The diverse roles of ubiquitin and the 26s proteasome in the life of plants

feature-image

Play all audios:

Loading...

KEY POINTS * The tagging of proteins with ubiquitin and their subsequent degradation by the 26S proteasome provides a highly regulated proteolysis system that is necessary in all eukaryotes.


* The ubiquitylation of a target protein involves the sequential action of E1, E2 and E3 enzymes; E3 ubiquitin ligase provides target specificity. * Plants use ubiquitin and the 26S


proteasome to control a wide variety of developmental processes through the degradation of key cellular regulators. * Approximately 5% of the _Arabidopsis thaliana_ genome encodes components


of the ubiquitin/26S proteasome system. * We discuss the roles of ubiquitin in the regulation of floral development, responses to plant hormones and to pathogens, and in the regulation of


photomorphogenesis. * The COP9 signalosome (CSN) is intimately connected to the ubiquitin/26S proteasome system and might regulate the activity of SCF-type (and possibly other) E3 ligases. *


Recent advances, particularly in the fields of hormone signalling and responses to pathogens, have shown just how frequently plants use ubiquitin to regulate cellular processes and indicate


that ubiquitin and the 26S proteasome act as regulators in many more, as yet unidentified, plant developmental processes. ABSTRACT A tightly regulated and highly specific system for the


degradation of individual proteins is essential for the survival of all organisms. In eukaryotes, this is achieved by the tagging of proteins with ubiquitin and their subsequent recognition


and degradation by the 26S proteasome. In plants, genetic analysis has identified many genes that regulate developmental pathways. Subsequent analysis of these genes has implicated ubiquitin


and the 26S proteasome in the control of diverse developmental processes, and indicates that proteolysis is a crucial regulatory step throughout the life cycle of plants. Access through


your institution Buy or subscribe This is a preview of subscription content, access via your institution ACCESS OPTIONS Access through your institution Subscribe to this journal Receive 12


print issues and online access $209.00 per year only $17.42 per issue Learn more Buy this article * Purchase on SpringerLink * Instant access to full article PDF Buy now Prices may be


subject to local taxes which are calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in * Learn about institutional subscriptions * Read our FAQs * Contact customer support SIMILAR


CONTENT BEING VIEWED BY OTHERS THE RPN12A PROTEASOME SUBUNIT IS ESSENTIAL FOR THE MULTIPLE HORMONAL HOMEOSTASIS CONTROLLING THE PROGRESSION OF LEAF SENESCENCE Article Open access 30


September 2022 CUL3 E3 LIGASES IN PLANT DEVELOPMENT AND ENVIRONMENTAL RESPONSE Article 15 January 2021 MECHANISMS CONTROLLING PLANT PROTEASES AND THEIR SUBSTRATES Article 08 February 2023


REFERENCES * Tanaka, K. Molecular biology of proteasomes. _Mol. Biol. Rep._ 21, 21–26 (1995). CAS  PubMed  Google Scholar  * Hochstrasser, M. Ubiquitin, proteasomes, and the regulation of


intracellular protein degradtion. _Curr. Biol._ 7, 215–223 (1995). CAS  Google Scholar  * Vierstra, R. D. Proteolysis in plants: mechanisms and functions. _Plant Mol. Biol._ 32, 275–302


(1996). CAS  PubMed  Google Scholar  * Vierstra, R. D. The ubiquitin/26S proteasome pathway, the complex last chapter in the life of many plant proteins. _Trends Plant Sci._ 8, 135–142


(2003). CAS  PubMed  Google Scholar  * Hellmann, H. & Estelle, M. Plant development: regulation by protein degradation. _Science_ 297, 793–797 (2002). CAS  PubMed  Google Scholar  *


Frugis, G. & Chua, N. H. Ubiquitin-mediated proteolysis in plant hormone signal transduction. _Trends Cell Biol._ 12, 308–311 (2002). CAS  PubMed  Google Scholar  * Pickart, C. M.


Mechansims underlysing ubiquitination. _Ann. Rev. Biochem._ 70, 503–533 (2001). CAS  PubMed  Google Scholar  * Bachmir, A., Novatchkova, M., Potushak, T. & Eisenhaber, F. Ubiquitylation


in plants: a post-genic look at post-translational modification. _Trends Plant Sci._ 6, 463–470 (2001). Google Scholar  * Aguilar, R. C. & Wendland, B. Ubiqutin: not just for proteasomes


anymore. _Curr. Opin. Cell Biol._ 15, 184–190 (2003). CAS  PubMed  Google Scholar  * Conaway, R. C., Brower, C. S. & Weliky-Conaway, J. Emerging roles of ubiquitin in transcriptional


regulation. _Science_ 296, 1254–1258 (2002). CAS  PubMed  Google Scholar  * Weissmann, A. M. Themes and variations on ubiquitylation. _Nature Rev. Mol. Cell Biol._ 2, 169–178 (2001). Google


Scholar  * Serino, G. & Deng, X. W. The COP9 signalosome: regulating plant development through the control of proteolysis. _Ann. Rev. Plant Biol._ 54, 165–182 (2003). CAS  Google Scholar


  * Bech-Otschir, D., Seeger, M. & Dubiel, W. The COP9 signalosome: at the interface between signal transduction and ubiquitin dependent proteolysis. _J. Cell Sci._ 115, 467–473 (2002).


CAS  PubMed  Google Scholar  * Schwechheimer, C. & Deng, X. W. COP9 signalosome revisited; a novel mediator of protein degradation. _Trends Cell Biol._ 11, 420–426 (2001). CAS  PubMed 


Google Scholar  * Peng, Z. et al. Evidence for a physical association of the COP9 signalosome, the proteasome, and specific SCF E3 ligases _in vivo_. _Curr. Biol._ 13, R504–R505 (2003). CAS


  PubMed  Google Scholar  * Lyapina, S. et al. Promotion of NEDD8-CUL1 conjugate cleavage by COP9 signalosome. _Science_ 292, 1382–1385 (2001). CAS  PubMed  Google Scholar  * Schwechheimer,


C. et al. Interactions of the COP9 signalosome with the E3 ubiquitin ligase SCFTIR1 in mediating auxin response. _Science_ 292, 1379–1382 (2001). SHOWS THAT REDUCED CSN FUNCTION LEADS TO A


LOSS OF AUXIN RESPONSES SIMILAR TO THAT SEEN IN MUTANTS IN SCFTIR1. THEY ALSO SHOW THAT THE CSN SCFTIR1 INTERACT _IN VIVO_ AND THAT THE CSN IS REQUIRED FOR THE DEGRADATION OF A PUTATIVE


TARGET OF SCFTIR1, INDICATING THE IMPORTANCE OF THE CSN IN REGULATING SCF-TYPE E3 LIGASES. CAS  PubMed  Google Scholar  * Cope, G. A. et al. Role of predicted metalloprotease motif of


JAB1/Csn5 in cleavage of Nedd8 from Cul1. _Science_ 298, 608–611 (2002). THE FIRST DEMONSTRATION THAT THE JAB1/CSN5 SUBUNIT OF THE CSN SHOWS NEDD8 ISOPEPTIDASE ACTIVITY ASSOCIATED WITH ITS


METALLOENZYME JAMM DOMAIN. CAS  PubMed  Google Scholar  * Leyser, H. M. O. et al. _Arabidopsis_ auxin-resistance gene _AXR1_ encodes a protein related to ubiquitin activating enzyme E1.


_Nature_ 364, 161–164 (1993). CAS  PubMed  Google Scholar  * del Pozo, J. C., Timpte, C., Tan, S., Callis, J. & Estelle, M. The ubiquitin-related protein RUB1 and auxin response in


_Arabidopsis_. _Science_ 280, 1760–1763 (1998). CAS  Google Scholar  * Schwechheimer, C., Serino, G. & Deng, X. W. Multiple ubiquitin ligase-mediated processes require COP9 signalosome


and AXR1 function. _Plant Cell_ 14, 2553–2563 (2002). SHOWS THE ROLE OF THE CSN IN REGULATING MANY SCF E3 LIGASES IN PLANTS. CAS  PubMed  PubMed Central  Google Scholar  * Estelle, M.


Proteases and cellular regulation in plants. _Curr. Opin. Plant Biol._ 4, 254–260 (2001). CAS  PubMed  Google Scholar  * Adam, Z. Chloroplast proteases; possible regulators of gene


expression? _Biochimie_ 82, 647–654 (2000). CAS  PubMed  Google Scholar  * Palma, J. M. et al. Plant proteases, protein degradtion, and oxidative stress; role of peroxisomes. _Plant Physiol.


Biochem._ 40, 521–530 (2002). CAS  Google Scholar  * Adam, Z. & Clarke, A. K. Cutting edge of chloroplast proteolysis. _Trends Plant Sci._ 7, 451–456 (2002). CAS  PubMed  Google Scholar


  * Woo, R. H. et al. ORE9, an F-box protein that regulates leaf senescence in _Arabidopsis_. _Plant Cell_ 13, 1779–1790 (2001). CAS  PubMed  PubMed Central  Google Scholar  * Stirnberg, P.,


van de Sande, K. & Leyser, H. M. O. _MAX_ and _MAX2_ control shoot lateral branching in _Arabidopsis_. _Development_ 129, 1131–1141 (2002). CAS  PubMed  Google Scholar  * Schultz, T.


F., Kiyosue, T., Yanovsky, M., Wada, M. & Kay, S. A. A role for LKP2 in the circadian clock of _Arabidopsis_. _Plant Cell_ 13, 2659–2670 (2001). CAS  PubMed  PubMed Central  Google


Scholar  * Millar, A. J., Carré, I. A., Strayer, C. A., Chua, N. -H. & Kay, S. A. Circadian clock mutants in _Arabidopsis_ identified by luciferase imaging. _Science_ 267, 1161–1163


(1995). CAS  PubMed  Google Scholar  * Kim, A. S. & Delaney, T. P. _Arabidopsis_ SON1 is an F-box protein that regulates a novel induced defense response independent of both salicyclic


acid and systemic acquired resistance. _Plant Cell_ 14, 1469–1482 (2002). CAS  PubMed  PubMed Central  Google Scholar  * Thelander, M., Fredriksson, D., Schouten, J., Hoge, H. C. &


Ronne, H. Cloning by pathway activation in yeast: identification of an _Arabidopsis thaliana_ F-box protein that can turn on glucose repression. _Plant Mol. Biol._ 49, 69–79 (2002). CAS 


PubMed  Google Scholar  * Ingram, G. C. et al. Dual role for _fimbriata_ in regulating floral homeotic genes and cell division in _Antirrhinum_. _EMBO J._ 16, 6521–6534 (1997). CAS  PubMed 


PubMed Central  Google Scholar  * Karlowski, W. M. & Hirsch, A. M. The overexpression of an alfalfa RING-H2 gene induces pleiotrpic effects on plant growth and development. _Plant Mol.


Biol._ 52, 121–133 (2003). CAS  PubMed  Google Scholar  * Stone, S. L., Anderson, E. M., Mullen, R. T. & Goring, D. R. ARC1 is an E3 ubiquitin ligase and promotes the ubiquitination of


proteins during the rejection of self-incompatible _Brassica_ pollen. _Plant Cell_ 15, 885–898 (2003). DEMONSTRATES THAT, IN THE PRESENCE OF INCOMPATIBLE POLLEN, THE E3 LIGASE ARC1 SHUTTLES


BETWEEN THE NUCLEUS AND THE CYTOSOL AND PROMOTES THE PROTEIN DEGRADATION EVENTS THAT LEAD TO POLLEN REJECTION. PubMed  PubMed Central  Google Scholar  * Downes, B. P., Stupar, R. M.,


Gingerich, D. J. & Vierstra, R. D. The HECT ubiquitin-protein ligase (UPL) family in _Arabidopsis_; UPL3 has a specific role in trichome development. _Plant J._ 35, 729–742 (2003).


DESCRIBES ANALYSIS OF KNOCKOUT LINES FOR THE _ARABIDOPSIS_ HECT-DOMAIN PROTEINS UPL3 AND UPL4. SHOWS THAT MUTATIONS IN _UPL3_ LEAD TO DEFECTS IN TRICHOME DEVELOPMENT AND THAT _UPL3_ IS


ALLELIC TO THE PREVIOUSLY IDENTIFIED _KAKTUS_ MUTANT. CAS  PubMed  Google Scholar  * Irish, V. F. Patterning the flower. _Dev. Biol._ 209, 211–220 (1999). CAS  PubMed  Google Scholar  *


Yanofsky, M. F. Floral meristems to floral organs; genes controlling early events in _Arabidopsis_ flower development. _Ann. Rev. Plant Physiol. Plant Mol. Biol._ 46, 167–188 (1995). CAS 


Google Scholar  * Coen, E. S. & Meyerowitz, E. M. The war of the whorls; genetic interactions controlling flower development. _Nature_ 353, 31–37 (1991). CAS  PubMed  Google Scholar  *


Haughn, G. W. & Somerville, C. R. Genetic control of morphogenesis in _Arabidopsis_. _Dev. Genet._ 9, 73–89 (1988). Google Scholar  * Riechmann, J. L. & Meyerowitz, E. MADS domain


proteins in plant development. _J. Biol. Chem._ 378, 1079–1101 (1997). CAS  Google Scholar  * Goto, K. & Meyerowitz, E. M. Function and regulation of the _Arabidopsis_ floral homeotic


gene _PISTILLATA_. _Genes Dev._ 8, 1548–1560 (1994). CAS  PubMed  Google Scholar  * Jack, T., Brockman, L. L. & Meyerowitz, E. M. The homeotic gene _APETALA3_ of _Arabidopsis thaliana_


encodes a MADS box and is expressed in petals and stamens. _Cell_ 68, 683–697 (1992). CAS  PubMed  Google Scholar  * Jack, T., Fox, G. L. & Meyerowitz, E. M. _Arabidopsis_ homeotic gene


_APETALA3_ ectopic expression: transcriptional and posttranscriptional regulation determine floral organ identity. _Cell_ 76, 703–716 (1994). CAS  PubMed  Google Scholar  * Krizek, B. A.


& Meyerowitz, E. M. The _Arabidopsis_ homeotic genes _APETALA3_ and _PISTILLATA_ are sufficient to provide the B class organ identity function. _Development_ 122, 11–22 (1996). CAS 


PubMed  Google Scholar  * Levin, J. Z. & Meyerowitz, E. M. _UFO:_ an _Arabidopsis_ gene involved in both floral meristem and floral organ development. _Plant Cell_ 7, 529–548 (1995). CAS


  PubMed  PubMed Central  Google Scholar  * Wilkinson, M. D. & Haughn, G. W. _UNUSUAL FLORAL ORGANS_ controls meristem identity and organ primordial fate in _Arabidopsis_. _Plant Cell_


7, 1485–1499 (1995). CAS  PubMed  PubMed Central  Google Scholar  * Lee, I., Wolfe, D. S., Nilsson, O. & Weigel, D. A. _LEAFY_ co-regulator encoded by _UNUSUAL FLORAL ORGANS_. _Curr.


Biol._ 7, 95–104 (1997). PubMed  Google Scholar  * Zhao, D., Yu, Q., Chen, M. & Ma, H. The _ASK1_ gene regulates B function gene expression in cooperation with _UFO_ and _LEAFY_ in


_Arabidopsis_. _Development_, 128, 2735–2746 (2001). CAS  PubMed  Google Scholar  * Samach, A. et al. The _UNUSUAL FLORAL ORGANS_ gene of _Arabidopsis thaliana_ is an F-box protein required


for normal patterning and growth in the floral meristem. _Plant J._ 20, 433–445 (1999). CAS  PubMed  Google Scholar  * Wang, X. et al. The COP9 signalosome interacts with SCFUFO and


participates in _Arabidopsis_ flower development. _Plant Cell_ 15, 1071–1082 (2003). SHOWS THAT THE CSN IS HIGHLY ENRICHED IN FLOWERS AND THAT PLANTS WITH REDUCED CSN FUNCTION SHOW DEFECTS


IN FLORAL DEVELOPMENT. IT ALSO SHOWS THAT THE F-BOX PROTEIN, UFO, FORMS PART OF AN SCF-TYPE E3 LIGASE THAT ASSOCIATES WITH THE CSN _IN VIVO_. CAS  PubMed  PubMed Central  Google Scholar  *


Peng, Z., Serino, G. & Deng, X. W. Molecular characterization of subunit 6 of the COP9 signalosome and its role in multifaceted developmental processes in _Arabidopsis_. _Plant Cell_ 13,


2393–2407 (2001). CAS  PubMed  PubMed Central  Google Scholar  * Johri, M. M. & Mitra, D. Action of plant hormones. _Curr. Sci._ 80, 199–205 (2001). CAS  Google Scholar  * Vogler, H.


& Kuhlemeier, C. Simple hormones but complex signaling. _Curr. Opin. Plant Biol._ 6, 51–56 (2003). CAS  PubMed  Google Scholar  * Leyser, O. Molecular genetics of auxin signaling. _Ann.


Rev. Plant Biol._ 53, 377–398 (2002). CAS  Google Scholar  * Rogg, L. E. & Bartel, B. Auxin signaling: derepression through regulated proteolysis. _Dev. Cell_ 1, 595–604 (2001). CAS 


PubMed  Google Scholar  * del Pozo, J. C. & Estelle, M. Function of the ubiquitin-proteasome pathway in auxin response. _Trends Plant Sci._ 4, 107–112 (1999). PubMed  Google Scholar  *


Richards, D. E., King, K. E., Ait-ali, T. & Harberd, N. P. How gibberellin regulates plant growth and development: a molecular genetic analysis of giberellin signaling. _Ann. Rev. Plant


Physiol. Plant Mol. Biol._ 52, 67–88 (2001). CAS  Google Scholar  * Koornneef, M. & van der Veen, J. H. Induction and analysisof gibberellin sensitive mutants in _Arabidopsis thaliana_


(L.) Heynh. _Theor. Appl. Genet._ 58, 257–263 (1980). CAS  PubMed  Google Scholar  * Sun, T., Goodman H. M. & Ausubel, F. M. Cloning the _Arabidopsis GA1_ locus by genomic subtraction.


_Plant Cell_ 4, 119–128 (1992). CAS  PubMed  PubMed Central  Google Scholar  * Fath, A., Bethke, P., Lonsdale, J., Meza-Romero, R. & Jones, R. Programmed cell death in cereal aleurone.


_Plant Mol. Biol._ 44, 255–266 (2000). CAS  PubMed  Google Scholar  * Silverstone, A. L., Ciampaglio, C. N. & Sun, T. The _Arabidopsis RGA_ gene encodes a transcriptional regulator


repressing the gibberellin signal transduction pathway. _Plant Cell_ 10, 155–169 (1998). CAS  PubMed  PubMed Central  Google Scholar  * Silverstone, A. L. et al. Repressing a repressor:


gibberellin-induced rapid reduction of the RGA protein in _Arabidopsis_. _Plant Cell_ 13, 1555–1565 (2001). CAS  PubMed  PubMed Central  Google Scholar  * Itoh, H., Ueguchi-Tanaka, M., Sato,


Y., Ashikari, M. & Matsuoka, M. The gibberellin signaling pathway is regulated by the appearance and disappearance of SLENDER RICE1 in nuclei. _Plant Cell_ 14, 57–70 (2002). CAS  PubMed


  PubMed Central  Google Scholar  * Fu, X. et al. Gibberellin-mediated proteasome-dependent degradtion of the barley DELLA protein SLN1 repressor. _Plant Cell_ 14, 3191–3200 (2002). CAS 


PubMed  PubMed Central  Google Scholar  * Sasaki, A. et al. Accumulation of phosphorylated repressor for gibberellin signaling in an F-box mutant. _Science_ 299, 1896–1989 (2003).


DEMONSTRATES THAT THE GA-INSENSITIVE MUTANT _GID2_ OF RICE IS CAUSED BY A MUTATION IN AN F-BOX PROTEIN THAT FORMS PART OF AN SCF-TYPE E3 LIGASE. THEY ALSO SHOW THAT DEGRADATION OF SLR1, A


REPRESSOR OF GA SIGNALLING, INVOLVES SCFGID2 AND IS CONTROLLED THROUGH GA-DEPENDENT PHOSOPHORYLATION OF SLR1. CAS  PubMed  Google Scholar  * McGinnis, K. M. et al. The _Arabidopsis SLEEPY1_


gene encodes a putative F-box subunit of an SCF E3 ubiquitin ligase. _Plant Cell_ 15, 1120–1130 (2003). IDENTIFIES THE _ARABIDOPSIS SLEEPY_ GENE, A POSITIVE REGULATOR OF GA RESPONSES. SLEEPY


IS AN F-BOX PROTEIN THAT FORMS AN SCF E3 LIGASE AND PARTICIPATES IN THE DEGRADATION OF THE REPRESSOR OF GA SIGNALLING RGA IN RESPONSE TO GA. CAS  PubMed  PubMed Central  Google Scholar  *


Wang, K. L., Li, H. & Ecker, J. R. Ethylene biosynthesis and siganling networks. _Plant Cell Suppl._ 14, S131–S151 (2002). CAS  Google Scholar  * Yanagisawa, S., Yoo, S. D. & Sheen,


J. Differential regulation of EIN3 stability by glucose and ethylene signaling in plants. _Nature_ 425, 521–525 (2003). DEMONSTRATES THAT EIN3, A CRUCIAL REGULATOR OF ETHYLENE SIGNALLING, IS


STABILIZED BY ETHYLENE. BY CONTRAST, ADDITION OF GLUCOSE CAUSES THE DEGRADATION OF EIN3 IN A PROTEASOME-DEPENDENT MANNER, INDICATING THAT EIN3 IS A CONVERGENCE POINT BETWEEN ETHYLENE AND


SUGAR SIGNALLING. CAS  PubMed  Google Scholar  * Wang, Z. Y. et al. BRI1 is a critical component of a plasma-membrane receptor for plant steroids. _Nature_ 410, 380–383 (2001). CAS  PubMed 


Google Scholar  * Li, J. & Chory, J. A putative leucine-rich repeat receptor kinase involved in brassinosteroid signal transduction. _Science_ 288, 2360–2363 (1997). Google Scholar  *


Wang, Z. Y. et al. Nuclear-localised BZR1 mediates brassionosteroid-induced growth and feedback suppression of brassinosteroid biosynthesis. _Dev. Cell_ 2, 505–513 (2002). CAS  PubMed 


Google Scholar  * He, J. -X., Gendron, J. M., Yang, Y. & Wang, Z. -Y. The GSK3-like kinase BIN2 phosphorylates and destabilizes BZR1, a positive regulator of the brassinosteroid


signaling pathway in _Arabidopsis_. _Proc. Natl Acad. Sci. USA_ 99, 10185–10190 (2002). CAS  PubMed  PubMed Central  Google Scholar  * Lopez-Molina, L., Mongrand, S. & Chua, N. H. A


post-germination developmental arrest checkpont is mediated by abscisic acid and requires the ABI5 transcription factor in _Arabidopsis_. _Proc. Natl Acad. Sci. USA_ 32, 1–12 (2001).


DESCRIBES THE IDENTIFICATION OF ABI5, A TRANSCRIPTION FACTOR THAT MEDIATES RESPONSES TO ABA. THEY ALSO SHOW THAT ABI5 IS REGULATED AT THE LEVEL OF PROTEIN DEGRADATION AND REQUIRES THE ACTION


OF THE 26S PROTEASOME AND THE ABI5 BINDING PROTEIN, AFP. Google Scholar  * Lopez-Molina, L., Mongrand, S., Kinoshita, N. & Chua, N. H. AFP is a novel negative regulator of ABA signaling


that promotes ABI5 protein degradation. _Genes Dev._ 17, 410–418 (2003). CAS  PubMed  PubMed Central  Google Scholar  * Zhang, S. & Klessig, D. F. MAPK cascades in plant defense


signaling. _Trends Plant Sci._ 6, 520–527 (2001). CAS  PubMed  Google Scholar  * Dong, X. N. Genetic dissection of systemic acquired resistance. _Curr. Opin. Plant Biol._ 4, 309–314 (2001).


CAS  PubMed  Google Scholar  * McDowell, J. M. & Dangl, J. L. Signal transduction in the plant immune response. _Trends Biochem. Sci._ 25, 79–82 (2000). CAS  PubMed  Google Scholar  *


Shirasu, K. & Schulze-Lefert, P. Regulators of cell death in disease resistance. _Plant Mol. Biol._ 44, 371–385 (2000). CAS  PubMed  Google Scholar  * Dong, X. & Sa, J. A. Ethylene


and disease resistance in plants. _Curr. Opin. Plant Biol._ 1, 316–323 (1988). Google Scholar  * Hammond-Kosack, K. E. & Parker, J. E. Deciphering plant-pathogen communication: fresh


perspectives for molecular resistance breeding. _Curr. Opin. Biotechnol._ 14, 177–193 (2003). CAS  PubMed  Google Scholar  * Dangl, J. L. & Jones, J. D. G. Plant pathogens and integrated


defense responses to infection. _Nature_ 411, 826–833 (2001). CAS  PubMed  Google Scholar  * Shirasu, K. et al. A novel class of eukaryotic zinc-finger binding protein is required for


disease resistance signaling in barley and development in _C. elegans_. _Cell_ 99, 355–366 (1999). CAS  PubMed  Google Scholar  * Azevedo, C. et al. The RAR1 interactor SGT1, an essential


component of R gene-triggered disease resistance. _Science_ 295, 2073–2076 (2002). SHOWS THAT SGT1 IS AN INTERACTING PARTNER OF RAR1, AN ESSENTIAL COMPONENT OF MLA12-MEDIATED RESISTANCE


AGAINST POWDERY MILDEW IN BARLEY. SINGLE-CELL RNAI ASSAYS SHOWED THAT SGT1 IS ALSO A CRUCIAL COMPONENT OF THE RESISTANCE PATHWAY. CAS  PubMed  Google Scholar  * Austin, M. J. et al.


Regulatory role of _SGT1_ in early R gene-mediated plant defenses. _Science_ 295, 2077–2080 (2002). DESCRIBES A FORWARD MUTANT SCREENING IN _ARABIDOPSIS_ FOR LOSS OF RESISTANCE AGAINST DOWNY


MILDEW THAT IDENTIFIED SGT1B AS A VITAL COMPONENT OF RESISTANCE. CAS  PubMed  Google Scholar  * Peart, J. R. et al. Ubiquitin ligase associated protein SGT1 is required for host and


non-host disease resistance in plants. _Proc. Natl Acad. Sci. USA_ 99, 10865–10869 (2002). CAS  PubMed  PubMed Central  Google Scholar  * Shirasu, K. & Schulze-Lefeft, P. Complex


formation, promiscuity and multi-functionality: protein interactions in disease resistance pathways. _Trends Plant Sci._ 8, 252–258 (2003). CAS  PubMed  Google Scholar  * Takahashi, A.,


Casais, C., Ichimura, K. & Shirasu, K. HSP90 interacts with RAR1 and SCT1, and is essential for RPS2-mediated disease resistance in _Arabidopsis_. _Proc. Natl Acad. Sci. USA_ 100,


11777–11782 (2003). CAS  PubMed  PubMed Central  Google Scholar  * Dubacq, C., Guerois, R., Courbeyrette, R., Kitagawa, K. & Mann, C. Sgt1p contributes to cyclic AMP pathway activity and


physically interacts with the adenylyl cyclase Cry1p/Cdc35p in budding yeast. _Eukaryot. Cell_ 1, 568–582 (2002). CAS  PubMed  PubMed Central  Google Scholar  * Liu, Y., Schiff, M., Serino,


G., Deng, X. W. & Dinesh-Kumar, S. P. Role of SCF ubiquitin-ligase and the COP9 signalosome in the _N_ gene-mediated resistance response to _Tobacco mosaic virus_. _Plant Cell_ 14,


1483–1496 (2002). SHOWS THAT SKP1 AND CSN COMPONENTS ARE ESSENTIAL FOR N-MEDIATED DISEASE RESISTANCE IN _NICOTIANA_ . BOTH RAR1 AND SGT1 ASSOCIATE WITH SCF AND CSN COMPONENTS, INDICATING THE


FUNCTIONAL LINK AMONG THESE COMPONENTS. CAS  PubMed  PubMed Central  Google Scholar  * Kitagawa, K., Skowyra, D., Elledge, S. J., Harper, J. W. & Hieter, P. SGT1 encodes an essential


component of the yeast kinetochore assembly pathway and a novel subunit of the SCF ubiquitin ligase complex. _Mol. Cell_ 4, 21–33 (1999). CAS  PubMed  Google Scholar  * Gray, W. M., Muskett,


P. R., Chuang, H. -W. & Parker, J. E. _Arabidopsis_ SGT1b is required for SCFTIR1-mediated auxin response. _Plant Cell_ 15, 1310–1319 (2003). CAS  PubMed  PubMed Central  Google Scholar


  * Creelmann, R. A. & Mullet, J. E. Biosynthesis and action of jasmonates in plants. _Ann. Rev. Plant Physiol. Plant Mol. Biol._ 48, 355–381 (1997). Google Scholar  * Feys, B. J. F.,


Benedetti, C. E., Penfold, C. N. & Turner, J. G. _Arabidopsis_ mutants selected for resistance to the phytotoxin coronatine are male sterile, insensitive to methyl jasmonate, and


resistant to a bacterial pathogen. _Plant Cell_ 6, 751–759 (1994). CAS  PubMed  PubMed Central  Google Scholar  * Thomma, B. P. H. J. et al. Separate jasmonate-dependent and


salicylate-dependent defense-repsonse pathways in _Arabidopsis_ are essential for resistance to distinct microbial pathogens. _Proc. Natl Acad. Sci. USA_ 95, 15107–15111 (1998). CAS  PubMed


  PubMed Central  Google Scholar  * McConn, M., Creelmann, R. A., Bell, E., Mullet, J. E. & Browse, J. Jasmonate is essential for insect defense. _Proc. Natl Acad. Sci. USA_ 94,


5473–5477 (1997). CAS  PubMed  PubMed Central  Google Scholar  * Devoto, A. et al. COI1 links jasmonate signaling and fertility to the SCF ubiquitin-ligase complex in _Arabidopsis_. _Plant


J._ 32, 457–466 (2002) CAS  PubMed  Google Scholar  * Xu, L. et al. The SCFCOI1 ubiquitin-ligase complexes are required for jasmonate response in _Arabidopsis_. _Plant Cell_ 14, 1919–1935


(2002). CAS  PubMed  PubMed Central  Google Scholar  * Xie, D., Feys, B. F., James, S., Nieto-Rostro, M. & Turner, J. G. _COI1_: an _Arabidopsis_ gene required for jasmonate-regulated


defense and fertility. _Science_ 280, 1091–1094 (1998). A LANDMARK PAPER DESCRIBING ISOLATION OF THE _COI1_ GENE THAT ENCODES AN F-BOX PROTEIN, REQUIRED FOR JASMONATE, THE SIGNALLING PATHWAY


IN _ARABIDOPSIS_. CAS  PubMed  Google Scholar  * Feng, S. et al. The COP9 signalosome interacts physically with SCFCOI1 and modulates jasmonate responses. _Plant Cell_ 15, 1083–1094 (2003).


CAS  PubMed  PubMed Central  Google Scholar  * Sullivan, J. A. & Deng, X. W. From seed to seed; the role of photoreceptors in _Arabidopsis_ development. _Dev. Biol._ 260, 289–297


(2003). CAS  PubMed  Google Scholar  * Quail, P. H. Phytochrome photosensory signaling networks. _Nature Rev. Mol. Cell Biol._ 3, 85–93 (2002). CAS  Google Scholar  * Wang, H. & Deng, X.


W. in _The Arabidopsis Book_, American Society of Plant Biologists [online], (eds Somerville, C. R. & Meyerowitz, E. M.), (cited 29 Oct 2003)


<http://www.aspb.org/publications/arabidopsis> (2002). Google Scholar  * Teppermann, J. M., Zhu, T., Chang, H. -S., Wang, X. & Quail, P. H. Multiple transcription factor


genes are early targets of phytochrome A signaling. _Proc. Natl Acad. Sci. USA_ 98, 9437–9442 (2001). Google Scholar  * Ma, L. et al. Light control of _Arabidopsis_ development entails


coordinated regulation of genome expression and cellular pathways. _Plant Cell_ 13, 2589–2398 (2001). CAS  PubMed  PubMed Central  Google Scholar  * Lin, C. Blue light photoreceptors and


signal transduction. _Plant Cell_ 14, S207–S225 (2002). CAS  PubMed  PubMed Central  Google Scholar  * Möller, S. G., Ingles, P. J. & Whitelam, G. C. The cell biology of phytochrome


signaling. _New Phytol._ 154, 553–590 (2002). PubMed  Google Scholar  * Wei, N. & Deng, X. W. The role of the _COP/DET/FUS_ genes in light control of _Arabidopis_ seedling development.


_Plant Physiol._ 112, 871–878 (1996). CAS  PubMed  PubMed Central  Google Scholar  * Deng, X. W. et al. COP1, an _Arabidopsis_ regulatory gene, encodes a protein with both a zinc-binding


motif and a Gb homologous domain. _Cell_ 71, 791–801 (1992). CAS  PubMed  Google Scholar  * Pepper, A., Delaney, T., Washburn, T., Poole, D. & Chory, J. _DET1_, a negative regulator of


light-mediated development and gene expression in _Arabidopsis_, encodes a novel nuclear localized protein. _Cell_ 78, 109–116 (1994). CAS  PubMed  Google Scholar  * Suzuki, G., Yanagawa,


Y., Kwok, S. F. & Deng, X. W. _Arabidopsis_ COP10 is a ubiquitin-conjugating enzyme variant that acts together with COP1 and the COP9 signalosome in repressing photomorphogenesis. _Genes


Dev._ 16, 554–559 (2002). DESCRIBES THE IDENTIFICATION OF _COP10_ , ONE OF THE ESSENTIAL COP/DET/FUS GENES. _COP10_ ENCODES A PROTEIN SHOWING SIGNIFICANT HOMOLOGY TO E2 VARIANT PROTEINS AND


INDICATES A POSSIBLE ROLE FOR NON-CANONICAL UBIQUITYLATION IN THE REGULATION OF PHOTOMORPHOGENESIS. CAS  PubMed  PubMed Central  Google Scholar  * Wei, N., Chamovitz, D. A. & Deng, X.


W. _Arabidopsis_ COP9 is a component of a novel signaling complex mediating light control of development. _Cell_ 78, 117–124 (1994). CAS  PubMed  Google Scholar  * Holm, M., Ma, L. -G., Qu,


L. -J. & Deng, X. W. Two interacting bZIP proteins are direct targets of COP1-mediated control of light-dependent gene expression in _Arabidopsis_. _Gene Dev._ 16, 1247–1259 (2002). CAS


  PubMed  PubMed Central  Google Scholar  * Ballesteros, M. et al. LAF1, a myb transcription activator for phytochrome A signaling. _Genes Dev._ 15, 2613–2625 (2001). CAS  PubMed  PubMed


Central  Google Scholar  * Ang, L. -H. et al. Molecular interaction between COP1 and HY5 defines a regulatory switch for light control of _Arabidopsis_ development. _Mol. Cell_ 1, 213–222


(1998). CAS  PubMed  Google Scholar  * Oyama, T., Shimura, Y. & Okada, K. The _Arabidopsis HY5_ gene encodes a bZIP protein that regulates stimulus-induced development of root and


hypocotyl. _Genes Dev._ 11, 2983–2995 (1997). CAS  PubMed  PubMed Central  Google Scholar  * von Arnim, A. G. & Deng, X. W. Light inactivation of _Arabidopsis_ photomorphogenic repressor


COP1 involves a cell-specific regulation of its nucleocytoplasmic partitioning. _Cell_ 79, 1035–1045 (1994). CAS  PubMed  Google Scholar  * Osterlund, M. T., Hardtke, C., Wei, N. &


Deng, X. W. Targeted destabilization of Hy5 during light-regulated development of _Arabidopsis_. _Nature_ 405, 462–466 (2000). A LANDMARK PAPER THAT SHOWS THAT THE PHOTOMORPHOGENESIS


PROMOTING FACTOR HY5 IS REGULATED AT THE LEVEL OF PROTEIN DEGRADATION THROUGH THE 26S PROTEASOME AND THAT THIS REGULATION REQUIRES THE ACTION OF COP1 AND OTHER COP/DET/FUS PROTEINS. CAS 


PubMed  Google Scholar  * Saijo, Y. et al. The COP1–SPA1 interaction defines a critical step in Phytochrome A-mediated regulation of HY5 activity. _Genes Dev._ 17, 2642–2647 (2003). SHOWS


THAT COP1 HAS E3-LIGASE ACTIVITY WITH RESPECT TO HY5 AND THAT THIS ACTIVITY CAN BE ALTERED BY SPA1, AN UPSTREAM REGULATOR OF PHYTOCHROME A SIGNALLING. CAS  PubMed  PubMed Central  Google


Scholar  * Seo, S. H. et al. LAF1 ubiquitination by COP1 controls photomorphogenesis and is stimulated by SPA1. _Nature_ 423, 995–999 (2003). THIS IS THE FIRST DEMONSTRATION OF THE E3


ACTIVITY OF COP1 ON THE TRANSCRIPTION FACTOR, LAF1, AND SHOWS THAT THIS ACTIVITY CAN BE STIMULATED BY ADDITION OF THE COP1-BINDING REGION OF SPA1. CAS  PubMed  Google Scholar  * Hoffmann, R.


M. & Pickart, C. Noncanonical MMS2-encoded ubiquitin-conjugating enzyme functions in assembly of novel polyubiquitin chains for DNA repair. _Cell_ 96, 645–653 (1999). Google Scholar  *


Benvenuto, G., Formiggini, F., Laflamme, P., Malakhov, M. & Bowler, C. The photomorphogensis regulator DET1 binds the amino-terminal tail of histone H2B in a nucleosomal context. _Curr.


Biol._ 12, 1529–1534 (2002). CAS  PubMed  Google Scholar  * Schroeder, D. F. et al. De-etiolated 1 and damaged DNA binding protein 1 interact to regulate _Arabidopsis_ phoromorphogenesis.


_Curr. Biol._ 15, 1462–1472 (2002). Google Scholar  * Chamovitz, D. A. et al. The COP9 complex a novel multisubunit nuclear regulator involved in light control of a plant developmental


switch. _Cell_ 86, 115–121 (1996). CAS  PubMed  Google Scholar  * Quail, P. An emerging molecular map of the phytochromes. _Plant Cell Environ._ 20, 657–666 (1997). CAS  Google Scholar  *


Wang, H., Ma, L., Li, J., Zhao, H. & Deng, X. W. Direct interaction of _Arabidopsis_ cryptochromes with COP1 in light control development. _Science_ 294, 154–158 (2001). CAS  PubMed 


Google Scholar  * Yang, H. -Q., Tang, R. -H. & Cashmore, A. R. The signaling mechanism if _Arabidopsis_ CRY1 involves direct interaction with COP1. _Plant Cell_ 13, 2573–2587 (2001). CAS


  PubMed  PubMed Central  Google Scholar  * Marx, J. Ubiquitin lives up to its name. _Science_ 297, 1792–1794 (2002). PubMed  Google Scholar  * Staub, J. M., Wei, N. & Wang, X. W.


Evidence for FUS6 as a component of the nuclear localized COP9 complex in _Arabidopsis_. _Plant Cell_ 8, 2047–2056 (1996). CAS  PubMed  PubMed Central  Google Scholar  * Serino, G. et al.


Characterization of the last subunit of the _Arabidopsis_ COP9 signalosome: implications for the overall structure and origian of the complex. _Plant Cell_ 15, 719–731 (2003). CAS  PubMed 


PubMed Central  Google Scholar  * Peng, Z., Serino, G. & Deng, X. W. A role of _Arabidopsis_ COP9 signalosome in multifaceted developmental processes revealed by the characterization of


its subunit 3. _Development_ 128, 4277–4288 (2001). CAS  PubMed  Google Scholar  * Serino, G. et al. _Arabidopsis cop8_ and _fus4_ mutations define the same gene that encodes subunit 4 of


the COP9 signalosome. _Plant Cell_ 11, 1967–1980 (1999). CAS  PubMed  PubMed Central  Google Scholar  * Kwok, S. F. et al. _Arabidopsis_ homologs of a c-Jun co-activator are present both in


monomeric form and in the COP9 complex, and their abundance if differentially affected by the pleiotropic _cop/det/fus_ mutations. _Plant Cell_ 19, 1779–1790 (1998). Google Scholar  *


Karniol, B., Malec, P. & Chamovitz, D. A. _Arabidopsis FUSCA5_ encodes a novel phosphoprotein that is a compoent of the COP9 complex. _Plant Cell_ 11, 839–848 (1999). CAS  PubMed  PubMed


Central  Google Scholar  * Ferrell, K., Wilkinson, C. R. M., Dubiel, W. & Gordon, C. Regulatory subunit interactions of the 26S proteasome, a complex problem. _Trends Biochem. Sci._ 25,


83–88 (2000). CAS  PubMed  Google Scholar  * Wei, N. et al. The COP9 complex is conserved between plants and mammals and is related to the 26S proteasome regulatory complex. _Curr. Biol._


8, 919–922 (1998). CAS  PubMed  Google Scholar  * Peng, Z. et al. Evidence for a physical association of the COP9 signalosome, the proteasome, and specific SCF E3 ligases _in vivo_. _Curr.


Biol._ 12, R504–R505 (2003). Google Scholar  * Ohi, M. D., Vander Kooi, C. W., Rosenberg, J. A., Chazin, W. J. & Gould, K. L. Structural insights into the U-box, a domain associated with


multi-ubiquitination. _Nature Struct. Biol._ 10, 250–255 (2003). CAS  PubMed  Google Scholar  * Azevedo, C., Santos-Rosa, M. J. & Shirasu, K. The U-box protein family in plants. _Trends


Plant Sci._ 6, 354–358 (2001). CAS  PubMed  Google Scholar  * Gagne, J. M., Downes, B. P., Shiu, S -H., Durski, A. M. & Vierstra, R. D. The F-box subunit of the SCF E3 complex is


encoded by a diverse superfamily of genes in _Arabidopsis_. _Proc. Natl Acad. Sci. USA_ 99, 11519–11524 (2002). CAS  PubMed  PubMed Central  Google Scholar  * Risseeuw, E. P. et al. Protein


interaction of SCF ubiquitin E3 ligase subunits from _Arabidopsis_. _Plant J._ 34, 753–767 (2003). CAS  PubMed  Google Scholar  Download references ACKNOWLEDGEMENTS J.A.S. is supported by a


Human Frontiers Science Program long-term fellowship. Research in K.S.'s laboratory is supported in part by grants from the Gatsby Charitable Foundation and the Biotechnology and


Biological Sciences Research Council. Related research in X.W.D.'s laboratory is supported by grants from the National Institutes of Health and the National Science Foundation. AUTHOR


INFORMATION AUTHORS AND AFFILIATIONS * Deptartment of Molecular, Cellular and Developmental Biology, Yale University, PO Box 208104, 165 Prospect Street, New Haven, 06520-8104, Connecticut,


USA James A. Sullivan & Xing Wang Deng * The Sainsbury Laboratory, John Innes Centre, Colney Lane, Norwich, NR4 7UH, UK Ken Shirasu Authors * James A. Sullivan View author publications


You can also search for this author inPubMed Google Scholar * Ken Shirasu View author publications You can also search for this author inPubMed Google Scholar * Xing Wang Deng View author


publications You can also search for this author inPubMed Google Scholar CORRESPONDING AUTHOR Correspondence to Xing Wang Deng. ETHICS DECLARATIONS COMPETING INTERESTS The authors declare


that they have no competing financial interests. RELATED LINKS RELATED LINKS DATABASES TAIR _APETALA3_ _Axr1_ _CIO1_ _COP_ _COP10_ _DET_ _FUS_ _LEAFY_ _NIM1_ _PISTILLATA_ _RAR1_ _RGA_


_SGT1α_ _SGT1b_ _SKP1_ _SLEEPY1_ ubiquitin _UNUSUAL FLORAL ORGANS_ _UPL3_ UK CROPNET _Mla6_ _Mla12_ FURTHER INFORMATION Xing Wang Deng's laboratory GLOSSARY * PROTO-ONCOGENE A gene that


has the potential to change into an active cancer-causing oncogene. * ENDOCYTOSIS The uptake of extracellular materials within membrane-bound vesicles by cells. * ISOPEPTIDE BOND The


covalent linkage that joins amino-acid residues through an amide bond. * THIOESTER LINKAGE A non-covalent chemical bond between two proteins formed through thiolester. * CONJUGATION The


addition of ubiquitin moieties to a growing polyubiquitin chain. * SENESCENCE Regulated death of an organ or a cell after its normal physiological function. * CHELATION The process by which


an organic chemical bonds with metal ions and thereby removes them from solutions. * WHORLS A specific layer of flower organs that is generated through floral meristem activity. * SEPALS The


protective outer layer of flower. * STAMENS The third layer of flower that bears the male gametophyte that produces pollen. * CARPELS The fourth whorl of flower that bears the female


gametophyte. * TRANSFORMATION The change from one developmental pattern to another. * APICAL DOMINANCE Concentration of growth at the tip of a plant shoot, where a terminal bud exerts


partial inhibition of auxiliary bud growth. * ALEURONE CELLS A cell type in cereal kernals that undergoes highly regulated cell death to release stores of minerals and nutrients to the


developing embryo. * PHENOCOPY The production of a phenotype, which closely resembles a phenotype that normally results from specific gene expression or from gene mutation. * POWDERY MILDEW


A group of plant diseases that are caused by the growth of fungal mycelium and the production of spores on the surface of plant tissues. * DENEDDYLATION The removal of the ubiquitin-like


modifier NEDD8 (also called RUB) from a protein. * HISTONE DEACETYLASE The enzyme that removes acetyl groups from lysine residues in the DNA-binding histone group of proteins. *


SKOTOMORPHOGENIC Developmental pattern followed by seedlings in the absence of light. * HYPOCOTYLS The stem of a seedling. * COTYLEDONS The leaves of a seedling formed during embryonic


development. * PHOTOMORPHOGENIC Developmental pattern followed by seedlings in the presence of light. RIGHTS AND PERMISSIONS Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE


Sullivan, J., Shirasu, K. & Deng, X. The diverse roles of ubiquitin and the 26S proteasome in the life of plants. _Nat Rev Genet_ 4, 948–958 (2003). https://doi.org/10.1038/nrg1228


Download citation * Issue Date: 01 December 2003 * DOI: https://doi.org/10.1038/nrg1228 SHARE THIS ARTICLE Anyone you share the following link with will be able to read this content: Get


shareable link Sorry, a shareable link is not currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative