * Lee, J. Y., Ji, Z. & Tian, B. Phylogenetic analysis of


mRNA polyadenylation sites reveals a role of transposable elements in evolution of the 3′-end of genes. _Nucleic Acids Res._ 36, 5581–5590 (2008). Article  CAS  PubMed  PubMed Central 


Google Scholar  * Shepard, P. J. et al. Complex and dynamic landscape of RNA polyadenylation revealed by PAS-Seq. _RNA_ 17, 761–772 (2011). Article  CAS  PubMed  PubMed Central  Google


Scholar  * Dai, W. et al. A post-transcriptional mechanism pacing expression of neural genes with precursor cell differentiation status. _Nat. Commun._ 6, 7576 (2015). Article  PubMed 


Google Scholar  * Dass, B. et al. Loss of polyadenylation protein τCstF-64 causes spermatogenic defects and male infertility. _Proc. Natl Acad. Sci. USA_ 104, 20374–20379 (2007). Article 


CAS  PubMed  PubMed Central  Google Scholar  * Sartini, B. L., Wang, H., Wang, W., Millette, C. F. & Kilpatrick, D. L. Pre-messenger RNA cleavage factor I (CFIm): potential role in


alternative polyadenylation during spermatogenesis. _Biol. Reprod._ 78, 472–482 (2008). Article  CAS  PubMed  Google Scholar  * Soumillon, M. et al. Cellular source and mechanisms of high


transcriptome complexity in the mammalian testis. _Cell Rep._ 3, 2179–2190 (2013). Article  CAS  PubMed  Google Scholar  * Zhang, P. et al. MIWI and piRNA-mediated cleavage of messenger RNAs


in mouse testes. _Cell Res._ 25, 193–207 (2015). Article  CAS  PubMed  PubMed Central  Google Scholar  * Goh, W. S. et al. piRNA-directed cleavage of meiotic transcripts regulates


spermatogenesis. _Genes Dev._ 29, 1032–1044 (2015). Article  CAS  PubMed  PubMed Central  Google Scholar  * Watanabe, T., Cheng, E. C., Zhong, M. & Lin, H. Retrotransposons and


pseudogenes regulate mRNAs and lncRNAs via the piRNA pathway in the germline. _Genome Res._ 25, 368–380 (2015). Article  PubMed  PubMed Central  CAS  Google Scholar  * Bao, J. et al.


UPF2-dependent nonsense-mediated mRNA decay pathway is essential for spermatogenesis by selectively eliminating longer 3′ UTR transcripts. _PLoS Genet._ 12, e1005863 (2016). Article  PubMed


  PubMed Central  CAS  Google Scholar  * Fanourgakis, G., Lesche, M., Akpinar, M., Dahl, A. & Jessberger, R. Chromatoid body protein TDRD6 supports long 3′ UTR triggered nonsense


mediated mRNA decay. _PLoS Genet._ 12, e1005857 (2016). Article  PubMed  PubMed Central  CAS  Google Scholar  * Gruber, A. R. et al. Global 3′ UTR shortening has a limited effect on protein


abundance in proliferating T cells. _Nat. Commun._ 5, 5465 (2014). Article  CAS  PubMed  Google Scholar  * Fu, Y. et al. Differential genome-wide profiling of tandem 3′ UTRs among human


breast cancer and normal cells by high-throughput sequencing. _Genome Res._ 21, 741–747 (2011). Article  CAS  PubMed  PubMed Central  Google Scholar  * Morris, A. R. et al. Alternative


cleavage and polyadenylation during colorectal cancer development. _Clin. Cancer Res._ 18, 5256–5266 (2012). Article  CAS  PubMed  Google Scholar  * Flavell, S. W. et al. Genome-wide


analysis of MEF2 transcriptional program reveals synaptic target genes and neuronal activity-dependent polyadenylation site selection. _Neuron_ 60, 1022–1038 (2008). Article  CAS  PubMed 


PubMed Central  Google Scholar  * Chang, J. W. et al. mRNA 3′-UTR shortening is a molecular signature of mTORC1 activation. _Nat. Commun._ 6, 7218 (2015). Article  CAS  PubMed  Google


Scholar  Download references ACKNOWLEDGEMENTS The authors thank members of their laboratories for helpful discussions, and I. Boluck for assistance with manuscript preparation. Work in the


authors' laboratories was funded by grants GM84089 (B.T.), and GM28983 and GM118136 (J.L.M.) from the US National Institutes of Health. AUTHOR INFORMATION AUTHORS AND AFFILIATIONS *


Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers University, Newark, 07103, New Jersey, USA Bin Tian * Department of Biological Sciences,


Columbia University, New York, 10027, New York, USA James L. Manley Authors * Bin Tian View author publications You can also search for this author inPubMed Google Scholar * James L. Manley


View author publications You can also search for this author inPubMed Google Scholar CORRESPONDING AUTHORS Correspondence to Bin Tian or James L. Manley. ETHICS DECLARATIONS COMPETING


INTERESTS The authors declare no competing financial interests. SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION S1 (BOX) Variation in alternative polyadenylation across species (PDF 122


kb) POWERPOINT SLIDES POWERPOINT SLIDE FOR FIG. 1 POWERPOINT SLIDE FOR FIG. 2 POWERPOINT SLIDE FOR FIG. 3 GLOSSARY * PUF protein (Pumilio and FBF homology family protein). A member of a


family of RNA-binding proteins that regulate aspects of mRNA metabolism by binding to specific sequences in 3′ untranslated regions. * STAU1-mediated mRNA decay An mRNA decay mechanism in


which RNA structures in the 3′ untranslated region interact with double-stranded RNA-binding protein Staufen homologue 1 (STAU1) to mediate mRNA decay. * AU-rich element-mediated decay mRNA


decay elicited by the presence of AU-rich elements (AREs) in the 3′ untranslated region. * PIWI-interacting RNAs Small non-coding RNAs that form RNA–protein complexes with PIWI proteins to


silence transposable elements in germline cells of metazoans. * Non-stop decay An mRNA decay mechanism that specifically degrades mRNAs without a stop codon. * Exosome A nuclear or


cytoplasmic multiprotein complex that degrades mRNAs through the activity of 3′-to-5′ exoribonucleases. * Non-canonical PAPs (Non-canonical poly(A) polymerases). Enzymes that have distinct


structural features and are capable of synthesizing poly(A) tails but are not typically associated with the polyadenylation machinery. * Paused Pol II (Paused RNA polymerase II). Pol II that


has paused in the promoter-proximal region of the mRNA and is poised for productive elongation. * Paraspeckle A dynamic nuclear compartment composed of RNA-binding proteins and RNAs. The


functions of paraspeckles are not entirely clear. RIGHTS AND PERMISSIONS Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Tian, B., Manley, J. Alternative polyadenylation of


mRNA precursors. _Nat Rev Mol Cell Biol_ 18, 18–30 (2017). https://doi.org/10.1038/nrm.2016.116 Download citation * Published: 28 September 2016 * Issue Date: January 2017 * DOI:


https://doi.org/10.1038/nrm.2016.116 SHARE THIS ARTICLE Anyone you share the following link with will be able to read this content: Get shareable link Sorry, a shareable link is not


currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative