Knocking down disease: a progress report on sirna therapeutics

feature-image

Play all audios:

Loading...

KEY POINTS * The key bottlenecks for small RNA drugs that harness RNA interference (RNAi) for selective gene knockdown _in vivo_ include their delivery across the plasma membrane and their


release from endosomes into the cytosol. * Small interfering RNA (siRNA)-based drugs can now be delivered into the cytosol of hepatocytes to suppress gene expression in the liver. * Recent


siRNA clinical trials show durable and potent gene silencing in the liver, with manageable toxicity for a handful of disease targets. * The most effective strategies for gene knockdown in


the liver use second-generation lipid nanoparticles or GalNAc-conjugated siRNAs that are taken up by the asialoglycoprotein receptor, which is exclusively expressed by hepatocytes. *


Achieving gene knockdown outside the liver is still clinically unproven. The most attractive strategies use topical administration of siRNAs to accessible tissue sites, such as the skin, eye


or mucosa, or use siRNAs that are covalently linked to an RNA aptamer that binds with high affinity to a cell surface receptor selectively expressed on cells being targeted for gene


knockdown. * Methods that are being developed to deliver siRNAs therapeutically may eventually prove to be useful for delivering other nucleic acid therapeutics, including antisense


oligonucleotides, mRNAs for gene expression, or CRISPR–Cas9 (clustered regularly interspaced short palindromic repeats–CRISPR-associated 9) for gene editing. ABSTRACT Small interfering RNAs


(siRNAs), which downregulate gene expression guided by sequence complementarity, can be used therapeutically to block the synthesis of disease-causing proteins. The main obstacle to siRNA


drugs — their delivery into the target cell cytosol — has been overcome to allow suppression of liver gene expression. Here, we review the results of recent clinical trials of siRNA


therapeutics, which show efficient and durable gene knockdown in the liver, with signs of promising clinical outcomes and little toxicity. We also discuss the barriers to more widespread


applications that target tissues besides the liver and the most promising avenues to overcome them. Access through your institution Buy or subscribe This is a preview of subscription


content, access via your institution ACCESS OPTIONS Access through your institution Subscribe to this journal Receive 12 print issues and online access $209.00 per year only $17.42 per issue


Learn more Buy this article * Purchase on SpringerLink * Instant access to full article PDF Buy now Prices may be subject to local taxes which are calculated during checkout ADDITIONAL


ACCESS OPTIONS: * Log in * Learn about institutional subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS RNAI-BASED DRUG DESIGN: CONSIDERATIONS


AND FUTURE DIRECTIONS Article 03 April 2024 RNA INTERFERENCE IN THE ERA OF NUCLEIC ACID THERAPEUTICS Article 26 February 2024 THERAPEUTIC SIRNA: STATE OF THE ART Article Open access 19 June


2020 REFERENCES * Zamecnik, P. C. & Stephenson, M. L. Inhibition of Rous sarcoma virus replication and cell transformation by a specific oligodeoxynucleotide. _Proc. Natl Acad. Sci. USA_


75, 280–284 (1978). CAS  PubMed  Google Scholar  * Stephenson, M. L. & Zamecnik, P. C. Inhibition of Rous sarcoma viral RNA translation by a specific oligodeoxyribonucleotide. _Proc.


Natl Acad. Sci. USA_ 75, 285–288 (1978). FIRST DEMONSTRATION OF THE POSSIBILITY OF INHIBITING GENE EXPRESSION USING OLIGONUCLEOTIDES. CAS  PubMed  Google Scholar  * Kole, R., Krainer, A. R.


& Altman, S. RNA therapeutics: beyond RNA interference and antisense oligonucleotides. _Nat. Rev. Drug Discov._ 11, 125–140 (2012). CAS  PubMed  PubMed Central  Google Scholar  *


Bennett, C. F. & Swayze, E. E. RNA targeting therapeutics: molecular mechanisms of antisense oligonucleotides as a therapeutic platform. _Annu. Rev. Pharmacol. Toxicol._ 50, 259–293


(2010). CAS  PubMed  Google Scholar  * Sharma, V. K., Sharma, R. K. & Singh, S. K. Antisense oligonucleotides: modifications and clinical trials. _Med. Chem. Commun._ 5, 1454–1471


(2014). CAS  Google Scholar  * Raal, F. J. et al. Mipomersen, an apolipoprotein B synthesis inhibitor, for lowering of LDL cholesterol concentrations in patients with homozygous familial


hypercholesterolaemia: a randomised, double-blind, placebo-controlled trial. _Lancet_ 375, 998–1006 (2010). CAS  PubMed  Google Scholar  * Fire, A. et al. Potent and specific genetic


interference by double-stranded RNA in _Caenorhabditis elegans_. _Nature_ 391, 806–811 (1998). INITIAL REPORT DESCRIBING MEDIATION OF RNAI BY DOUBLE-STRANDED RNAS. CAS  PubMed  Google


Scholar  * Elbashir, S. M. et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. _Nature_ 411, 494–498 (2001). DEMONSTRATION THAT EXOGENOUSLY SUPPLIED


SHORT DOUBLE-STRANDED RNAS CAN SPECIFICALLY AND EFFICIENTLY INHIBIT GENE EXPRESSION IN MAMMALIAN CELLS. CAS  PubMed  Google Scholar  * Song, E. et al. RNA interference targeting Fas protects


mice from fulminant hepatitis. _Nat. Med._ 9, 347–351 (2003). FIRST PROOF OF PRINCIPLE THAT SIRNAS CAN BE HARNESSED TO TREAT DISEASE IN AN _IN VIVO_ MODEL. CAS  PubMed  Google Scholar  *


Morrissey, D. V. et al. Activity of stabilized short interfering RNA in a mouse model of hepatitis B virus replication. _Hepatology_ 41, 1349–1356 (2005). CAS  PubMed  Google Scholar  *


Chiu, Y.-L. & Rana, T. M. siRNA function in RNAi: a chemical modification analysis. _RNA_ 9, 1034–1048 (2003). CAS  PubMed  PubMed Central  Google Scholar  * Morrissey, D. V. et al.


Potent and persistent _in vivo_ anti-HBV activity of chemically modified siRNAs. _Nat. Biotechnol._ 23, 1002–1007 (2005). FIRST DEMONSTRATION THAT SIRNAS CAN BE CHEMICALLY MODIFIED TO


ATTENUATE NUCLEASE DEGRADATION AND IMMUNE STIMULATION TO ALLOW FOR EFFICIENT LIPID-BASED SYSTEMIC ADMINISTRATION. CAS  PubMed  Google Scholar  * Judge, A. D., Bola, G., Lee, A. C. H. &


MacLachlan, I. Design of noninflammatory synthetic siRNA mediating potent gene silencing _in vivo_. _Mol. Ther._ 13, 494–505 (2006). CAS  PubMed  Google Scholar  * Jackson, A. L. et al.


Position-specific chemical modification of siRNAs reduces 'off-target' transcript silencing. _RNA_ 12, 1197–1205 (2006). CAS  PubMed  PubMed Central  Google Scholar  * Bartlett, D.


W. & Davis, M. E. Insights into the kinetics of siRNA-mediated gene silencing from live-cell and live-animal bioluminescent imaging. _Nucleic Acids Res._ 34, 322–333 (2006). CAS  PubMed


  PubMed Central  Google Scholar  * Gilleron, J. et al. Image-based analysis of lipid nanoparticle-mediated siRNA delivery, intracellular trafficking and endosomal escape. _Nat. Biotechnol._


31, 638–646 (2013). CAS  PubMed  Google Scholar  * Wittrup, A. et al. Visualizing lipid-formulated siRNA release from endosomes and target gene knockdown. _Nat. Biotechnol._


http://dx.doi.org/10.1038/nbt.3298 (2015). * Kanasty, R., Dorkin, J. R., Vegas, A. & Anderson, D. Delivery materials for siRNA therapeutics. _Nat. Mater._ 12, 967–977 (2013). CAS  PubMed


  Google Scholar  * Zimmermann, T. S. et al. RNAi-mediated gene silencing in non-human primates. _Nature_ 441, 111–114 (2006). FIRST REPORT OF POTENT RNAI-MEDIATED GENE SILENCING IN


NON-HUMAN PRIMATES AFTER SYSTEMIC ADMINISTRATION OF SIRNA FORMULATED IN LNPS. CAS  PubMed  Google Scholar  * Akinc, A. et al. A combinatorial library of lipid-like materials for delivery of


RNAi therapeutics. _Nat. Biotechnol._ 26, 561–569 (2008). CAS  PubMed  PubMed Central  Google Scholar  * Semple, S. C. et al. Rational design of cationic lipids for siRNA delivery. _Nat.


Biotechnol._ 28, 172–176 (2010). CAS  PubMed  Google Scholar  * Shi, B. et al. Biodistribution of small interfering RNA at the organ and cellular levels after lipid nanoparticle-mediated


delivery. _J. Histochem. Cytochem._ 59, 727–740 (2011). CAS  PubMed  PubMed Central  Google Scholar  * Akinc, A. et al. Targeted delivery of RNAi therapeutics with endogenous and exogenous


ligand-based mechanisms. _Mol. Ther._ 18, 1357–1364 (2010). CAS  PubMed  PubMed Central  Google Scholar  * Judge, A. D. et al. Confirming the RNAi-mediated mechanism of action of siRNA-based


cancer therapeutics in mice. _J. Clin. Invest._ 119, 661–673 (2009). CAS  PubMed  PubMed Central  Google Scholar  * Bartlett, D. W., Su, H., Hildebrandt, I. J., Weber, W. A. & Davis, M.


E. Impact of tumor-specific targeting on the biodistribution and efficacy of siRNA nanoparticles measured by multimodality _in vivo_ imaging. _Proc. Natl Acad. Sci. USA_ 104, 15549–15554


(2007). CAS  PubMed  Google Scholar  * Song, E. et al. Antibody mediated _in vivo_ delivery of small interfering RNAs via cell-surface receptors. _Nat. Biotechnol._ 23, 709–717 (2005). CAS 


PubMed  Google Scholar  * Peer, D., Zhu, P., Carman, C. V., Lieberman, J. & Shimaoka, M. Selective gene silencing in activated leukocytes by targeting siRNAs to the integrin lymphocyte


function-associated antigen-1. _Proc. Natl Acad. Sci. USA_ 104, 4095–4100 (2007). CAS  PubMed  Google Scholar  * Peer, D., Park, E. J., Morishita, Y., Carman, C. V. & Shimaoka, M.


Systemic leukocyte-directed siRNA delivery revealing cyclin D1 as an anti-inflammatory target. _Science_ 319, 627–630 (2008). CAS  PubMed  PubMed Central  Google Scholar  * McNamara, J. O.


et al. Cell type-specific delivery of siRNAs with aptamer-siRNA chimeras. _Nat. Biotechnol._ 24, 1005–1015 (2006). CAS  PubMed  Google Scholar  * Berezhnoy, A., Castro, I., Levay, A., Malek,


T. R. & Gilboa, E. Aptamer-targeted inhibition of mTOR in T cells enhances antitumor immunity. _J. Clin. Invest._ 124, 188–197 (2014). CAS  PubMed  Google Scholar  * Wheeler, L. A. et


al. Inhibition of HIV transmission in human cervicovaginal explants and humanized mice using CD4 aptamer-siRNA chimeras. _J. Clin. Invest._ 121, 2401–2412 (2011). CAS  PubMed  PubMed Central


  Google Scholar  * Davis, M. E. et al. Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles. _Nature_ 464, 1067–1070 (2010). CAS  PubMed  PubMed


Central  Google Scholar  * Nair, J. K. et al. Multivalent _N_-acetylgalactosamine-conjugated siRNA localizes in hepatocytes and elicits robust RNAi-mediated gene silencing. _J. Am. Chem.


Soc._ 136, 16958–16961 (2014). DESCRIPTION OF TRIANTENNARY GALNAC-CONJUGATED SIRNA FOR LIVER-TARGETED GENE KNOCKDOWN. CAS  PubMed  Google Scholar  * Wong, S. C. et al. Co-injection of a


targeted, reversibly masked endosomolytic polymer dramatically improves the efficacy of cholesterol-conjugated small interfering RNAs _in vivo_. _Nucleic Acid Ther._ 22, 380–390 (2012). CAS


  PubMed  PubMed Central  Google Scholar  * Kortylewski, M. et al. _In vivo_ delivery of siRNA to immune cells by conjugation to a TLR9 agonist enhances antitumor immune responses. _Nat.


Biotechnol._ 27, 925–932 (2009). CAS  PubMed  PubMed Central  Google Scholar  * Soutschek, J. et al. Therapeutic silencing of an endogenous gene by systemic administration of modified


siRNAs. _Nature_ 432, 173–178 (2004). CAS  PubMed  Google Scholar  * Biessen, E. A. et al. Synthesis of cluster galactosides with high affinity for the hepatic asialoglycoprotein receptor.


_J. Med. Chem._ 38, 1538–1546 (1995). CAS  PubMed  Google Scholar  * Matsuda, S. et al. siRNA conjugates carrying sequentially assembled trivalent _N_-acetylgalactosamine linked through


nucleosides elicit robust gene silencing _in vivo_ in hepatocytes. _ACS Chem. Biol._ 10, 1181–1187 (2015). CAS  PubMed  Google Scholar  * Rajeev, K. G. et al. Hepatocyte-specific delivery of


siRNAs conjugated to novel non-nucleosidic trivalent _N_-acetylgalactosamine elicits robust gene silencing _in vivo_. _ChemBioChem_ 16, 903–908 (2015). CAS  PubMed  Google Scholar  *


Manoharan, M. GalNAc-siRNA with enhanced stabilization chemistry: ESC-GalNAc-siRNA. _Alnylam_ [online], (2014). Google Scholar  * Thurston, T. L. M., Wandel, M. P., von Muhlinen, N.,


Foeglein, Á. & Randow, F. Galectin 8 targets damaged vesicles for autophagy to defend cells against bacterial invasion. _Nature_ 482, 414–418 (2012). CAS  PubMed  PubMed Central  Google


Scholar  * Boussif, O., Zanta, M. A. & Behr, J. P. Optimized galenics improve _in vitro_ gene transfer with cationic molecules up to 1000-fold. _Gene Ther._ 3, 1074–1080 (1996). CAS 


PubMed  Google Scholar  * Rozema, D. B. et al. Dynamic PolyConjugates for targeted _in vivo_ delivery of siRNA to hepatocytes. _Proc. Natl Acad. Sci. USA_ 104, 12982–12987 (2007). CAS 


PubMed  Google Scholar  * Cohen, J. C., Boerwinkle, E., Mosley, T. H. Jr & Hobbs, H. H. Sequence variations in _PCSK9_, low LDL, and protection against coronary heart disease. _N. Engl.


J. Med._ 354, 1264–1272 (2006). CAS  PubMed  Google Scholar  * Sorensen, B. et al. A subcutaneously administered RNAi therapeutic (ALN-AT3) targeting antithrombin for treatment of


hemophilia: interim Phase 1 study results in healthy volunteers and patients with hemophilia A or B. Oral Poster Abstract 693. _56_th _American Society of Hematology_ [online], (2014).


Google Scholar  * Tabernero, J. et al. First-in-humans trial of an RNA interference therapeutic targeting VEGF and KSP in cancer patients with liver involvement. _Cancer Discov._ 3, 406–417


(2013). CAS  PubMed  Google Scholar  * Reynolds, A. et al. Rational siRNA design for RNA interference. _Nat. Biotechnol._ 22, 326–330 (2004). CAS  PubMed  Google Scholar  * Elbashir, S. M.,


Harborth, J., Weber, K. & Tuschl, T. Analysis of gene function in somatic mammalian cells using small interfering RNAs. _Methods_ 26, 199–213 (2002). CAS  PubMed  Google Scholar  *


Jackson, A. L. et al. Expression profiling reveals off-target gene regulation by RNAi. _Nat. Biotechnol._ 21, 635–637 (2003). CAS  PubMed  Google Scholar  * Jackson, A. L. et al. Widespread


siRNA 'off-target' transcript silencing mediated by seed region sequence complementarity. _RNA_ 12, 1179–1187 (2006). CAS  PubMed  PubMed Central  Google Scholar  * Birmingham, A.


et al. 3′ UTR seed matches, but not overall identity, are associated with RNAi off-targets. _Nat. Methods_ 3, 199–204 (2006). CAS  PubMed  Google Scholar  * Huang, L. et al. Efficient and


specific gene knockdown by small interfering RNAs produced in bacteria. _Nat. Biotechnol._ 31, 350–356 (2013). CAS  PubMed  PubMed Central  Google Scholar  * Judge, A. D. et al.


Sequence-dependent stimulation of the mammalian innate immune response by synthetic siRNA. _Nat. Biotechnol._ 23, 457–462 (2005). CAS  PubMed  Google Scholar  * Kleinman, M. E. et al.


Sequence- and target-independent angiogenesis suppression by siRNA via TLR3. _Nature_ 452, 591–597 (2008). CAS  PubMed  PubMed Central  Google Scholar  * Hornung, V. et al. Sequence-specific


potent induction of IFN-α by short interfering RNA in plasmacytoid dendritic cells through TLR7. _Nat. Med._ 11, 263–270 (2005). CAS  PubMed  Google Scholar  * Poeck, H. et al.


5′-triphosphate-siRNA: turning gene silencing and Rig-I activation against melanoma. _Nat. Med._ 14, 1256–1263 (2008). CAS  PubMed  Google Scholar  * Roberts, T. L., Sweet, M. J., Hume, D.


A. & Stacey, K. J. Cutting edge: species-specific TLR9-mediated recognition of CpG and non-CpG phosphorothioate-modified oligonucleotides. _J. Immunol._ 174, 605–608 (2005). CAS  PubMed


  Google Scholar  * Kedmi, R., Ben-Arie, N. & Peer, D. The systemic toxicity of positively charged lipid nanoparticles and the role of Toll-like receptor 4 in immune activation.


_Biomaterials_ 31, 6867–6875 (2010). CAS  PubMed  Google Scholar  * Landesman-Milo, D. & Peer, D. Toxicity profiling of several common RNAi-based nanomedicines: a comparative study.


_Drug Deliv. Transl. Res._ 4, 96–103 (2014). CAS  PubMed  Google Scholar  * Maier, M. A. et al. Biodegradable lipids enabling rapidly eliminated lipid nanoparticles for systemic delivery of


RNAi therapeutics. _Mol. Ther._ 21, 1570–1578 (2013). CAS  PubMed  PubMed Central  Google Scholar  * Rusconi, C. Phase 3 evaluation of revolixys kit: study summary and lessons learned.


_Celebrating the 25th Anniversary of Selex, ASGCT meeting May 10–12, 2015_, New Orleans (2015). Google Scholar  * Coelho, T. et al. Safety and efficacy of RNAi therapy for transthyretin


amyloidosis. _N. Engl. J. Med._ 369, 819–829 (2013). FIRST DEMONSTRATION OF HIGHLY POTENT SIRNA-MEDIATED GENE KNOCKDOWN IN HUMANS. CAS  PubMed  Google Scholar  * Degenhardt, Y. &


Lampkin, T. Targeting Polo-like kinase in cancer therapy. _Clin. Cancer Res._ 16, 384–389 (2010). CAS  PubMed  Google Scholar  * Geisbert, T. W. et al. Postexposure protection of non-human


primates against a lethal Ebola virus challenge with RNA interference: a proof-of-concept study. _Lancet_ 375, 1896–1905 (2010). CAS  PubMed  Google Scholar  * Fitzgerald, K. et al. Effect


of an RNA interference drug on the synthesis of proprotein convertase subtilisin/kexin type 9 (PCSK9) and the concentration of serum LDL cholesterol in healthy volunteers: a randomised,


single-blind, placebo-controlled, phase 1 trial. _Lancet_ 383, 60–68 (2014). CAS  PubMed  Google Scholar  * Adams, D. et al. Phase 2 open-label extension study of patisiran, an RNAi


therapeutic for the treatment of familial amyloidotic polyneuropathy. _Alnylam_ [online], (2014) Google Scholar  * Zimmermann, T. et al. Phase I first-in-human trial of ALN-TTRsc, a novel


RNA interference therapeutic for the treatment of familial amyloidotic cardiomyopathy (FAC). _Alnylam_ [online], (2013). Google Scholar  * Akinc, A. A. Subcutaneously administered


investigational RNAi therapeutic (ALN-AT3) targeting antithrombin for treatment of hemophilia: interim Phase 1 study results in healthy volunteers and hemophilia A and B subjects. _Alnylam_


[online], (2015). Google Scholar  * [No authors listed.] RNAi Roundtable: ALN-PCSsc for the treatment of hypercholesterolemia. _Alnylam_ [online], (2014). * Wooddell, C. I. et al.


Hepatocyte-targeted RNAi therapeutics for the treatment of chronic hepatitis B virus infection. _Mol. Ther._ 21, 973–985 (2013). CAS  PubMed  PubMed Central  Google Scholar  * Yuen, M.-F. et


al. Phase II, dose ranging study of ARC-520, a siRNA-based therapeutic, in patients with chronic hepatitis B virus infection. _American Association for the Study of Liver Diseases_


[online], (2014). Google Scholar  * [No authors listed.] Arrowhead begins Phase 1 trial of ARC-AAT for treatment of liver disease associated with alpha-1 antitrypsin deficiency. _Arrowhead


Research_ [online], (2015). * Byrne, M. et al. Novel hydrophobically modified asymmetric RNAi compounds (sd-rxRNA) demonstrate robust efficacy in the eye. _J. Ocul. Pharmacol. Ther._ 29,


855–864 (2013). CAS  PubMed  Google Scholar  * [No authors listed.] Clinical trials — overview. _RXI Pharmaceuticals_ [online] * Tolcher, A. W. et al. Safety and activity of DCR-MYC, a


first-in-class Dicer-substrate small interfering RNA (DsiRNA) targeting MYC, in a phase I study in patients with advanced solid tumors. _J. Clin. Oncol._ 33, 915_suppl 11006 (2015). Google


Scholar  * Dudek, H. et al. Knockdown of β-catenin with dicer-substrate siRNAs reduces liver tumor burden _in vivo_. _Mol. Ther._ 22, 92–101 (2014). CAS  PubMed  Google Scholar  *


Schultheis, B. et al. First-in-human phase I study of the liposomal RNA interference therapeutic Atu027 in patients with advanced solid tumors. _J. Clin. Oncol._ 32, 4141–4148 (2014). CAS 


PubMed  Google Scholar  * Wu, Y. et al. Durable protection from herpes simplex virus-2 transmission following intravaginal application of siRNAs targeting both a viral and host gene. _Cell


Host Microbe_ 5, 84–94 (2009). CAS  PubMed  PubMed Central  Google Scholar  * Nakayama, T. et al. Harnessing a physiologic mechanism for siRNA delivery with mimetic lipoprotein particles.


_Mol. Ther._ 20, 1582–1589 (2012). CAS  PubMed  PubMed Central  Google Scholar  * Alvarez-Erviti, L. et al. Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes.


_Nat. Biotechnol._ 29, 341–345 (2011). CAS  PubMed  Google Scholar  * Kumar, P. et al. T cell-specific siRNA delivery suppresses HIV-1 infection in humanized mice. _Cell_ 134, 577–586


(2008). CAS  PubMed  PubMed Central  Google Scholar  * Yao, Y.-D. et al. Targeted delivery of PLK1-siRNA by ScFv suppresses _Her2_+ breast cancer growth and metastasis. _Sci. Transl Med._ 4,


130ra48 (2012). PubMed  Google Scholar  * Cuellar, T. L. et al. Systematic evaluation of antibody-mediated siRNA delivery using an industrial platform of THIOMAB-siRNA conjugates. _Nucleic


Acids Res._ 43, 1189–1203 (2015). CAS  PubMed  Google Scholar  * Rozema, D. B. et al. Protease-triggered siRNA delivery vehicles. _J. Control. Release_ 209, 57–66 (2015). CAS  PubMed  Google


Scholar  * Meade, B. R. et al. Efficient delivery of RNAi prodrugs containing reversible charge-neutralizing phosphotriester backbone modifications. _Nat. Biotechnol._ 32, 1256–1261 (2014).


CAS  PubMed  PubMed Central  Google Scholar  * Warren, L. et al. Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA.


_Cell Stem Cell_ 7, 618–630 (2010). CAS  PubMed  PubMed Central  Google Scholar  * Yin, H. et al. Genome editing with Cas9 in adult mice corrects a disease mutation and phenotype. _Nat.


Biotechnol._ 32, 551–553 (2014). CAS  PubMed  PubMed Central  Google Scholar  * Goemans, N. M. et al. Systemic administration of PRO051 in Duchenne's muscular dystrophy. _N. Engl. J.


Med._ 364, 1513–1522 (2011). CAS  PubMed  Google Scholar  * Janssen, H. L. A. et al. Treatment of HCV infection by targeting microRNA. _N. Engl. J. Med._ 368, 1685–1694 (2013). CAS  PubMed 


Google Scholar  * Bhat, B. et al. RG-101, a GalNAC-conjugated anti-miR employing aunique mechanism of action by targeting host factor microRNA-122 (miR-122), demonstrates potent activity and


reduction of HCV in preclinical studies. _Hepatology_ 58, 1393A (2013). Google Scholar  * Hata, A. & Lieberman, J. Dysregulation of microRNA biogenesis and gene silencing in cancer.


_Sci. Signal._ 8, re3 (2015). PubMed  Google Scholar  * Daige, C. L. et al. Systemic delivery of a miR34a mimic as a potential therapeutic for liver cancer. _Mol. Cancer Ther._ 13, 2352–2360


(2014). CAS  PubMed  Google Scholar  * Prakash, T. P. et al. Targeted delivery of antisense oligonucleotides to hepatocytes using triantennary _N_-acetyl galactosamine improves potency


10-fold in mice. _Nucleic Acids Res._ 42, 8796–8807 (2014). CAS  PubMed  PubMed Central  Google Scholar  * Rozema, D. B., Ekena, K., Lewis, D. L., Loomis, A. G. & Wolff, J. A.


Endosomolysis by masking of a membrane-active agent (EMMA) for cytoplasmic release of macromolecules. _Bioconjug. Chem._ 14, 51–57 (2003). CAS  PubMed  Google Scholar  * Gilboa-Geffen, A. et


al. Gene knockdown by EpCAM aptamer–siRNA chimeras suppresses epithelial breast cancers and their tumor-initiating cells. _Mol. Cancer Ther._ (in the press). Download references


ACKNOWLEDGEMENTS This work was supported by the Swedish Research Council (A.W.) and the US National Institutes of Health (NIH) grant CA139444 (to J.L.). AUTHOR INFORMATION AUTHORS AND


AFFILIATIONS * Boston Children's Hospital and Department of Pediatrics, Program in Cellular and Molecular Medicine, Harvard Medical School, Boston, 02115, Massachusetts, USA Anders


Wittrup & Judy Lieberman * Department of Clinical Sciences, Section for Oncology and Pathology, Lund University, 221 85, Lund, Sweden Anders Wittrup Authors * Anders Wittrup View author


publications You can also search for this author inPubMed Google Scholar * Judy Lieberman View author publications You can also search for this author inPubMed Google Scholar CORRESPONDING


AUTHOR Correspondence to Judy Lieberman. ETHICS DECLARATIONS COMPETING INTERESTS J.L. is on the Scientific Advisory Board of Alnylam Pharmaceuticals. A.W. declares no competing interests.


POWERPOINT SLIDES POWERPOINT SLIDE FOR FIG. 1 POWERPOINT SLIDE FOR TABLE 1 GLOSSARY * RNA interference (RNAi). An endogenous gene silencing mechanism, present in virtually all eukaryotic


cells, by which short double-stranded RNA molecules induce translational inhibition and/or degradation of mRNAs containing partially complementary sequences. * Gene knockdown An experimental


technique used to reduce gene expression using sequence-specific oligonucleotides, typically by RNA interference (RNAi) or antisense mechanisms. * RNA-induced silencing complex (RISC). The


catalytic effector complex of RNA interference (RNAi)-mediated gene silencing. The RISC is a multiprotein complex that incorporates one strand of a small interfering RNA (siRNA) or microRNA.


* Aptamers Oligonucleotides (DNA or RNA) selected to bind with high affinity to defined structures. * MicroRNAs (miRNAs). Endogenous, ~21-nucleotide-long, imperfectly paired double-stranded


RNA molecules present in both plants and animals that guide the silencing of a multitude of genes bearing partially complementary sequences. * Endosomal escape The process of cytosolic


entry of small interfering RNAs (siRNAs) from a vesicular compartment, following initial endocytosis of the siRNA (and delivery vehicle) into the target cell. RIGHTS AND PERMISSIONS Reprints


and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Wittrup, A., Lieberman, J. Knocking down disease: a progress report on siRNA therapeutics. _Nat Rev Genet_ 16, 543–552 (2015).


https://doi.org/10.1038/nrg3978 Download citation * Published: 18 August 2015 * Issue Date: September 2015 * DOI: https://doi.org/10.1038/nrg3978 SHARE THIS ARTICLE Anyone you share the


following link with will be able to read this content: Get shareable link Sorry, a shareable link is not currently available for this article. Copy to clipboard Provided by the Springer


Nature SharedIt content-sharing initiative