Organizing cell renewal in the intestine: stem cells, signals and combinatorial control

feature-image

Play all audios:

Loading...

KEY POINTS * The epithelial lining of the intestine renews itself more rapidly than any other tissue in the vertebrate body, replacing the entire population of differentiated cells that


cover the intestinal villi every few days. * Stem cells and their transit-amplifying progeny reside in intervillus pockets (in the fetus or neonate) or crypts of Lieberkühn (in the adult),


and give rise to four classes of non-dividing differentiated cells — three secretory and one absorptive. * Transit-amplifying cells in the crypts probably become committed as secretory or


absorptive progenitors several cycles before they stop dividing. The secretory progenitors express mouse atonal homologue 1 (_Math1_), and no secretory cells are produced when _Math1_ is


defective. * Epithelial cells in each stem-cell region (crypt or pocket) produce a hedgehog signal that acts on the mesenchyme, evoking expression of bone morphogenetic protein (BMP). BMP


acts back on the epithelium to inhibit formation of ectopic stem-cell regions. * The stem-cell regions of epithelium maintain themselves by canonical Wnt signalling, apparently through an


auto-activating feedback loop. * When the canonical Wnt signalling pathway is blocked, proliferation fails and secretory cells are lacking; when the pathway is overactivated, proliferation


is excessive and tumours develop, containing a mixture of cell types (adenomatous polyps). * The proliferative epithelial cells in the crypts also interact with one another by Notch


signalling, mediating lateral inhibition. When the Notch signalling pathway is blocked, proliferation fails and all the crypt cells become secretory; when the pathway is overactivated,


proliferation continues but no secretory cells are produced. * Wnt and Notch signals collaborate to maintain intestinal stem cells: neither pathway on its own is sufficient. But Wnt pathway


activation can induce expression of Notch pathway components and so produce the collaborative effect. * Wnt signalling also regulates the expression of Eph/ephrins. Eph/ephrin signalling in


turn controls the migratory behaviour that keeps proliferative and differentiated cells segregated along the crypt–villus axis. * Wnt and Notch signals collaborate in a remarkably similar


way to maintain stem cells in the haemopoietic system and the CNS. But in some other tissues where both pathways are crucial, such as the epidermis, the rules of stem-cell maintenance are


different. ABSTRACT The lining of the intestine is renewed at an extraordinary rate, outpacing all other tissues in the vertebrate body. The renewal process is neatly organized in space, so


that the whole production line, from the ever-youthful stem cells to their dying, terminally differentiated progeny, is laid out to view in histological sections. A flurry of recent papers


has clarified the key regulatory signals and brought us to the point where we can begin to give a coherent account, for at least one tissue, of how these signals collaborate to organize the


architecture and behaviour of a stem-cell system. Access through your institution Buy or subscribe This is a preview of subscription content, access via your institution ACCESS OPTIONS


Access through your institution Subscribe to this journal Receive 12 print issues and online access $209.00 per year only $17.42 per issue Learn more Buy this article * Purchase on


SpringerLink * Instant access to full article PDF Buy now Prices may be subject to local taxes which are calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in * Learn about


institutional subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS CELLULAR AND MOLECULAR ARCHITECTURE OF THE INTESTINAL STEM CELL NICHE Article 03


September 2020 RETROGRADE MOVEMENTS DETERMINE EFFECTIVE STEM CELL NUMBERS IN THE INTESTINE Article 13 July 2022 CELL FATE SPECIFICATION AND DIFFERENTIATION IN THE ADULT MAMMALIAN INTESTINE


Article 21 September 2020 REFERENCES * Goodlad, R. A. & Wright, N. A. The effects of starvation and refeeding on intestinal cell proliferation in the mouse. _Virchows Arch. B Cell


Pathol._ 45, 63–73 (1984). Article  CAS  Google Scholar  * Wright, N. & Alison, M. _The Biology of Epithelial Cell Populations_ (Clarendon, Oxford, 1984). Google Scholar  * Cheng, H.


& Leblond, C. P. Origin, differentiation and renewal of the four main epithelial cell types in the mouse small intestine. V. Unitarian Theory of the origin of the four epithelial cell


types. _Am. J. Anat._ 141, 537–561 (1974). Article  CAS  PubMed  Google Scholar  * Leedham, S. J., Brittan, M., McDonald, S. A. & Wright, N. A. Intestinal stem cells. _J. Cell. Mol.


Med._ 9, 11–24 (2005). Article  CAS  PubMed  PubMed Central  Google Scholar  * Park, H. S., Goodlad, R. A. & Wright, N. A. Crypt fission in the small intestine and colon. A mechanism for


the emergence of G6PD locus-mutated crypts after treatment with mutagens. _Am. J. Pathol._ 147, 1416–1427 (1995). CAS  PubMed  PubMed Central  Google Scholar  * Bjerknes, M. & Cheng, H.


Clonal analysis of mouse intestinal epithelial progenitors. _Gastroenterology_ 116, 7–14 (1999). USING CHEMICAL MUTAGENESIS TO CREATE MARKED CLONES, THIS PAPER SHOWS THAT THE INTESTINAL


EPITHELIUM CONTAINS NOT ONLY PLURIPOTENT PROGENITORS AND STEM CELLS, BUT ALSO DIVIDING PROGENITORS THAT ARE DESTINED TO PRODUCE LARGE CLONES OF A SINGLE CELL TYPE. Article  CAS  PubMed 


Google Scholar  * Wong, M. H., Saam, J. R., Stappenbeck, T. S., Rexer, C. H. & Gordon, J. I. Genetic mosaic analysis based on Cre recombinase and navigated laser capture microdissection.


_Proc. Natl Acad. Sci. USA_ 97, 12601–12606 (2000). Article  CAS  PubMed  PubMed Central  Google Scholar  * Potten, C. S. Stem cells in gastrointestinal epithelium: numbers, characteristics


and death. _Philos. Trans. R. Soc. Lond. B_ 353, 821–830 (1998). Article  CAS  Google Scholar  * Kedinger, M. et al. Fetal gut mesenchyme induces differentiation of cultured intestinal


endodermal and crypt cells. _Dev. Biol._ 113, 474–483 (1986). Article  CAS  PubMed  Google Scholar  * Madison, B. B. et al. Epithelial hedgehog signals pattern the intestinal crypt–villus


axis. _Development_ 132, 279–289 (2005). SHOWS THAT THE INTESTINAL EPITHELIUM SENDS A HEDGEHOG SIGNAL TO THE MESENCHYME, AND THAT THIS SIGNAL IS REQUIRED, THROUGH A SECONDARY EFFECT OF THE


MESENCHYME ON THE EPITHELIUM, TO RESTRICT THE SITES OF ACTIVATION OF THE CANONICAL WNT PATHWAY AND LIMIT THE DEVELOPMENT OF THE PROLIFERATIVE (CRYPT-LIKE) EPITHELIUM. Article  CAS  PubMed 


Google Scholar  * Apelqvist, A., Ahlgren, U. & Edlund, H. Sonic hedgehog directs specialised mesoderm differentiation in the intestine and pancreas. _Curr. Biol._ 7, 801–804 (1997).


Article  CAS  PubMed  Google Scholar  * Sukegawa, A. et al. The concentric structure of the developing gut is regulated by Sonic hedgehog derived from endodermal epithelium. _Development_


127, 1971–1980 (2000). CAS  PubMed  Google Scholar  * Wang, L. C. et al. Disruption of hedgehog signaling reveals a novel role in intestinal morphogenesis and intestinal-specific lipid


metabolism in mice. _Gastroenterology_ 122, 469–482 (2002). Article  CAS  PubMed  Google Scholar  * Ramalho-Santos, M., Melton, D. A. & McMahon, A. P. Hedgehog signals regulate multiple


aspects of gastrointestinal development. _Development_ 127, 2763–2772 (2000). CAS  PubMed  Google Scholar  * Roberts, D. J. et al. Sonic hedgehog is an endodermal signal inducing Bmp-4 and


Hox genes during induction and regionalization of the chick hindgut. _Development_ 121, 3163–3174 (1995). CAS  PubMed  Google Scholar  * Roberts, D. J., Smith, D. M., Goff, D. J. &


Tabin, C. J. Epithelial-mesenchymal signaling during the regionalization of the chick gut. _Development_ 125, 2791–2801 (1998). CAS  PubMed  Google Scholar  * van den Brink, G. R. et al.


Indian Hedgehog is an antagonist of Wnt signaling in colonic epithelial cell differentiation. _Nature Genet._ 36, 277–282 (2004). Article  CAS  PubMed  Google Scholar  * Karlsson, L.,


Lindahl, P., Heath, J. K. & Betsholtz, C. Abnormal gastrointestinal development in PDGF-A and PDGFR-α deficient mice implicates a novel mesenchymal structure with putative instructive


properties in villus morphogenesis. _Development_ 127, 3457–3466 (2000). CAS  PubMed  Google Scholar  * Haramis, A. P. et al. _De novo_ crypt formation and juvenile polyposis on BMP


inhibition in mouse intestine. _Science_ 303, 1684–1686 (2004). SHOWS THAT BMP SIGNALLING FROM THE VILLUS MESENCHYME IS NECESSARY TO PREVENT THE VILLUS EPITHELIUM FROM ADOPTING A CRYPT-LIKE


PROLIFERATIVE CHARACTER. Article  CAS  PubMed  Google Scholar  * He, X. C. et al. BMP signaling inhibits intestinal stem cell self-renewal through suppression of Wnt–β-catenin signaling.


_Nature Genet._ 36, 1117–1121 (2004). Article  CAS  PubMed  Google Scholar  * Howe, J. R. et al. Mutations in the _SMAD4_/_DPC4_ gene in juvenile polyposis. _Science_ 280, 1086–1088 (1998).


Article  CAS  PubMed  Google Scholar  * Howe, J. R. et al. Germline mutations of the gene encoding bone morphogenetic protein receptor 1A in juvenile polyposis. _Nature Genet._ 28, 184–187


(2001). Article  CAS  PubMed  Google Scholar  * Meinhardt, H. & Gierer, A. Pattern formation by local self-activation and lateral inhibition. _BioEssays_ 22, 753–760 (2000). Article  CAS


  PubMed  Google Scholar  * Gregorieff, A. et al. Expression pattern of Wnt signaling components in the adult intestine. _Gastroenterology_ 129, 626–638 (2005). Article  CAS  PubMed  Google


Scholar  * Logan, C. Y. & Nusse, R. The Wnt signaling pathway in development and disease. _Annu. Rev. Cell Dev. Biol._ 20, 781–810 (2004). Article  CAS  PubMed  Google Scholar  *


Korinek, V. et al. Depletion of epithelial stem-cell compartments in the small intestine of mice lacking Tcf-4. _Nature Genet._ 19, 379–383 (1998). THE FIRST DIRECT EVIDENCE THAT WHEN THE


WNT SIGNALLING PATHWAY IS DEFECTIVE, THE INTESTINAL STEM-CELL POPULATION IS NOT MAINTAINED. Article  CAS  PubMed  Google Scholar  * Pinto, D., Gregorieff, A., Begthel, H. & Clevers, H.


Canonical Wnt signals are essential for homeostasis of the intestinal epithelium. _Genes Dev._ 17, 1709–1713 (2003). BY FORCED EXPRESSION OF DKK1, A SECRETED WNT INHIBITOR, THIS PAPER SHOWS


THAT WNT SIGNALLING IS NEEDED NOT ONLY TO MAINTAIN PROLIFERATION OF THE INTESTINAL EPITHELIUM, BUT ALSO TO DRIVE THE DIFFERENTIATION OF SECRETORY CELLS. Article  CAS  PubMed  PubMed Central


  Google Scholar  * Kuhnert, F. et al. Essential requirement for Wnt signaling in proliferation of adult small intestine and colon revealed by adenoviral expression of Dickkopf-1. _Proc.


Natl Acad. Sci. USA_ 101, 266–271 (2004). Article  CAS  PubMed  Google Scholar  * Korinek, V. et al. Constitutive transcriptional activation by a β-catenin–Tcf complex in APC−/− colon


carcinoma. _Science_ 275, 1784–1787 (1997). Article  CAS  PubMed  Google Scholar  * Andreu, P. et al. Crypt-restricted proliferation and commitment to the Paneth cell lineage following _Apc_


loss in the mouse intestine. _Development_ 132, 1443–1451 (2005). Article  CAS  PubMed  Google Scholar  * Sansom, O. J. et al. Loss of _Apc in vivo_ immediately perturbs Wnt signaling,


differentiation, and migration. _Genes Dev._ 18, 1385–1390 (2004). Article  CAS  PubMed  PubMed Central  Google Scholar  * Morin, P. J. et al. Activation of β-catenin–Tcf signaling in colon


cancer by mutations in β-catenin or APC. _Science_ 275, 1787–1790 (1997). Article  CAS  PubMed  Google Scholar  * Su, L. K. et al. Multiple intestinal neoplasia caused by a mutation in the


murine homolog of the _APC_ gene. _Science_ 256, 668–670 (1992). Article  CAS  PubMed  Google Scholar  * Haramis, A. P. et al. Adenomatous polyposis coli-deficient zebrafish are susceptible


to digestive tract neoplasia. _EMBO Rep._ 27 Jan 2006 (10.1038/sj.embor.7400638). * Bjerknes, M. & Cheng, H. Colossal crypts bordering colon adenomas in _Apc_Min mice express full-length


Apc. _Am. J. Pathol._ 154, 1831–1834 (1999). Article  CAS  PubMed  PubMed Central  Google Scholar  * Merritt, A. J., Gould, K. A. & Dove, W. F. Polyclonal structure of intestinal


adenomas in _Apc__Min/+_ mice with concomitant loss of _Apc_+ from all tumor lineages. _Proc. Natl Acad. Sci. USA_ 94, 13927–13931 (1997). Article  CAS  PubMed  PubMed Central  Google


Scholar  * Novelli, M. R. et al. Polyclonal origin of colonic adenomas in an XO/XY patient with FAP. _Science_ 272, 1187–1190 (1996). Article  CAS  PubMed  Google Scholar  * Xu, Q.,


Mellitzer, G., Robinson, V. & Wilkinson, D. G. _In vivo_ cell sorting in complementary segmental domains mediated by Eph receptors and ephrins. _Nature_ 399, 267–271 (1999). Article  CAS


  PubMed  Google Scholar  * Winslow, J. W. et al. Cloning of AL-1, a ligand for an Eph-related tyrosine kinase receptor involved in axon bundle formation. _Neuron_ 14, 973–981 (1995).


Article  CAS  PubMed  Google Scholar  * van de Wetering, M. et al. The β-catenin/TCF-4 complex imposes a crypt progenitor phenotype on colorectal cancer cells. _Cell_ 111, 241–250 (2002).


Article  CAS  PubMed  Google Scholar  * Batlle, E. et al. β-Catenin and TCF mediate cell positioning in the intestinal epithelium by controlling the expression of EphB/ephrinB. _Cell_ 111,


251–263 (2002). A SCREEN FOR GENES THAT ARE MISREGULATED IN WNT PATHWAY MUTANTS IDENTIFIES GENES OF THE EPHB AND EPHRIN B FAMILIES AS TARGETS OF WNT SIGNALLING IN THE INTESTINAL EPITHELIUM.


KNOCKOUTS OF THESE GENES SHOW THAT EPHB/EPHRIN B SIGNALLING CONTROLS THE POSITIONING OF CELL TYPES ALONG THE CRYPT–VILLUS AXIS. Article  CAS  PubMed  Google Scholar  * Batlle, E. et al. EphB


receptor activity suppresses colorectal cancer progression. _Nature_ 435, 1126–1130 (2005). Article  CAS  PubMed  Google Scholar  * van Es, J. H. et al. Wnt signalling induces maturation of


Paneth cells in intestinal crypts. _Nature Cell Biol._ 7, 381–386 (2005). Article  CAS  PubMed  Google Scholar  * Schroder, N. & Gossler, A. Expression of Notch pathway components in


fetal and adult mouse small intestine. _Gene Expr. Patterns_ 2, 247–250 (2002). Article  CAS  PubMed  Google Scholar  * Jensen, J. et al. Control of endodermal endocrine development by


Hes-1. _Nature Genet._ 24, 36–44 (2000). ONE OF THE FIRST PAPERS TO SHOW THAT NOTCH SIGNALLING AFFECTS CELL FATE CHOICES IN THE INTESTINAL EPITHELIUM. Article  CAS  PubMed  Google Scholar  *


Crosnier, C. et al. Delta–Notch signalling controls commitment to a secretory fate in the zebrafish intestine. _Development_ 132, 1093–1104 (2005). Article  CAS  PubMed  Google Scholar  *


van Es, J. H. et al. Notch/γ-secretase inhibition turns proliferative cells in intestinal crypts and adenomas into goblet cells. _Nature_ 435, 959–963 (2005). BY CONDITIONAL KNOCKOUT OF THE


NOTCH PATHWAY EFFECTOR RBPSUH, AND ALSO BY BLOCKING NOTCH SIGNALLING WITH A Γ-SECRETASE INHIBITOR, THIS PAPER SHOWS THAT NOTCH SIGNALLING IS NEEDED TO MAINTAIN THE PROLIFERATIVE INTESTINAL


STEM OR PROGENITOR POPULATION AND TO PREVENT ALL THESE CELLS FROM DIFFERENTIATING AS SECRETORY CELLS. Article  CAS  PubMed  Google Scholar  * Milano, J. et al. Modulation of notch processing


by γ-secretase inhibitors causes intestinal goblet cell metaplasia and induction of genes known to specify gut secretory lineage differentiation. _Toxicol. Sci._ 82, 341–358 (2004). Article


  CAS  PubMed  Google Scholar  * Itoh, M. et al. Mind bomb is a ubiquitin ligase that is essential for efficient activation of Notch signaling by Delta. _Dev. Cell_ 4, 67–82 (2003). Article


  CAS  PubMed  Google Scholar  * Fre, S. et al. Notch signals control the fate of immature progenitor cells in the intestine. _Nature_ 435, 964–968 (2005). CONDITIONAL OVEREXPRESSION OF NICD


IN THE INTESTINAL EPITHELIUM IS USED TO SHOW THAT ACTIVATION OF NOTCH PREVENTS CELL DIFFERENTIATION TOWARDS THE SECRETORY FATE AND HELPS TO MAINTAIN THE PROLIFERATIVE STATE. Article  CAS 


PubMed  Google Scholar  * Chitnis, A., Henrique, D., Lewis, J., Ish-Horowicz, D. & Kintner, C. Primary neurogenesis in _Xenopus_ embryos regulated by a homologue of the _Drosophila_


neurogenic gene Delta. _Nature_ 375, 761–766 (1995). Article  CAS  PubMed  Google Scholar  * Ben-Arie, N. et al. Functional conservation of atonal and _Math1_ in the CNS and PNS.


_Development_ 127, 1039–1048 (2000). CAS  PubMed  Google Scholar  * Bermingham, N. A. et al. _Math1_: an essential gene for the generation of inner ear hair cells. _Science_ 284, 1837–1841


(1999). Article  CAS  PubMed  Google Scholar  * Yang, Q., Bermingham, N. A., Finegold, M. J. & Zoghbi, H. Y. Requirement of _Math1_ for secretory cell lineage commitment in the mouse


intestine. _Science_ 294, 2155–2158 (2001). SHOWS THAT _MATH1_ IS EXPRESSED IN SECRETORY CELLS AND THEIR PRECURSORS IN THE INTESTINAL EPITHELIUM, AND THAT WHEN IT IS KNOCKED OUT THESE CELL


TYPES ARE LOST. Article  CAS  PubMed  Google Scholar  * Kayahara, T. et al. Candidate markers for stem and early progenitor cells, Musashi-1 and Hes1, are expressed in crypt base columnar


cells of mouse small intestine. _FEBS Lett._ 535, 131–135 (2003). Article  CAS  PubMed  Google Scholar  * Zecchini, V., Domaschenz, R., Winton, D. & Jones, P. Notch signaling regulates


the differentiation of post-mitotic intestinal epithelial cells. _Genes Dev._ 19, 1686–1691 (2005). Article  CAS  PubMed  PubMed Central  Google Scholar  * Henrique, D. et al. Maintenance of


neuroepithelial progenitor cells by Delta–Notch signalling in the embryonic chick retina. _Curr. Biol._ 7, 661–670 (1997). Article  CAS  PubMed  Google Scholar  * Scheer, N., Groth, A.,


Hans, S. & Campos-Ortega, J. A. An instructive function for Notch in promoting gliogenesis in the zebrafish retina. _Development_ 128, 1099–1107 (2001). CAS  PubMed  Google Scholar  *


Yang, X. et al. Notch activation induces apoptosis in neural progenitor cells through a p53-dependent pathway. _Dev. Biol._ 269, 81–94 (2004). Article  CAS  PubMed  Google Scholar  *


Handler, M., Yang, X. & Shen, J. Presenilin-1 regulates neuronal differentiation during neurogenesis. _Development_ 127, 2593–2606 (2000). CAS  PubMed  Google Scholar  * Dorsky, R. I.,


Chang, W. S., Rapaport, D. H. & Harris, W. A. Regulation of neuronal diversity in the _Xenopus_ retina by Delta signalling. _Nature_ 385, 67–70 (1997). Article  CAS  PubMed  Google


Scholar  * Hatakeyama, J. et al. Hes genes regulate size, shape and histogenesis of the nervous system by control of the timing of neural stem cell differentiation. _Development_ 131,


5539–5550 (2004). Article  CAS  PubMed  Google Scholar  * Hitoshi, S. et al. Notch pathway molecules are essential for the maintenance, but not the generation, of mammalian neural stem


cells. _Genes Dev._ 16, 846–858 (2002). Article  CAS  PubMed  PubMed Central  Google Scholar  * Nyfeler, Y. et al. Jagged1 signals in the postnatal subventricular zone are required for


neural stem cell self-renewal. _EMBO J._ 24, 3504–3515 (2005). Article  CAS  PubMed  PubMed Central  Google Scholar  * Kohyama, J. et al. Visualization of spatiotemporal activation of Notch


signaling: live monitoring and significance in neural development. _Dev. Biol._ 286, 311–325 (2005). Article  CAS  PubMed  Google Scholar  * Megason, S. G. & McMahon, A. P. A mitogen


gradient of dorsal midline Wnts organizes growth in the CNS. _Development_ 129, 2087–2098 (2002). CAS  PubMed  Google Scholar  * Zechner, D. et al. β-Catenin signals regulate cell growth and


the balance between progenitor cell expansion and differentiation in the nervous system. _Dev. Biol._ 258, 406–418 (2003). Article  CAS  PubMed  Google Scholar  * Chenn, A. & Walsh, C.


A. Regulation of cerebral cortical size by control of cell cycle exit in neural precursors. _Science_ 297, 365–369 (2002). CAS  PubMed  Google Scholar  * Lie, D. C. et al. Wnt signalling


regulates adult hippocampal neurogenesis. _Nature_ 437, 1370–1375 (2005). Article  CAS  PubMed  Google Scholar  * Kubo, F., Takeichi, M. & Nakagawa, S. Wnt2b inhibits differentiation of


retinal progenitor cells in the absence of Notch activity by downregulating the expression of proneural genes. _Development_ 132, 2759–2770 (2005). Article  CAS  PubMed  Google Scholar  *


Cairns, J. Mutation selection and the natural history of cancer. _Nature_ 255, 197–200 (1975). Article  CAS  PubMed  Google Scholar  * Potten, C. S., Owen, G. & Booth, D. Intestinal stem


cells protect their genome by selective segregation of template DNA strands. _J. Cell Sci._ 115, 2381–2388 (2002). CAS  PubMed  Google Scholar  * Stappenbeck, T. S., Mills, J. C. &


Gordon, J. I. Molecular features of adult mouse small intestinal epithelial progenitors. _Proc. Natl Acad. Sci. USA_ 100, 1004–1009 (2003). Article  CAS  PubMed  PubMed Central  Google


Scholar  * Subramanian, V., Meyer, B. & Evans, G. S. The murine _Cdx1_ gene product localises to the proliferative compartment in the developing and regenerating intestinal epithelium.


_Differentiation_ 64, 11–18 (1998). Article  CAS  PubMed  Google Scholar  * Potten, C. S. et al. Identification of a putative intestinal stem cell and early lineage marker; musashi-1.


_Differentiation_ 71, 28–41 (2003). Article  CAS  PubMed  Google Scholar  * Bettess, M. D. et al. c-Myc is required for the formation of intestinal crypts but dispensable for homeostasis of


the adult intestinal epithelium. _Mol. Cell. Biol._ 25, 7868–7878 (2005). Article  CAS  PubMed  PubMed Central  Google Scholar  * Merok, J. R., Lansita, J. A., Tunstead, J. R. & Sherley,


J. L. Cosegregation of chromosomes containing immortal DNA strands in cells that cycle with asymmetric stem cell kinetics. _Cancer Res._ 62, 6791–6795 (2002). CAS  PubMed  Google Scholar  *


Karpowicz, P. et al. Support for the immortal strand hypothesis: neural stem cells partition DNA asymmetrically _in vitro_. _J. Cell Biol._ 170, 721–732 (2005). Article  CAS  PubMed  PubMed


Central  Google Scholar  * Smith, G. H. Label-retaining epithelial cells in mouse mammary gland divide asymmetrically and retain their template DNA strands. _Development_ 132, 681–687


(2005). Article  CAS  PubMed  Google Scholar  * Lowell, S., Jones, P., Le Roux, I., Dunne, J. & Watt, F. M. Stimulation of human epidermal differentiation by delta-notch signalling at


the boundaries of stem-cell clusters. _Curr. Biol._ 10, 491–500 (2000). Article  CAS  PubMed  Google Scholar  * Nicolas, M. et al. Notch1 functions as a tumor suppressor in mouse skin.


_Nature Genet._ 33, 416–421 (2003). Article  CAS  PubMed  Google Scholar  * Alonso, L. & Fuchs, E. Stem cells in the skin: waste not, Wnt not. _Genes Dev._ 17, 1189–1200 (2003). Article


  CAS  PubMed  Google Scholar  * Watt, F. M. Unexpected Hedgehog–Wnt interactions in epithelial differentiation. _Trends Mol. Med._ 10, 577–580 (2004). Article  CAS  PubMed  Google Scholar 


* Micchelli, C. A. & Perrimon, N. Evidence that stem cells reside in the adult _Drosophila_ midgut epithelium. _Nature_ 439, 475–479 (2006). Article  CAS  PubMed  Google Scholar  *


Ohlstein, B. & Spradling, A. The adult _Drosophila_ posterior midgut is maintained by pluripotent stem cells. _Nature_ 439, 470–474 (2006). Article  CAS  PubMed  Google Scholar  *


Duncan, A. W. et al. Integration of Notch and Wnt signaling in hematopoietic stem cell maintenance. _Nature Immunol._ 6, 314–322 (2005). THIS PAPER USES TRANSGENIC MICE THAT CONTAIN REPORTER


GENES TO SHOW THAT IN HAEMOPOIETIC STEM CELLS THE NOTCH AND WNT PATHWAYS ARE BOTH ACTIVE AND SERVE JOINTLY TO MAINTAIN THE PROLIFERATIVE PLURIPOTENT STEM-CELL STATE. Article  CAS  Google


Scholar  * Reya, T. et al. A role for Wnt signalling in self-renewal of haematopoietic stem cells. _Nature_ 423, 409–414 (2003). Article  CAS  PubMed  Google Scholar  * Varnum-Finney, B. et


al. Pluripotent, cytokine-dependent, hematopoietic stem cells are immortalized by constitutive Notch1 signaling. _Nature Med._ 6, 1278–1281 (2000). Article  CAS  PubMed  Google Scholar  *


Karanu, F. N. et al. The notch ligand jagged-1 represents a novel growth factor of human hematopoietic stem cells. _J. Exp. Med._ 192, 1365–1372 (2000). Article  CAS  PubMed  PubMed Central


  Google Scholar  * Pack, M. et al. Mutations affecting development of zebrafish digestive organs. _Development_ 123, 321–328 (1996). CAS  PubMed  Google Scholar  * Grapin-Botton, A. &


Melton, D. A. Endoderm development: from patterning to organogenesis. _Trends Genet._ 16, 124–130 (2000). Article  CAS  PubMed  Google Scholar  * Wallace, K. N., Akhter, S., Smith, E. M.,


Lorent, K. & Pack, M. Intestinal growth and differentiation in zebrafish. _Mech. Dev._ 122, 157–173 (2005). Article  CAS  PubMed  Google Scholar  * Pinto, D., Robine, S., Jaisser, F., El


Marjou, F. E. & Louvard, D. Regulatory sequences of the mouse villin (_Vill_) gene that efficiently drive transgenic expression in immature and differentiated epithelial cells of small


and large intestines. _J. Biol. Chem._ 274, 6476–6482 (1999). Article  CAS  PubMed  Google Scholar  * Robine, S., Jaisser, F. & Louvard, D. Epithelial cell growth and differentiation.


IV. Controlled spatiotemporal expression of transgenes: new tools to study normal and pathological states. _Am. J. Physiol._ 273, G759–762 (1997). CAS  PubMed  Google Scholar  * el Marjou,


F. et al. Tissue-specific and inducible Cre-mediated recombination in the gut epithelium. _Genesis_ 39, 186–193 (2004). Article  CAS  PubMed  Google Scholar  * Ireland, H. et al. Inducible


Cre-mediated control of gene expression in the murine gastrointestinal tract: effect of loss of β-catenin. _Gastroenterology_ 126, 1236–1246 (2004). Article  CAS  PubMed  Google Scholar 


Download references ACKNOWLEDGEMENTS We thank N. Wright and the anonymous referees for helpful comments, and Cancer Research UK for financial support. AUTHOR INFORMATION AUTHORS AND


AFFILIATIONS * Vertebrate Development Laboratory, Cancer Research UK London Research Institute, 44 Lincoln's Inn Fields, London, WC2A 3PX, UK Cécile Crosnier, Despina Stamataki & 


Julian Lewis Authors * Cécile Crosnier View author publications You can also search for this author inPubMed Google Scholar * Despina Stamataki View author publications You can also search


for this author inPubMed Google Scholar * Julian Lewis View author publications You can also search for this author inPubMed Google Scholar ETHICS DECLARATIONS COMPETING INTERESTS The


authors declare no competing financial interests. RELATED LINKS RELATED LINKS DATABASES OMIM juvenile polyposis syndrome GLOSSARY * Niche The specific microenvironment that stem cells


inhabit. * Clonal analysis Analysis of the composition and distribution of the clones of cells that are descended from individual, heritably marked cells, in order to discover the fate of


these progenitors. * Pseudostratified Describes an epithelium that, because of the uneven positions of the cell nuclei, seems to contain several layers of cells (stratified) but is in fact


composed of a single one, in which all cells make contact with the basal surface. RIGHTS AND PERMISSIONS Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Crosnier, C.,


Stamataki, D. & Lewis, J. Organizing cell renewal in the intestine: stem cells, signals and combinatorial control. _Nat Rev Genet_ 7, 349–359 (2006). https://doi.org/10.1038/nrg1840


Download citation * Issue Date: 01 May 2006 * DOI: https://doi.org/10.1038/nrg1840 SHARE THIS ARTICLE Anyone you share the following link with will be able to read this content: Get


shareable link Sorry, a shareable link is not currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative