Pharmacogenetics – five decades of therapeutic lessons from genetic diversity

feature-image

Play all audios:

Loading...

ABSTRACT Physicians have long been aware of the subtle differences in the responses of patients to medication. The recognition that a part of this variation is inherited, and therefore


predictable, created the field of pharmacogenetics fifty years ago. Knowing the gene variants that cause differences among patients has the potential to allow 'personalized' drug


therapy and to avoid therapeutic failure and serious side effects. Access through your institution Buy or subscribe This is a preview of subscription content, access via your institution


ACCESS OPTIONS Access through your institution Subscribe to this journal Receive 12 print issues and online access $209.00 per year only $17.42 per issue Learn more Buy this article *


Purchase on SpringerLink * Instant access to full article PDF Buy now Prices may be subject to local taxes which are calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in * Learn


about institutional subscriptions * Read our FAQs * Contact customer support REFERENCES * Garrod, A. E. The incidence of alkaptonuria. A study in chemical individuality. _Lancet_, 1616–1620


(1902). * Garrod, A. E. _The inborn errors of metabolism_, (Oxford Univ. Press, London, UK, 1909). Google Scholar  * Bateson, W. _Mendel's principles of heredity: A defence_, (Cambridge


Univ. Press, Cambridge, UK, 1902). Google Scholar  * Garrod, A. E. _The inborn factors of disease_ (Oxford Univ. Press, London, UK, 1931). Book  Google Scholar  * Fox, A. L. The


relationship between chemical constitution and taste. _Proc. Natl Acad. Sci. USA_ 18, 115–120 (1932). Article  CAS  Google Scholar  * Snyder, L. H. Studies in human inheritance IX. The


inheritance of taste deficiency in man. _Ohio J. Sci._ 32, 436–468 (1932). Google Scholar  * Clayman, C. B. et al. Toxicity of primaquine in Caucasians. _J. Am. Med. Assoc._ 149, 1563–1568


(1952). Article  CAS  Google Scholar  * Carson, P. E., Flanagan, C. L., Ickes, C. E. & Alving, A. S. Enzymatic deficiency in primaquine-sensitive erythrocytes. _Science_ 124, 484–485


(1956). Article  CAS  Google Scholar  * Luzatto, L., Mehta, A. & Vulliamy, M. Y. in _The Metabolic and Molecular Basis of Inherited Diseases_ Vol. 3 (eds Scriver, C. R. et al.) 4517–4553


(McGraw–Hill Inc., New York, USA, 2001). Google Scholar  * Lehmann, H. & Ryan, E. The familial incidence of low pseudocholinesterase level. _Lancet_ 271, 124 (1956). Article  CAS 


Google Scholar  * Kalow, W. & Staron, N. On distribution and inheritance of atypical forms of human serum cholinesterase, as indicated by dibucaine numbers. _Can. J. Med. Sci._ 35,


1305–1320 (1957). CAS  Google Scholar  * Motulsky, A. Drug reactions, enzymes and biochemical genetics. _JAMA_ 165, 835–837 (1957). Article  CAS  Google Scholar  * Vogel, F. Moderne Probleme


der Humangenetik. _Ergebn. Inn. Med. Kinderheilkd._ 12, 52–125 (1959). Google Scholar  * Kalow, W. _Pharmacogenetics: heredity and the response to drugs_ (W. B. Saunders & Co.,


Philadelphia, USA, 1962). Google Scholar  * Williams, R. J. _Biochemical Individuality_, (John Wiley & Sons, New York, USA, 1956). Google Scholar  * Vesell, E. S. Twin studies in


pharmacogenetics. _Hum. Genet._ 1, (Suppl.) 19–30 (1978). Google Scholar  * Alexanderson, B., Evans, D. A. & Sjoqvist, F. Steady-state plasma levels of nortriptyline in twins: influence


of genetic factors and drug therapy. _Br. Med. J._ 4, 764–768 (1969). Article  CAS  Google Scholar  * Price-Evans, D. A. in _Clinical and Molecular Pharmacogenetics_ (Cambridge Univ. Press,


Cambridge, UK, 1993). Google Scholar  * Evans, W. E. & McLeod, H. L. Pharmacogenomics — drug disposition, drug targets, and side effects. _N. Engl. J. Med._ 348, 538–549 (2003). Article


  CAS  Google Scholar  * Weber, W. W. _Pharmacogenetics_ 334 (Oxford Univ. Press, Oxford, UK, 1997). Google Scholar  * Kalow, W., Meyer, U. A. & Tyndale, R. F. _Pharmacogenomics_ (Marcel


Dekker, New York and Basel, 2001). Google Scholar  * Brewer, G. J. Annotation: human ecology, an expanding role for the human geneticist. _Am. J. Hum. Genet._ 23, 92–94 (1971). CAS  PubMed


  PubMed Central  Google Scholar  * Sellers, E. M., Tyndale, R. F. & Fernandes, L. C. Decreasing smoking behaviour and risk through CYP2A6 inhibition. _Drug Discov. Today_ 8, 487–493


(2003). Article  CAS  Google Scholar  * Meyer, U. A. & Zanger, U. M. Molecular mechanisms of genetic polymorphisms of drug metabolism. _Annu. Rev. Pharmacol. Toxicol._ 37, 269–296


(1997). Article  CAS  Google Scholar  * Zanger, U. M., Raimundo, S. & Eichelbaum, M. Cytochrome P450 2D6: overview and update on pharmacology, genetics, biochemistry. _Naunyn


Schmiedebergs Arch. Pharmacol._ 369, 23–37 (2004). Article  CAS  Google Scholar  * Smith, R. L. Introduction: human genetic variations in oxidative drug metabolism. _Xenobiotica_ 16, 361–365


(1986). Article  Google Scholar  * Mahgoub, A., Idle, J. R., Dring, L. G., Lancester, R. & Smith, R. L. Polymorphic hydroxylation of debrisoquine in man. _Lancet_ 2, 584–586 (1977).


Article  CAS  Google Scholar  * Eichelbaum, M., Spannbrucker, N., Steincke, B. & Dengler, H. J. Defective _N_-oxidation of sparteine in man: a new pharmacogenetic defect. _Eur. J. Clin.


Pharmacol._ 16, 183–187 (1979). Article  CAS  Google Scholar  * Kahn, G. C., Boobis, A. R., Murray, S., Brodie, M. J. & Davies, D. S. Assay and characterisation of debrisoquine


4-hydroxylase activity of microsomal fractions of human liver. _Br. J. Clin. Pharmacol._ 13, 637–645 (1982). Article  CAS  Google Scholar  * Meier, P. J., Mueller, H. K., Dick, B. &


Meyer, U. A. Hepatic monooxygenase activities in subjects with a genetic defect in drug oxidation. _Gastroenterology_ 85, 682–692 (1983). CAS  PubMed  Google Scholar  * Distlerath, L. M. et


al. Purification and characterization of the human liver cytochromes P-450 involved in debrisoquine 4-hydroxylation and phenacetin O-deethylation, two prototypes for genetic polymorphism in


oxidative drug metabolism. _J. Biol. Chem._ 260, 9057–9067 (1985). CAS  PubMed  Google Scholar  * Gut, J. et al. Debrisoquine-type polymorphism of drug oxidation: purification from human


liver of a cytochrome P450 isozyme with high activity for bufuralol hydroxylation. _Febs Lett._ 173, 287–290 (1984). Article  CAS  Google Scholar  * Zanger, U. M., Hauri, H. P., Loeper, J.,


Homberg, J. C. & Meyer, U. A. Antibodies against human cytochrome P-450db1 in autoimmune hepatitis type II. _Proc. Natl Acad. Sci. USA_ 85, 8256–8260 (1988). Article  CAS  Google Scholar


  * Gonzalez, F. J. et al. Characterization of the common genetic defect in humans deficient in debrisoquine metabolism. _Nature_ 331, 442–446 (1988). Article  CAS  Google Scholar  * Skoda,


R. C., Gonzalez, F. J., Demierre, A. & Meyer, U. A. Two mutant alleles of the human cytochrome P-450db1 gene (_P450C2D1_) associated with genetically deficient metabolism of debrisoquine


and other drugs. _Proc. Natl Acad. Sci. USA_ 85, 5240–5243 (1988). Article  CAS  Google Scholar  * Kagimoto, M., Heim, M., Kagimoto, K., Zeugin, T. & Meyer, U. A. Multiple mutations of


the human cytochrome P450IID6 gene (_CYP2D6_) in poor metabolizers of debrisoquine. Study of the functional significance of individual mutations by expression of chimeric genes. _J. Biol.


Chem._ 265, 17209–17214 (1990). CAS  PubMed  Google Scholar  * Gough, A. C. et al. Identification of the primary gene defect at the cytochrome P450 _CYP2D_ locus. _Nature_ 347, 773–776


(1990). Article  CAS  Google Scholar  * Heim, M. & Meyer, U. A. Genotyping of poor metabolisers of debrisoquine by allele-specific PCR amplification. _Lancet_ 336, 529–532 (1990).


Article  CAS  Google Scholar  * Bertilsson, L., Aberg-Wistedt, A. & Gustaffson, L. L. Extremely rapid hydroxylation of debrisoquine; a case report with implication for treatment with


nortriptyline and other tricyclic antidepressants. _Ther. Drug. Monit._ 7, 478–480 (1985). Article  CAS  Google Scholar  * Johansson, I. et al. Inherited amplification of an active gene in


the cytochrome P450 _CYP2D_ locus as a cause of ultrarapid metabolism of debrisoquine. _Proc. Natl Acad. Sci. USA_ 90, 11825–11829 (1993). Article  CAS  Google Scholar  * Bertilsson, L. et


al. Molecular basis for rational megaprescribing in ultrarapid hydroxylators of debrisoquine. _Lancet_ 341, 63 (1993). Article  CAS  Google Scholar  * Küpfer, A. & Preisig, R.


Pharmacogenetics of mephenytoin: a new drug hydroxylation polymorphism in man. _Eur. J. Clin. Pharmacol._ 26, 753–759 (1984). Article  Google Scholar  * de Morais, S. M. F. et al.


Identification of a new genetic defect responsible for the polymorphism of _S_-mephenytoin metabolism in Japanese. _Mol. Pharmacol._ 46, 594–598 (1994). CAS  PubMed  Google Scholar  *


Sullivan-Klose, T. H. et al. The role of the CYP2C9-Leu359 allelic variant in the tolbutamide polymorphism. _Pharmacogenetics_ 6, 341–349 (1996). Article  CAS  Google Scholar  *


Weinshilboum, R. Inheritance and drug response. _N. Engl. J. Med._ 348, 529–537 (2003). Article  Google Scholar  * Goldstein, D. B., Tate, S. K. & Sisodiya, S. M. Pharmacogenetics goes


genomic. _Nature Rev. Genet._ 4, 937–947 (2003). Article  CAS  Google Scholar  * Roden, D. M. & George, A. L. Jr. The genetic basis of variability in drug responses. _Nature Rev. Drug


Discov._ 1, 37–44 (2002). Article  CAS  Google Scholar  * Lynch, T. J. et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung


cancer to gefitinib. _N. Engl. J. Med._ 350, 2129–2139 (2004). Article  CAS  Google Scholar  * Paez, J. G. et al. EGFR mutations in lung cancer: correlation with clinical response to


gefitinib therapy. _Science_ 304, 1497–1500 (2004). Article  CAS  Google Scholar  * Nebert, D. W., Jorge-Nebert, L. & Vesell, E. S. Pharmacogenomics and 'individualized drug


therapy': high expectations and disappointing achievements. _Am. J. Pharmacogenomics_ 3, 361–370 (2003). Article  Google Scholar  * Handschin, C. & Meyer, U. A. Induction of drug


metabolism: the role of nuclear receptors. _Pharmacol. Rev._ 55, 649–673 (2003). Article  CAS  Google Scholar  * Chou, W. H. et al. Extension of a pilot study: impact from the cytochrome


P450 2D6 polymorphism on outcome and costs associated with severe mental illness. _J. Clin. Psychopharmacol._ 20, 246–251 (2000). Article  CAS  Google Scholar  * Bönicke, R. & Reif, W.


Enzymatische Inaktivierung von Isonicotinsäure hydrazide im menschlichen und tierischen Organismus. _Arch. Exp. Pathol. Pharmakol._ 220, 321–333 (1953). Article  Google Scholar  * Hughes, H.


B., Biehl, J. P., Jones, A. P. & Schmidt, L. H. On the metabolic fate of isoniazid. _J. Pharmacol. Exp. Therap._ 109, 444–452 (1953). CAS  Google Scholar  * Hughes, H. B., Biehl, J. P.,


Jones, A. P. & Schmidt, L. H. Metabolism of isoniazid in man as related to the occurrence of peripheral neuritis. _Am. Rev. Tuberc._ 70, 266–273 (1954). CAS  PubMed  Google Scholar  *


Evans, D. A. P., Manley, F. A. & McKusick, V. A. Genetic control of isoniazid metabolism in man. _Br. Med. J._ 2, 485–491 (1960). Article  CAS  Google Scholar  * Blum, M., Demierre, A.,


Grant, D. M., Heim, M. & Meyer, U. A. Molecular mechanism of slow acetylation in man. _Proc. Natl Acad. Sci. USA._ 88, 5237–5241 (1991). Article  CAS  Google Scholar  * Vatsis, K. P.,


Martel, K. J. & Weber, W. W. Diverse point mutations in the human gene for polymorphic _N_-acetyltransferase. _Proc. Natl Acad. Sci. USA_ 88, 6333–6337 (1991). Article  CAS  Google


Scholar  * Meyer, U. A. Pharmacogenetics and adverse drug reactions. _Lancet_ 356, 1667–1671 (2000). Article  CAS  Google Scholar  * Kirchheiner, J. et al. Individualized medicine —


implementation of pharmacogenetic diagnostics in antidepressant drug treatment of major depressive disorders. _Pharmacopsychiatry_ 36 (Suppl. 3), S235–S243 (2003). CAS  PubMed  Google


Scholar  * Vatsis, K. P. et al. Nomenclature for _N_-acetyltransferases. _Pharmacogenetics_ 5, 1–17 (1995). Article  CAS  Google Scholar  * Masood, E. A. A consortium plans free SNP map of


human genome. _Nature_ 398, 545–546 (1999). Article  CAS  Google Scholar  * Scriver, C. R. & Childs, B. (eds) _Garrod's Inborn Factors Of Disease_ (Clarendon Press, Oxford, UK,


1989). Google Scholar  Download references ACKNOWLEDGEMENTS Research in the author's laboratory is supported by the Swiss National Science Foundation. AUTHOR INFORMATION AUTHORS AND


AFFILIATIONS * Biozentrum, University of Basel, Basel, CH-4056, Switzerland Urs A. Meyer Authors * Urs A. Meyer View author publications You can also search for this author inPubMed Google


Scholar ETHICS DECLARATIONS COMPETING INTERESTS The author declares no competing financial interests. RELATED LINKS RELATED LINKS DATABASES ENTEZ AhR CAR _CYP2C9_ CYP2C19 CYP2D6 G6PD _NAT2_


TPMT UGT1A1 Home Page of the _CYP_ Allele Nomenclature Committee International HapMap Project Arylamine _N_-Acetyltransferase (NAT) Nomenclature GLOSSARY * ALCAPTONURIA A rare inherited


disorder of metabolism that is characterized by urine which turns black when exposed to air. * ANTI-ARRHYTHMICS Medicines that are used to treat patients who have irregular heart rhythms. *


APNEA The absence of breathing (respirations). * CHEMICAL INDIVIDUALITY Garrod's influential idea that 'factors which confer upon us our predisposition and immunities from disease


are inherent in our very chemical structure, and even in the molecular groupings which went to the making of the chromosomes from which we sprang.' * DIPLOPIA Double vision. Usually due


to misalignment of the eyes. * FAMILIAL DYSAUTONOMIA A disorder of the autonomic nervous system that is inherited as an autosomal recessive trait and is characterized by several sensory


deficits (as of taste and pain), excessive sweating and salivation, lack of tears, difficulty in swallowing and many other symptoms. * HYPERBILIRUBINEMIA Abnormally high levels of bilirubin


in the blood. * ISONIAZID An anti-bacterial drug that has been used to prevent and to treat tuberculosis since 1952. * MALIGNANT HYPERTHERMIA A group of inherited muscle problems


characterized by muscle breakdown following certain stimuli — such as anesthesia, extremes of exercise (particularly in hot conditions), fever, or use of stimulant drugs. The problems


associated with this condition result from over-excitable muscles that contract uncontrollably, severe fever, abnormal heart rhythms, and kidney failure. * MEPHENYTOIN An anticonvulsant that


is indicated for the treatment of tonic-clonic and partial seizures in patients who are not controlled with less-toxic medications. * METHEMOGLOBINEMIA An inherited blood disorder that is


characterized by increased levels of an abnormal form of haemoglobin that is unable to deliver oxygen effectively. * NORTRIPTYLINE An antidepressant medication of the tricyclic class.


Medications in this class are often referred to as tricyclic antidepressants, or TCAs. * OPIOIDS Synthetic opium-like drugs that possess some affinity for any, or all, of the opioid-receptor


subtypes. Common opioids are endorphin, fentanyl and methadone. * OXYTOXIC A drug that is useful in starting or aiding in labour. Also used to stimulate uterine contractions. * PERIPHERAL


NEUROPATHY A problem in peripheral nerve function (any part of the nervous system except the brain and spinal cord) that causes pain, numbness, tingling, swelling, and muscle weakness in


various parts of the body. Neuropathies might be caused by physical injury, infection, toxic substances, disease (for example, cancer, diabetes, kidney failure, or malnutrition), or drugs


such as anticancer drugs. * PHARMACODYNAMICS The process of interaction of pharmacologically active substances with target sites, and the biochemical and physiological consequences leading


to therapeutic or adverse effects. * PHARMACOKINETICS The rocess of the uptake of drugs by the body, the biotransformation they undergo, the distribution of the drugs and their metabolites


in the tissues, and the elimination of the drugs and their metabolites from the body. * PORPHYRIA A group of disorders that are characterized by the excessive production of porphyrins or


their precursors, and which arise from abnormalities in the regulation of the porphyrin–heme pathway. Acquired pophyrias, which are due to inhibition of enzymes in the metabolic pathway by a


drug, toxin or abnormal metabolite, are more common than those that are inherited. * PSEUDOCHOLINESTERASE DEFICIENCY A rare genetic disorder that causes an absence of the plasma enzyme


pseudocholinesterase, which can cause respiratory difficulty during surgery if the muscle-relaxing drug succinylcholine is used. * SYMPATHICOLYTIC Interfering with, opposing, inhibiting, or


destroying impulses from the sympathetic nervous system. * WARFARIN An oral anticoagulant that inhibits the synthesis of clotting factors, thus preventing blood-clot formation. RIGHTS AND


PERMISSIONS Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Meyer, U. Pharmacogenetics – five decades of therapeutic lessons from genetic diversity. _Nat Rev Genet_ 5, 669–676


(2004). https://doi.org/10.1038/nrg1428 Download citation * Issue Date: 01 September 2004 * DOI: https://doi.org/10.1038/nrg1428 SHARE THIS ARTICLE Anyone you share the following link with


will be able to read this content: Get shareable link Sorry, a shareable link is not currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt


content-sharing initiative