Redefining bacterial populations: a post-genomic reformation

feature-image

Play all audios:

Loading...

KEY POINTS * This review discusses how bacterial populations have been historically defined and classified, and how these definitions have been refined with the development of molecular


tools and whole-genome sequencing. * We discuss the impact of horizontal gene transfer and how the increased awareness of this process is influencing our understanding of bacterial


population structures. * We focus on the recent development of DNA microarray technology and its use as a method for high-throughput genome-wide strain comparisons. We give details of the


current achievements and limitations of this technique to assess the extent of genetic variability through a discussion of the current literature. We describe the application of this


technology to characterize isolates of _Helicobacter pylori_, _Streptococcus pneumoniae_, and _Salmonella enterica_ and _S. bongori_ species. * We propose how the information garnered from


comparative genomic microarray analyses can provide important insight into the molecular basis of the relationships that exist between bacteria and their hosts. ABSTRACT Sexual reproduction


and recombination are essential for the survival of most eukaryotic populations. Until recently, the impact of these processes on the structure of bacterial populations has been largely


overlooked. The advent of large-scale whole-genome sequencing and the concomitant development of molecular tools, such as microarray technology, facilitate the sensitive detection of


recombination events in bacteria. These techniques are revealing that bacterial populations are comprised of isolates that show a surprisingly wide spectrum of genetic diversity at the DNA


level. Our new awareness of this genetic diversity is increasing our understanding of population structures and of how these affect host–pathogen relationships. Access through your


institution Buy or subscribe This is a preview of subscription content, access via your institution ACCESS OPTIONS Access through your institution Subscribe to this journal Receive 12 print


issues and online access $209.00 per year only $17.42 per issue Learn more Buy this article * Purchase on SpringerLink * Instant access to full article PDF Buy now Prices may be subject to


local taxes which are calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in * Learn about institutional subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT


BEING VIEWED BY OTHERS HORIZONTAL GENE TRANSFER AND ADAPTIVE EVOLUTION IN BACTERIA Article 12 November 2021 HOTSPOTS OF GENETIC CHANGE IN _YERSINIA PESTIS_ Article Open access 04 January


2025 ECOLOGY AND MOLECULAR TARGETS OF HYPERMUTATION IN THE GLOBAL MICROBIOME Article Open access 24 May 2021 REFERENCES * Van Belkum, A. et al. Role of genomic typing in taxonomy,


evolutionary genetics, and microbial epidemiology. _Clin. Microbiol. Rev._ 14, 547–560 (2001).A THOROUGH REVIEW THAT DETAILS CURRENT MICROBIAL NOMENCLATURE AND CONCEPTS OF EVOLUTIONARY AND


POPULATION-BASED GENETICS. IT REVIEWS VARIOUS MOLECULAR TECHNIQUES AND MAKES RECOMMENDATIONS FOR THEIR APPLICATION IN EPIDEMIOLOGY, TAXONOMY AND EVOLUTIONARY STUDIES. CAS  PubMed  PubMed


Central  Google Scholar  * Feil, E. J. & Spratt, B. G. Recombination and the population structures of baterial pathogens. _Annu. Rev. Microbiol._ 55, 561–590 (2001).THIS REVIEW ADDRESSES


THE IMPACT OF RECOMBINATION ON BACTERIAL POPULATIONS AND GIVES SPECIFIC FOCUS TO MULTILOCUS SEQUENCE TYPING. CAS  PubMed  Google Scholar  * Milkman, R. Electrophoretic variation in


_Escherichia coli_ from natural sources. _Science_ 182, 1024–1026 (1973). CAS  PubMed  Google Scholar  * Selander, R. K. Population genetics of pathogenic bacteria. _Microb. Pathog._ 3, 1–7


(1987). CAS  PubMed  Google Scholar  * Beltran, P. Toward a population genetic analysis of _Salmonella_: genetic diversity and relationships among strains of serotypes _S. choleraesuis_, _S.


derby_, _S. dublin_, _S. enteritidis_, _S. heidelberg_, _S. infantis_, _S. newport_, and _S. typhimurium_. _Proc. Natl Acad. Sci. USA_ 85, 7753–7757 (1988). CAS  PubMed  PubMed Central 


Google Scholar  * Reeves, M. W. Clonal nature of _Salmonella_ typhi and its genetic relatedness to other Salmonellae as shown by multilocus enzyme electrophoresis, and proposal of


_Salmonella bongori_ comb. nov. _J. Clin. Microbiol._ 27, 313–320 (1989). CAS  PubMed  PubMed Central  Google Scholar  * Selander, R. K. Genetic population structure, clonal phylogeny, and


pathogenicity of _Salmonella_ paratyphi B. _Infect. Immun._ 58, 1891–1901 (1990). CAS  PubMed  PubMed Central  Google Scholar  * Selander, R. K. Evolutionary genetic relationships of clones


of _Salmonella_ serovars that cause human typhoid and other enteric fevers. _Infect. Immun._ 58, 2262–2275 (1990). CAS  PubMed  PubMed Central  Google Scholar  * Lefevre, J. C. DNA


fingerprinting of _Streptococcus pneumoniae_ strains by pulsed-field gel electrophoresis. _J. Clin. Microbiol._ 31, 2724–2728 (1993). CAS  PubMed  PubMed Central  Google Scholar  * Li, J. et


al. Recombinational basis of serovar diversity in _Salmonella enterica_. _Proc. Natl Acad. Sci. USA_ 91, 2552–2556 (1994). CAS  PubMed  PubMed Central  Google Scholar  * Spratt, B. G.


Resistance to antibiotics mediated by target alterations. _Science_ 264, 388–393 (1994). CAS  PubMed  Google Scholar  * Musser, J. M. Molecular population genetic analysis of emerged


bacterial pathogens: selected insights. _Emerg. Infect. Dis._ 2, 1–17 (1996). CAS  PubMed  PubMed Central  Google Scholar  * Schloter, M. et al. Ecology and evolution of bacterial


microdiversity. _FEMS Microbiol. Rev._ 24, 647–660 (2000). CAS  PubMed  Google Scholar  * Maynard Smith, J., Feil, E. J. & Smith, N. H. Population structure and evolutionary dynamics of


pathogenic bacteria. _Bioessays_ 22, 1115–1122 (2000).AN EXCELLENT REVIEW THAT DISCUSSES HOW MLEE, MLST AND ADVANCES IN NUCLEOTIDE SEQUENCING TECHNOLOGY GIVE A QUANTITATIVE ESTIMATE OF THE


IMPACT OF RECOMBINATION IN BACTERIA AND HOW THIS CONTRIBUTES TO OUR UNDERSTANDING OF BACTERIAL SPECIES DEFINITION. Google Scholar  * Woese, C. R. Bacterial evolution. _Microbiol. Rev._ 51,


221–271 (1987). CAS  PubMed  PubMed Central  Google Scholar  * Ludwig, W. Bacterial phylogeny based on 16S and 23S rRNA sequence analysis. _FEMS Microbiol. Rev._ 15, 155–173 (1994). CAS 


PubMed  Google Scholar  * Maiden, M. C. et al. Multilocus sequence typing: a portable approach to the identification of clones within populations of pathogenic microorganisms. _Proc. Natl


Acad. Sci. USA_ 95, 3140–3145 (1998).THIS PAPER INTRODUCES MULTILOCUS SEQUENCE TYPING AS A METHOD FOR TYPING MICROORGANISMS ON THE BASIS OF THE NUCLEOTIDE SEQUENCES OF A LIMITED NUMBER OF


GENETIC LOCI. CAS  PubMed  PubMed Central  Google Scholar  * Feil, E. J. Estimating the relative contributions of mutation and recombination to clonal diversification: a comparison between


_Neisseria meningitidis_ and _Streptococcus pneumoniae_. _Res. Microbiol._ 151, 465–469 (2000). CAS  PubMed  Google Scholar  * Reid, S. D. et al. Parallel evolution of virulence in


pathogenic _Escherichia coli_. _Nature_ 406, 64–67 (2000). CAS  PubMed  Google Scholar  * Wren, B. W. Microbial genome analysis: insights into virulence, host adaptation and evolution.


_Nature Rev. Genet._ 1, 30–39 (2000). CAS  PubMed  Google Scholar  * Dobrindt, U. & Hacker, J. Whole genome plasticity in pathogenic bacteria. _Curr. Opin. Microbiol._ 4, 550–557 (2001).


CAS  PubMed  Google Scholar  * Fitzgerald, J. R. & Musser, J. M. Evolutionary genomics of pathogenic bacteria. _Trends Microbiol._ 9, 547–553 (2001). CAS  PubMed  Google Scholar  *


Graham, M. R. Toward a genome-scale understanding of group A _Streptococcus_ pathogenesis. _Curr. Opin. Microbiol._ 4, 65–70 (2001). CAS  PubMed  Google Scholar  * Musser, J. M. Pneumococcal


research transformed. _N. Engl. J. Med._ 345, 1206–1207 (2001). CAS  PubMed  Google Scholar  * Schaechter, M. _Escherichia coli_ and _Salmonella_ 2000: the view from here. _Microbiol. Mol.


Biol. Rev._ 65, 119–130 (2001). CAS  PubMed  PubMed Central  Google Scholar  * Edwards, R. A., Olsen, G. J. & Maloy, S. R. Comparative genomics of closely related Salmonellae. _Trends


Microbiol._ 10, 94–99 (2002). CAS  PubMed  Google Scholar  * Schena, M., Shalon, D., Davis, R. W. & Brown, P. O. Quantitative monitoring of gene expression patterns with a complementary


DNA microarray. _Science_ 270, 467–470 (1995). CAS  PubMed  Google Scholar  * Cummings, C. A. & Relman, D. A. Using DNA microarrays to study host–microbe interactions. _Emerg. Infect.


Dis._ 6, 513–525 (2000). CAS  PubMed  PubMed Central  Google Scholar  * Diehn, M. & Relman, D. A. Comparing functional genomic datasets: lessons from DNA microarray analyses of


host–pathogen interactions. _Curr. Opin. Microbiol._ 4, 95–101 (2001). CAS  PubMed  Google Scholar  * Lucchini, S., Thompson, A. & Hinton, J. C. Microarrays for microbiologists.


_Microbiology_ 147, 1403–1414 (2001). CAS  PubMed  Google Scholar  * Sassetti, C. M., Boyd, D. H. & Rubin, E. J. Comprehensive identification of conditionally essential genes in


mycobacteria. _Proc. Natl Acad. Sci. USA_ 98, 12712–12717 (2001). CAS  PubMed  PubMed Central  Google Scholar  * Schoolnik, G. K. The accelerating convergence of genomics and microbiology.


_Genome Biol. Online_ 2, REPORTS4009 (2001). * Behr, M. A. et al. Comparative genomics of BCG vaccines by whole-genome DNA microarray. _Science_ 284, 1520–1523 (1999). CAS  PubMed  Google


Scholar  * Salama, N. et al. A whole-genome microarray reveals genetic diversity among _Helicobacter pylori_ strains. _Proc. Natl Acad. Sci. USA_ 97, 14668–14673 (2000).THIS STUDY PROVIDED


THE FIRST EVIDENCE OF THE EXTENT OF GENETIC DIVERSITY IN BACTERIA USING MICROARRAY ANALYSIS. CAS  PubMed  PubMed Central  Google Scholar  * Wu, L. et al. Development and evaluation of


functional gene arrays for detection of selected genes in the environment. _Appl. Environ. Microbiol._ 67, 5780–5790 (2001).THIS CRUCIAL STUDY DESCRIBES CONDITIONS FOR EXAMINING GENE


COMPOSITION IN NATURAL MICROBIAL COMMUNITIES USING MICROARRAY ANALYSIS. CAS  PubMed  PubMed Central  Google Scholar  * Cho, J. C. & Tiedje, J. M. Bacterial species determination from


DNA–DNA hybridization by using genome fragments and DNA microarrays. _Appl. Environ. Microbiol._ 67, 3677–3682 (2001).A METHOD BASED ON RANDOM GENOME FRAGMENTS AND DNA MICROARRAY TECHNOLOGY


THAT REVEALS TAXONOMIC RELATIONSHIPS BETWEEN BACTERIAL STRAINS. CAS  PubMed  PubMed Central  Google Scholar  * Dorrell, N. et al. Whole genome comparison of _Campylobacter jejuni_ human


isolates using a low-cost microarray reveals extensive genetic diversity. _Genome Res._ 11, 1706–1715 (2001). CAS  PubMed  PubMed Central  Google Scholar  * Bjorkholm, B. et al. Comparison


of genetic divergence and fitness between two subclones of _Helicobacter pylori_. _Infect. Immun._ 69, 7832–7838 (2001).BY USING MICROARRAY ANALYSIS, THE AUTHORS DETECTED GENETIC CHANGES


BETWEEN CLINICAL ISOLATES COLLECTED FROM A SINGLE PATIENT, ALLUDING TO THE POTENTIAL FOR _IN VIVO_ SUB-SPECIES DEVELOPMENT. CAS  PubMed  PubMed Central  Google Scholar  * Hurt, R. A. et al.


Simultaneous recovery of RNA and DNA from soils and sediments. _Appl. Environ. Microbiol._ 67, 4495–4503 (2001). CAS  PubMed  PubMed Central  Google Scholar  * Janssen, P. J., Audit, B.


& Ouzounis, C. A. Strain-specific genes of _Helicobacter pylori_: distribution, function and dynamics. _Nucleic Acids Res._ 29, 4395–4404 (2001). CAS  PubMed  PubMed Central  Google


Scholar  * Israel, D. A. et al. _Helicobacter pylori_ genetic diversity within the gastric niche of a single human host. _Proc. Natl Acad. Sci. USA_ 98, 14625–14630 (2001).THIS STUDY USED


MICROARRAYS TO EXAMINE THE EXTENT AND TYPES OF GENETIC CHANGE IN A BACTERIAL PATHOGEN THAT OCCUR DURING LONG-TERM HOST COLONIZATION AND HOW THESE CORRELATE WITH CLINICAL OUTCOMES OF


INFECTION. CAS  PubMed  PubMed Central  Google Scholar  * Israel, D. A. et al. _Helicobacter pylori_ strain-specific differences in genetic content, identified by microarray, influence host


inflammatory responses. _J. Clin. Invest._ 107, 611–620 (2001).MICROARRAY TECHNOLOGY WAS USED TO INVESTIGATE _H. PYLORI_ GENETIC DIVERSITY AND TO CORRELATE THIS WITH DISEASE DEVELOPMENT AND


SEVERITY. CAS  PubMed  PubMed Central  Google Scholar  * Hakenbeck, R. et al. Mosaic genes and mosaic chromosomes: intra- and interspecies genomic variation of _Streptococcus pneumoniae_.


_Infect. Immun._ 69, 2477–2486 (2001).THESE AUTHORS USED AN AFFYMETRIX HIGH-DENSITY OLIGONUCLEOTIDE ARRAY TO EXAMINE THE GENETIC RELATEDNESS OF 20 CLINICAL _S. PNEUMONIAE_ ISOLATES, 5


_STREPTOCOCCUS MITIS_ ISOLATES AND 4 _STREPTOCOCCUS ORALIS_ ISOLATES. CAS  PubMed  PubMed Central  Google Scholar  * Tettelin, H. et al. Complete genome sequence of a virulent isolate of


_Streptococcus pneumoniae_. _Science_ 293, 498–506 (2001). CAS  PubMed  Google Scholar  * Fitzgerald, J. R. et al. Evolutionary genomics of _Staphylococcus aureus_: insights into the origin


of methicillin-resistant strains and the toxic shock syndrome epidemic. _Proc. Natl Acad. Sci. USA_ 98, 8821–8826 (2001). CAS  PubMed  PubMed Central  Google Scholar  * Murray, A. E. et al.


DNA/DNA hybridization to microarrays reveals gene-specific differences between closely related microbial genomes. _Proc. Natl Acad. Sci. USA_ 98, 9853–9858 (2001). CAS  PubMed  PubMed


Central  Google Scholar  * Dziejman, M. et al. Comparative genomic analysis of _Vibrio cholerae_: genes that correlate with cholera endemic and pandemic disease. _Proc. Natl Acad. Sci. USA_


99, 1556–1561 (2002). CAS  PubMed  PubMed Central  Google Scholar  * Smoot, J. C. et al. Genome sequence and comparative microarray analysis of serotype M18 groupA _Streptococcus_ strains


associated with acute rheumatic fever outbreaks. _Proc. Natl Acad. Sci. USA_ 99, 4668–4673 (2002). CAS  PubMed  PubMed Central  Google Scholar  * Wotherspoon, A. C. et al. _Helicobacter


pylori_-associated gastritis and primary B-cell gastric lymphoma. _Lancet_ 338, 1175–1176 (1991). CAS  PubMed  Google Scholar  * Montecucco, C. Living dangerously: how _Helicobacter pylori_


survives in the human stomach. _Nature Rev. Mol. Cell Biol._ 2, 457–466 (2001). CAS  Google Scholar  * Tummuru, M. K. et al. Cloning and expression of a high-molecular-mass major antigen of


_Helicobacter pylori_: evidence of linkage to cytotoxin production. _Infect. Immun._ 61, 1799–1809 (1993). CAS  PubMed  PubMed Central  Google Scholar  * Covacci, A. et al. Molecular


characterization of the 128-kDa immunodominant antigen of _Helicobacter pylori_ associated with cytotoxicity and duodenal ulcer. _Proc. Natl Acad. Sci. USA_ 90, 5791–5795 (1993). CAS  PubMed


  PubMed Central  Google Scholar  * Censini, S. et al. _cag_, a pathogenicity island of _Helicobacter pylori_, encodes type I-specific and disease-associated virulence factors. _Proc. Natl


Acad. Sci. USA_ 93, 14648–14653 (1996). CAS  PubMed  PubMed Central  Google Scholar  * Backert, S. et al. Translocation of the _Helicobacter pylori_ CagA protein in gastric epithelial cells


by a type IV secretion apparatus. _Cell. Microbiol._ 2, 155–164 (2000). CAS  PubMed  Google Scholar  * Odenbreit, S. et al. Translocation of _Helicobacter pylori_ CagA into gastric


epithelial cells by type IV secretion. _Science_ 287, 1497–1500 (2000). CAS  PubMed  Google Scholar  * Segal, E. D. et al. Altered states: involvement of phosphorylated CagA in the induction


of host cellular growth changes by _Helicobacter pylori_. _Proc. Natl Acad. Sci. USA_ 96, 14559–14564 (1999). CAS  PubMed  PubMed Central  Google Scholar  * Stein, M., Rappuoli, R. &


Covacci, A. Tyrosine phosphorylation of the _Helicobacter pylori_ CagA antigen after _cag_-driven host cell translocation. _Proc. Natl Acad. Sci. USA_ 97, 1263–1268 (2000). CAS  PubMed 


PubMed Central  Google Scholar  * Akopyanz, N. et al. PCR-based RFLP analysis of DNA sequence diversity in the gastric pathogen _Helicobacter pylori_. _Nucleic Acids Res._ 20, 6221–6225


(1992). CAS  PubMed  PubMed Central  Google Scholar  * Akopyanz, N. et al. DNA diversity among clinical isolates of _Helicobacter pylori_ detected by PCR-based RAPD fingerprinting. _Nucleic


Acids Res._ 20, 5137–5142 (1992). CAS  PubMed  PubMed Central  Google Scholar  * Alm, R. A. et al. Genomic-sequence comparison of two unrelated isolates of the human gastric pathogen


_Helicobacter pylori_. _Nature_ 397, 176–180 (1999). PubMed  Google Scholar  * Alm, R. A. & Trust, T. J. Analysis of the genetic diversity of _Helicobacter pylori_: the tale of two


genomes. _J. Mol. Med._ 77, 834–846 (1999). CAS  PubMed  Google Scholar  * Tomb, J. F. et al. The complete genome sequence of the gastric pathogen _Helicobacter pylori_. _Nature_ 388,


539–547 (1997). CAS  PubMed  Google Scholar  * Pellegrini, M. et al. Assigning protein functions by comparative genome analysis: protein phylogenetic profiles. _Proc. Natl Acad. Sci. USA_


96, 4285–4288 (1999). CAS  PubMed  PubMed Central  Google Scholar  * Gerhard, M. et al. Clinical relevance of the _Helicobacter pylori_ gene for blood-group antigen-binding adhesin. _Proc.


Natl Acad. Sci. USA_ 96, 12778–12783 (1999). CAS  PubMed  PubMed Central  Google Scholar  * Ilver, D. et al. _Helicobacter pylori_ adhesin binding fucosylated histo-blood group antigens


revealed by retagging. _Science_ 279, 373–377 (1998). CAS  PubMed  Google Scholar  * Parsonnet, J. et al. _Helicobacter pylori_ infection and the risk of gastric carcinoma. _N. Engl. J.


Med._ 325, 1127–1131 (1991). CAS  PubMed  Google Scholar  * Sharma, S. A. et al. Interleukin-8 response of gastric epithelial cell lines to _Helicobacter pylori_ stimulation _in vitro_.


_Infect. Immun._ 63, 1681–1687 (1995). CAS  PubMed  PubMed Central  Google Scholar  * Tummuru, M. K., Sharma, S. A. & Blaser, M. J. _Helicobacter pylori picB_, a homologue of the


_Bordetella pertussis_ toxin secretion protein, is required for induction of IL-8 in gastric epithelial cells. _Mol. Microbiol._ 18, 867–876 (1995). CAS  PubMed  Google Scholar  * Hoskins,


J. et al. Genome of the bacterium _Streptococcus pneumoniae_ strain R6. _J. Bacteriol._ 183, 5709–5717 (2001). CAS  PubMed  PubMed Central  Google Scholar  * Hall, L. M. et al. Genetic


relatedness within and between serotypes of _Streptococcus pneumoniae_ from the United Kingdom: analysis of multilocus enzyme electrophoresis, pulsed-field gel electrophoresis, and


antimicrobial resistance patterns. _J. Clin. Microbiol._ 34, 853–859 (1996). CAS  PubMed  PubMed Central  Google Scholar  * Spratt, B. G. & Maiden, M. C. Bacterial population genetics,


evolution and epidemiology. _Phil. Trans. R. Soc. Lond. B_ 354, 701–710 (1999). CAS  Google Scholar  * Gray, B. M. et al. Serotypes of _Streptococcus pneumoniae_ causing disease. _J. Infect.


Dis._ 140, 979–983 (1979). CAS  PubMed  Google Scholar  * Gray, B. M. et al. Clinical and epidemiologic studies of pneumococcal infection in children. _Pediatr. Infect. Dis._ 5, 201–207


(1986). CAS  PubMed  Google Scholar  * Orange, M. & Gray, B. M. Pneumococcal serotypes causing disease in children in Alabama. _Pediatr. Infect. Dis. J._ 12, 244–246 (1993). CAS  PubMed


  Google Scholar  * Baumler, A. J. et al. Evolution of host adaptation in _Salmonella enterica_. _Infect. Immun._ 66, 4579–4587 (1998). CAS  PubMed  PubMed Central  Google Scholar  * Conner,


C. P. et al. Differential patterns of acquired virulence genes distinguish _Salmonella_ strains. _Proc. Natl Acad. Sci. USA_ 95, 4641–4645 (1998). CAS  PubMed  PubMed Central  Google


Scholar  * Folkesson, A. et al. Multiple insertions of fimbrial operons correlate with the evolution of _Salmonella_ serovars responsible for human disease. _Mol. Microbiol._ 33, 612–622


(1999). CAS  PubMed  Google Scholar  * Townsend, S. M. et al. _Salmonella enterica_ serovar Typhi possesses a unique repertoire of fimbrial gene sequences. _Infect. Immun._ 69, 2894–2901


(2001). CAS  PubMed  PubMed Central  Google Scholar  * Baumler, A. J., Hargis, B. M. & Tsolis, R. M. Tracing the origins of _Salmonella_ outbreaks. _Science_ 287, 50–52 (2000). CAS 


PubMed  Google Scholar  * Kingsley, R. A. & Baumler, A. J. Host adaptation and the emergence of infectious disease: the _Salmonella_ paradigm. _Mol. Microbiol._ 36, 1006–1014 (2000). CAS


  PubMed  Google Scholar  * Rabsch, W. et al. Competitive exclusion of _Salmonella enteritidis_ by _Salmonella gallinarum_ in poultry. _Emerg. Infect. Dis._ 6, 443–448 (2000). CAS  PubMed 


PubMed Central  Google Scholar  * Woolhouse, M. E., Taylor, L. H. & Haydon, D. T. Population biology of multihost pathogens. _Science_ 292, 1109–1112 (2001). CAS  PubMed  Google Scholar


  * McClelland, M. et al. Complete genome sequence of _Salmonella enterica_ serovar Typhimurium LT2. _Nature_ 413, 852–856 (2001). CAS  PubMed  Google Scholar  * Parkhill, J. et al. Complete


genome sequence of a multiple drug resistant _Salmonella enterica_ serovar Typhi CT18. _Nature_ 413, 848–852 (2001). CAS  PubMed  Google Scholar  * Boyd, E. F. et al. Molecular genetic


relationships of the Salmonellae. _Appl. Environ. Microbiol._ 62, 804–808 (1996). CAS  PubMed  PubMed Central  Google Scholar  * Smith, B. P. et al. Aromatic-dependent _Salmonella_


typhimurium as modified live vaccines for calves. _Am. J. Vet. Res._ 45, 59–66 (1984). CAS  PubMed  Google Scholar  * Boyd, E. F. et al. _Salmonella_ reference collection B (SARB): strains


of 37 serovars of subspecies I. _J. Gen. Microbiol._ 139, 1125–1132 (1993). CAS  PubMed  Google Scholar  * Figueroa-Bossi, N. et al. Variable assortment of prophages provides a transferable


repertoire of pathogenic determinants in _Salmonella_. _Mol. Microbiol._ 39, 260–271 (2001). CAS  PubMed  Google Scholar  * Woodward, M. J., McLaren, I. & Wray, C. Distribution of


virulence plasmids within Salmonellae. _J. Gen. Microbiol._ 135, 503–511 (1989). CAS  PubMed  Google Scholar  * Tinge, S. A. & Curtiss, R. Conservation of _Salmonella_ typhimurium


virulence plasmid maintenance regions among _Salmonella_ serovars as a basis for plasmid curing. _Infect. Immun._ 58, 3084–3092 (1990). CAS  PubMed  PubMed Central  Google Scholar  * Chiu,


C. H. et al. Prevalence of the virulence plasmids of nontyphoid _Salmonella_ in the serovars isolated from humans and their association with bacteremia. _Microbiol. Immunol._ 43, 899–903


(1999). CAS  PubMed  Google Scholar  * Ochman, H. & Groisman, E. A. Distribution of pathogenicity islands in _Salmonella_ spp. _Infect. Immun._ 64, 5410–5412 (1996). CAS  PubMed  PubMed


Central  Google Scholar  * Xu, Q. et al. Identification of type II restriction and modification systems in _Helicobacter pylori_ reveals their substantial diversity among strains. _Proc.


Natl Acad. Sci. USA_ 97, 9671–9676 (2000). CAS  PubMed  PubMed Central  Google Scholar  * Aras, R. A. et al. Regulation of the _Hpy_II restriction-modification system of _Helicobacter


pylori_ by gene deletion and horizontal reconstitution. _Mol. Microbiol._ 42, 369–382 (2001). CAS  PubMed  Google Scholar  * Davies, J. Origins and evolution of antibiotic resistance.


_Microbiologia_ 12, 9–16 (1996). CAS  PubMed  Google Scholar  * Brown, J. R. & Doolittle, W. F. Archaea and the prokaryote-to-eukaryote transition. _Microbiol. Mol. Biol. Rev._ 61,


456–502 (1997). CAS  PubMed  PubMed Central  Google Scholar  * Doolittle, R. F. & Handy, J. Evolutionary anomalies among the aminoacyl-tRNA synthetases. _Curr. Opin. Genet. Dev._ 8,


630–636 (1998). CAS  PubMed  Google Scholar  * Doolittle, W. F. & Logsdon, J. M. Jr. Archaeal genomics: do Archaea have a mixed heritage? _Curr. Biol._ 8, R209–R211 (1998). CAS  PubMed 


Google Scholar  * Doolittle, W. F. Phylogenetic classification and the universal tree. _Science_ 284, 2124–2129 (1999). CAS  PubMed  Google Scholar  * Koonin, E. V. et al. Comparison of


archaeal and bacterial genomes: computer analysis of protein sequences predicts novel functions and suggests a chimeric origin for the Archaea. _Mol. Microbiol._ 25, 619–637 (1997). CAS 


PubMed  Google Scholar  * Lawrence, J. G. & Ochman, H. Molecular archaeology of the _Escherichia coli_ genome. _Proc. Natl Acad. Sci. USA_ 95, 9413–9417 (1998). CAS  PubMed  PubMed


Central  Google Scholar  * Nelson, K. E. et al. Evidence for lateral gene transfer between Archaea and bacteria from genome sequence of _Thermotoga maritima_. _Nature_ 399, 323–329 (1999).


CAS  PubMed  Google Scholar  * Ochman, H., Lawrence, J. G. & Groisman, E. A. Lateral gene transfer and the nature of bacterial innovation. _Nature_ 405, 299–304 (2000). CAS  PubMed 


Google Scholar  * Doolittle, W. F. Lateral genomics. _Trends Cell Biol._ 9, M5–M8 (1999). CAS  PubMed  Google Scholar  * McNulty, C. A. The discovery of _Campylobacter_-like organisms.


_Curr. Top. Microbiol. Immunol._ 241, 1–9 (1999). CAS  PubMed  Google Scholar  * Marshall, B. J. & Warren, J. R. Unidentified curved bacilli in the stomach of patients with gastritis and


peptic ulceration. _Lancet_ 1, 1311–1315 (1984). CAS  PubMed  Google Scholar  * Suerbaum, S. Genetic variability within _Helicobacter pylori_. _Ijmm Int. J. Med. Microbiol._ 290, 175–181


(2000). CAS  PubMed  Google Scholar  * Kelly, D. Infectious ulcers: not hurry, worry and curry? _Microbiol. Today_ 28, 188–189 (2001). Google Scholar  * Musher, D. M. Infections caused by


_Streptococcus pneumoniae_: clinical spectrum, pathogenesis, immunity, and treatment. _Clin. Infect. Dis._ 14, 801–807 (1992). CAS  PubMed  Google Scholar  * Hausdorff, W. P. et al. Which


pneumococcal serogroups cause the most invasive disease: implications for conjugate vaccine formulation and use, part I. _Clin. Infect. Dis._ 30, 100–121 (2000). CAS  PubMed  Google Scholar


  * McCarty, M. in _Microbiology, Including Immunology and Molecular Genetics_ (eds Davis, B. D., Dulbecco, R., Eisen, H. N. & Ginsberg, H. S.) 607–622 (Harper & Row, Philadelphia,


1980). Google Scholar  * Neufeld, F. Uber die agglutina der pneumokokken und uber die theorien der agglutination. _Z. Hyg. Infekt-Kr_ 40, 54–72 (1902). Google Scholar  * Kim, J. O. et al.


Relationship between cell surface carbohydrates and intrastrain variation on opsonophagocytosis of _Streptococcus pneumoniae_. _Infect. Immun._ 67, 2327–2333 (1999). CAS  PubMed  PubMed


Central  Google Scholar  * White, P. B. _Great Britain Medical Research Council Special Report: No. 103_ (Her Majesty's Stationery Office, London, 1926). Google Scholar  * Crosa, J. H.


et al. Molecular relationships among the Salmonellae. _J. Bacteriol._ 115, 307–315 (1973). CAS  PubMed  PubMed Central  Google Scholar  * Scherer, C. A. & Miller, S. I. in _Principles of


Bacterial Pathogenesis_ (ed. Groisman, E. A.) 266–316 (Academic, San Diego, 2001). Google Scholar  * Anriany, Y. A. et al. _Salmonella enterica_ serovar Typhimurium DT104 displays a rugose


phenotype. _Appl. Environ. Microbiol._ 67, 4048–4056 (2001). CAS  PubMed  PubMed Central  Google Scholar  * McGee, L. et al. Nomenclature of major antimicrobial-resistant clones of


_Streptococcus pneumoniae_ defined by the Pneumococcal Molecular Epidemiology Network. _J. Clin. Microbiol._ 39, 2565–2571 (2001). CAS  PubMed  PubMed Central  Google Scholar  Download


references ACKNOWLEDGEMENTS We thank our colleagues G. Dougan and S. Baker from the Imperial College of Science, Technology and Medicine, London, for _Salmonella_ strains and sharing data;


A. Covacci, Chiron-Biocine, Italy; J. Gordon, Washington University, Missouri; J. Parsonette, Stanford University, California; R. Peek Jr, Vanderbilt University, Tennessee; J. Solnick,


University of California at Davis, for providing _H. pylori_ clinical isolates; L. McGee from the Pneumococcal Diseases Research Unit at the South African Institute for Medical Research,


Johannesburg, for the _S. pneumoniae_ strains; and A. Kawale and S. Censini for technical assistance, C. Kim for developing analytical tools for microarray analysis and thoughtful


discussion, and S. Reid, J. R. Fitzgerald and members of the Falkow Laboratory for critical reviews of the manuscript. AUTHOR INFORMATION AUTHORS AND AFFILIATIONS * Department of


Microbiology and Immunology, Stanford University School of Medicine, 299 Campus Drive, Fairchild D 037, Stanford, 94305-5402, California, USA Elizabeth A. Joyce, Kaman Chan & Stanley


Falkow * Division of Human Biology, Frederick Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, 98109, Washington, USA Nina R. Salama Authors * Elizabeth A. Joyce View


author publications You can also search for this author inPubMed Google Scholar * Kaman Chan View author publications You can also search for this author inPubMed Google Scholar * Nina R.


Salama View author publications You can also search for this author inPubMed Google Scholar * Stanley Falkow View author publications You can also search for this author inPubMed Google


Scholar CORRESPONDING AUTHOR Correspondence to Elizabeth A. Joyce. RELATED LINKS RELATED LINKS FURTHER INFORMATION CLUSTER program Genome Entry Database at NCBI Multilocus sequence typing


NCBI GenBank Database _Salmonella_.org _Salmonella_ Reference Collections B and C Supplementary Table 6 from REF. 44 The Institute for Genomic Research (TIGR) GLOSSARY * CONJUGATION The


transfer of DNA from a donor cell to a recipient cell that is mediated by direct cell–cell contact. * TRANSFORMATION The uptake of DNA by a bacterium from the surrounding environment. *


TRANSDUCTION Virus- or phage-mediated introduction into a cell of a DNA fragment that is derived from a different cell. * ARCHAEA A kingdom of unicellular microorganisms, many members of


which can survive extreme environmental conditions, such as temperatures >100 °C, extremely alkaline or acid environs, and highly osmotic conditions. * RIBOTYPING A technique used to


determine genetic and evolutionary relationships between organisms. Oligonucleotide probes targeted to highly conserved domains of coding sequences of ribosomal RNA are amplified and the


products are visualized by gel electrophoresis banding patterns are compared with known species and strains to determine organism relatedness. * ATROPHIC GASTRITIS Chronic inflammation of


the stomach, accompanied by atrophy of the mucous membrane and destruction of the peptic glands. * DUODENUM The first portion of the small intestine, extending from the pylorus (the


posterior end of the stomach) to the jejunum (the next portion of the small intestine). * ADENOCARCINOMA A form of malignant cancer that arises from the glandular epithelium. *


SEROVAR/SEROTYPE A group of intimately related microorganisms distinguished by a common set of antigenic determinants that are expressed on the cell surface. * CHEMOKINES Small molecules


that have a central role in inflammatory responses and trigger migration and activation of phagocytic cells and lymphocytes. * CLUSTER ANALYSIS A mathematical algorithm that organizes a set


of items according to their similarity. For example, genes can be clustered according to their similarity in pattern of expression. * INSERTION SEQUENCES Small, mobile nucleotide sequences


found in the genomes of many bacterial populations. * ADHESIVE FIMBRIAE Hair-like structures that project from the surface of some bacteria. They are involved in adhesion of bacterial cells


to surfaces, and can be important in bacterial virulence. * OTITIS MEDIA Infection and inflammation of the middle ear space and ear drum. * GRAM REACTION A differential stain that separates


bacteria into two groups, Gram positive and Gram negative, on the basis of the biochemical composition of their cell wall. * DIPLOCOCCUS Any of a variety of encapsulated bacteria (as the


pneumococcus) that usually occur in pairs. * CAPSULE A thick gel-like material generally composed of hydrophilic polysaccharide that surrounds the cell wall of Gram-positive or Gram-negative


bacteria. It can contribute to pathogenicity by inhibiting phagocytosis of the bacteria by the macrophages of the host. * ENTEROBACTERIACEAE A large family of Gram-negative bacilli that


inhabit the large intestine of mammals. * AGGLUTINATED The aggregation of particulate antigen by antibodies. * TISSUE TROPISM Tissue-specific bacterial adherence and colonization due to a


restricted distribution of receptor structures on certain host-cell surfaces and not on others. RIGHTS AND PERMISSIONS Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Joyce,


E., Chan, K., Salama, N. _et al._ Redefining bacterial populations: a post-genomic reformation. _Nat Rev Genet_ 3, 462–473 (2002). https://doi.org/10.1038/nrg820 Download citation * Issue


Date: 01 June 2002 * DOI: https://doi.org/10.1038/nrg820 SHARE THIS ARTICLE Anyone you share the following link with will be able to read this content: Get shareable link Sorry, a shareable


link is not currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative