
- Select a language for the TTS:
- UK English Female
- UK English Male
- US English Female
- US English Male
- Australian Female
- Australian Male
- Language selected: (auto detect) - EN
Play all audios:
KEY POINTS * Fatty acid-binding proteins (FABPs) are versatile proteins that can modulate lipid fluxes, trafficking, signalling and metabolism * Fatty acid-binding protein, adipocyte (FABP4)
regulates metabolic and inflammatory pathways, and in mouse models its inhibition can improve type 2 diabetes mellitus and atherosclerosis * FABP4 is actively secreted by adipocytes and its
levels are increased in obesity; in humans, elevated circulating FABP4 levels are associated with obesity, metabolic disease and cardiac dysfunction * Circulating FABP4 is secreted through
a vesicular pathway and has pleiotropic roles that include the stimulation of hepatic glucose production * Targeting FABP4 offers a novel therapeutic approach for the treatment of many
metabolic diseases * The signalling components of hormonal FABP4 and determinants of FABP-mediated functions in the context of specific lipid or other cargo are issues that must be addressed
in future research ABSTRACT Intracellular and extracellular interactions with proteins enables the functional and mechanistic diversity of lipids. Fatty acid-binding proteins (FABPs) were
originally described as intracellular proteins that can affect lipid fluxes, metabolism and signalling within cells. As the functions of this protein family have been further elucidated, it
has become evident that they are critical mediators of metabolism and inflammatory processes, both locally and systemically, and therefore are potential therapeutic targets for
immunometabolic diseases. In particular, genetic deficiency and small molecule-mediated inhibition of FABP4 (also known as aP2) and FABP5 can potently improve glucose homeostasis and reduce
atherosclerosis in mouse models. Further research has shown that in addition to their intracellular roles, some FABPs are found outside the cells, and FABP4 undergoes regulated, vesicular
secretion. The circulating form of FABP4 has crucial hormonal functions in systemic metabolism. In this Review we discuss the roles and regulation of both intracellular and extracellular
FABP actions, highlighting new insights that might direct drug discovery efforts and opportunities for management of chronic metabolic diseases. Access through your institution Buy or
subscribe This is a preview of subscription content, access via your institution ACCESS OPTIONS Access through your institution Subscribe to this journal Receive 12 print issues and online
access $209.00 per year only $17.42 per issue Learn more Buy this article * Purchase on SpringerLink * Instant access to full article PDF Buy now Prices may be subject to local taxes which
are calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in * Learn about institutional subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS
THE MEASUREMENT, REGULATION AND BIOLOGICAL ACTIVITY OF FAHFAS Article 28 January 2025 PHYSIOLOGICAL AND PATHOLOGICAL ROLES OF LIPOGENESIS Article 04 May 2023 A HORMONE COMPLEX OF FABP4 AND
NUCLEOSIDE KINASES REGULATES ISLET FUNCTION Article 08 December 2021 ACCESSION CODES ACCESSIONS GENBANK/EMBL/DDBJ * CAJ18597.1 REFERENCES * Poveda, J. A. _ et al_. Lipid modulation of ion
channels through specific binding sites. _Biochim. Biophys. Acta_ 1838, 1560–1567 (2014). Article CAS PubMed Google Scholar * Wahli, W. & Michalik, L. PPARs at the crossroads of
lipid signaling and inflammation. _Trends Endocrinol. Metab._ 23, 351–363 (2012). Article CAS PubMed Google Scholar * Shimizu, T. Lipid mediators in health and disease: enzymes and
receptors as therapeutic targets for the regulation of immunity and inflammation. _Annu. Rev. Pharmacol. Toxicol._ 49, 123–150 (2009). Article CAS PubMed Google Scholar * Dresner, A. _
et al_. Effects of free fatty acids on glucose transport and IRS-1-associated phosphatidylinositol 3-kinase activity. _J. Clin. Invest._ 103, 253–259 (1999). Article CAS PubMed PubMed
Central Google Scholar * Cho, H. _ et al_. Insulin resistance and a diabetes mellitus-like syndrome in mice lacking the protein kinase Akt2 (PKB β). _Science_ 292, 1728–1731 (2001).
Article CAS PubMed Google Scholar * Kim, J. K. _ et al_. Prevention of fat-induced insulin resistance by salicylate. _J. Clin. Invest._ 108, 437–446 (2001). Article CAS PubMed PubMed
Central Google Scholar * Solinas, G., Naugler, W., Galimi, F., Lee, M. S. & Karin, M. Saturated fatty acids inhibit induction of insulin gene transcription by JNK-mediated
phosphorylation of insulin-receptor substrates. _Proc. Natl Acad. Sci. USA_ 103, 16454–16459 (2006). Article CAS PubMed PubMed Central Google Scholar * Nguyen, M. T. _ et al_. JNK and
tumor necrosis factor-α mediate free fatty acid-induced insulin resistance in 3T3-L1 adipocytes. _J. Biol. Chem._ 280, 35361–35371 (2005). Article CAS PubMed Google Scholar * Shi, H. _
et al_. TLR4 links innate immunity and fatty acid-induced insulin resistance. _J. Clin. Invest._ 116, 3015–3025 (2006). Article CAS PubMed PubMed Central Google Scholar * Severeid, L.,
Connor, W. E. & Long, J. P. The depressant effect of fatty acids on the isolated rabbit heart. _Proc. Soc. Exp. Biol. Med._ 131, 1239–1243 (1969). Article CAS PubMed Google Scholar *
Gordon, G. B. Saturated free fatty acid toxicity. II. Lipid accumulation, ultrastructural alterations, and toxicity in mammalian cells in culture. _Exp. Mol. Pathol._ 27, 262–276 (1977).
Article CAS PubMed Google Scholar * Ockner, R. K., Manning, J. A., Poppenhausen, R. B. & Ho, W. K. A binding protein for fatty acids in cytosol of intestinal mucosa, liver,
myocardium, and other tissues. _Science_ 177, 56–58 (1972). Article CAS PubMed Google Scholar * Ockner, R. K. & Manning, J. A. Fatty acid-binding protein in small intestine.
Identification, isolation, and evidence for its role in cellular fatty acid transport. _J. Clin. Invest._ 54, 326–338 (1974). Article CAS PubMed PubMed Central Google Scholar *
Furuhashi, M. & Hotamisligil, G. S. Fatty acid-binding proteins: role in metabolic diseases and potential as drug targets. _Nat. Rev. Drug Discov._ 7, 489–503 (2008). Article CAS
PubMed PubMed Central Google Scholar * Ockner, R. K. & Manning, J. A. Fatty acid binding protein. Role in esterification of absorbed long chain fatty acid in rat intestine. _J. Clin.
Invest._ 58, 632–641 (1976). Article CAS PubMed PubMed Central Google Scholar * Li, L. O., Klett, E. L. & Coleman, R. A. Acyl-CoA synthesis, lipid metabolism and lipotoxicity.
_Biochim. Biophys. Acta_ 1801, 246–251 (2010). Article CAS PubMed Google Scholar * Ockner, R. K., Manning, J. A. & Kane, J. P. Fatty acid binding protein. Isolation from rat liver,
characterization, and immunochemical quantification. _J. Biol. Chem._ 257, 7872–7878 (1982). Article CAS PubMed Google Scholar * Gordon, J. I., Alpers, D. H., Ockner, R. K. &
Strauss, A. W. The nucleotide sequence of rat liver fatty acid binding protein mRNA. _J. Biol. Chem._ 258, 3356–3363 (1983). Article CAS PubMed Google Scholar * Bass, N. M., Raghupathy,
E., Rhoads, D. E., Manning, J. A. & Ockner, R. K. Partial purification of molecular weight 12,000 fatty acid binding proteins from rat brain and their effect on synaptosomal
Na+-dependent amino acid uptake. _Biochemistry_ 23, 6539–6544 (1984). Article CAS PubMed Google Scholar * Haq, R. U., Shrago, E., Christodoulides, L. & Ketterer, B. Purification and
characterization of fatty acid binding protein in mammalian lung. _Exp. Lung Res._ 9, 43–55 (1985). Article CAS PubMed Google Scholar * Sweetser, D. A., Lowe, J. B. & Gordon, J. I.
The nucleotide sequence of the rat liver fatty acid-binding protein gene. Evidence that exon 1 encodes an oligopeptide domain shared by a family of proteins which bind hydrophobic ligands.
_J. Biol. Chem._ 261, 5553–5561 (1986). Article CAS PubMed Google Scholar * Sacchettini, J. C., Said, B., Schulz, H. & Gordon, J. I. Rat heart fatty acid-binding protein is highly
homologous to the murine adipocyte 422 protein and the P2 protein of peripheral nerve myelin. _J. Biol. Chem._ 261, 8218–8223 (1986). Article CAS PubMed Google Scholar * Madsen, P.,
Rasmussen, H. H., Leffers, H., Honore, B. & Celis, J. E. Molecular cloning and expression of a novel keratinocyte protein (psoriasis-associated fatty acid-binding protein [PA-FABP]) that
is highly up-regulated in psoriatic skin and that shares similarity to fatty acid-binding proteins. _J. Invest. Dermatol._ 99, 299–305 (1992). Article CAS PubMed Google Scholar * Kurtz,
A. _ et al_. The expression pattern of a novel gene encoding brain-fatty acid binding protein correlates with neuronal and glial cell development. _Development_ 120, 2637–2649 (1994).
Article CAS PubMed Google Scholar * Watanabe, R. _ et al_. Molecular cloning of a cDNA encoding a novel fatty acid-binding protein from rat skin. _Biochem. Biophys. Res. Commun._ 200,
253–259 (1994). Article CAS PubMed Google Scholar * Spiegelman, B. M. & Green, H. Control of specific protein biosynthesis during the adipose conversion of 3T3 cells. _J. Biol.
Chem._ 255, 8811–8818 (1980). Article CAS PubMed Google Scholar * Bernlohr, D. A., Angus, C. W., Lane, M. D., Bolanowski, M. A. & Kelly, T. J. Jr. Expression of specific mRNAs during
adipose differentiation: identification of an mRNA encoding a homologue of myelin P2 protein. _Proc. Natl Acad. Sci. USA_ 81, 5468–5472 (1984). Article CAS PubMed PubMed Central Google
Scholar * Haq, R. U., Christodoulides, L., Ketterer, B. & Shrago, E. Characterization and purification of fatty acid-binding protein in rat and human adipose tissue. _Biochim. Biophys.
Acta_ 713, 193–198 (1982). Article CAS PubMed Google Scholar * LaLonde, J. M., Bernlohr, D. A. & Banaszak, L. J. The up-and-down β-barrel proteins. _FASEB J._ 8, 1240–1247 (1994).
Article CAS PubMed Google Scholar * Storch, J. & Thumser, A. E. Tissue-specific functions in the fatty acid-binding protein family. _J. Biol. Chem._ 285, 32679–32683 (2010). Article
CAS PubMed PubMed Central Google Scholar * Zezulak, K. M. & Green, H. Specificity of gene expression in adipocytes. _Mol. Cell Biol._ 5, 419–421 (1985). CAS PubMed PubMed Central
Google Scholar * Bernlohr, D. A., Doering, T. L., Kelly, T. J. Jr & Lane, M. D. Tissue specific expression of p422 protein, a putative lipid carrier, in mouse adipocytes. _Biochem.
Biophys. Res. Commun._ 132, 850–855 (1985). Article CAS PubMed Google Scholar * Matarese, V. & Bernlohr, D. A. Purification of murine adipocyte lipid-binding protein.
Characterization as a fatty acid- and retinoic acid-binding protein. _J. Biol. Chem._ 263, 14544–14551 (1988). Article CAS PubMed Google Scholar * Blake, W. L. & Clarke, S. D.
Induction of adipose fatty acid binding protein (a-FABP) by insulin-like growth factor-1 (IGF-1) in 3T3-L1 preadipocytes. _Biochem. Biophys. Res. Commun._ 173, 87–91 (1990). Article CAS
PubMed Google Scholar * Amri, E. Z., Ailhaud, G. & Grimaldi, P. Regulation of adipose cell differentiation. II. Kinetics of induction of the aP2 gene by fatty acids and modulation by
dexamethasone. _J. Lipid Res._ 32, 1457–1463 (1991). Article CAS PubMed Google Scholar * Amri, E. Z., Bertrand, B., Ailhaud, G. & Grimaldi, P. Regulation of adipose cell
differentiation. I. Fatty acids are inducers of the aP2 gene expression. _J. Lipid Res._ 32, 1449–1456 (1991). Article CAS PubMed Google Scholar * Distel, R. J., Robinson, G. S. &
Spiegelman, B. M. Fatty acid regulation of gene expression. Transcriptional and post-transcriptional mechanisms. _J. Biol. Chem._ 267, 5937–5941 (1992). Article CAS PubMed Google Scholar
* Tontonoz, P., Hu, E. & Spiegelman, B. M. Stimulation of adipogenesis in fibroblasts by PPARγ 2, a lipid-activated transcription factor. _Cell_ 79, 1147–1156 (1994). Article CAS
PubMed Google Scholar * Pelton, P. D., Zhou, L., Demarest, K. T. & Burris, T. P. PPARγ activation induces the expression of the adipocyte fatty acid binding protein gene in human
monocytes. _Biochem. Biophys. Res. Commun._ 261, 456–458 (1999). Article CAS PubMed Google Scholar * Shum, B. O. _ et al_. The adipocyte fatty acid-binding protein aP2 is required in
allergic airway inflammation. _J. Clin. Invest._ 116, 2183–2192 (2006). Article CAS PubMed PubMed Central Google Scholar * Wootan, M. G., Bass, N. M., Bernlohr, D. A. & Storch, J.
Fatty acid binding sites of rodent adipocyte and heart fatty acid binding proteins: characterization using fluorescent fatty acids. _Biochemistry_ 29, 9305–9311 (1990). Article CAS PubMed
Google Scholar * Xu, Z., Bernlohr, D. A. & Banaszak, L. J. The adipocyte lipid-binding protein at 1.6-A resolution. Crystal structures of the apoprotein and with bound saturated and
unsaturated fatty acids. _J. Biol. Chem._ 268, 7874–7884 (1993). Article CAS PubMed Google Scholar * Richieri, G. V., Ogata, R. T. & Kleinfeld, A. M. Equilibrium constants for the
binding of fatty acids with fatty acid-binding proteins from adipocyte, intestine, heart, and liver measured with the fluorescent probe ADIFAB. _J. Biol. Chem._ 269, 23918–23930 (1994).
Article CAS PubMed Google Scholar * Wootan, M. G., Bernlohr, D. A. & Storch, J. Mechanism of fluorescent fatty acid transfer from adipocyte fatty acid binding protein to membranes.
_Biochemistry_ 32, 8622–8627 (1993). Article CAS PubMed Google Scholar * Gericke, A., Smith, E. R., Moore, D. J., Mendelsohn, R. & Storch, J. Adipocyte fatty acid-binding protein:
interaction with phospholipid membranes and thermal stability studied by FTIR spectroscopy. _Biochemistry_ 36, 8311–8317 (1997). Article CAS PubMed Google Scholar * Herr, F. M.,
Matarese, V., Bernlohr, D. A. & Storch, J. Surface lysine residues modulate the collisional transfer of fatty acid from adipocyte fatty acid binding protein to membranes. _Biochemistry_
34, 11840–11845 (1995). Article CAS PubMed Google Scholar * LiCata, V. J. & Bernlohr, D. A. Surface properties of adipocyte lipid-binding protein: response to lipid binding, and
comparison with homologous proteins. _Proteins_ 33, 577–589 (1998). Article CAS PubMed Google Scholar * Banaszak, L. _ et al_. Lipid-binding proteins: a family of fatty acid and retinoid
transport proteins. _Adv. Protein Chem._ 45, 89–151 (1994). Article CAS PubMed Google Scholar * Jenkins-Kruchten, A. E. _ et al_. Fatty acid-binding protein-hormone-sensitive lipase
interaction. Fatty acid dependence on binding. _J. Biol. Chem._ 278, 47636–47643 (2003). Article CAS PubMed Google Scholar * Hellberg, K. _ et al_. X-ray crystallographic analysis of
adipocyte fatty acid binding protein (aP2) modified with 4-hydroxy-2-nonenal. _Protein Sci._ 19, 1480–1489 (2010). Article CAS PubMed PubMed Central Google Scholar * Borchers, T. &
Spener, F. Involvement of arginine in the binding of heme and fatty acids to fatty acid-binding protein from bovine liver. _Mol. Cell Biochem._ 123, 23–27 (1993). Article CAS PubMed
Google Scholar * Jenkins, A. E., Hockenberry, J. A., Nguyen, T. & Bernlohr, D. A. Testing of the portal hypothesis: analysis of a V32G, F57G, K58G mutant of the fatty acid binding
protein of the murine adipocyte. _Biochemistry_ 41, 2022–2027 (2002). Article CAS PubMed Google Scholar * Sha, R. S., Kane, C. D., Xu, Z., Banaszak, L. J. & Bernlohr, D. A.
Modulation of ligand binding affinity of the adipocyte lipid-binding protein by selective mutation. Analysis _in vitro_ and _in situ_. _J. Biol. Chem._ 268, 7885–7892 (1993). Article CAS
PubMed Google Scholar * Grimsrud, P. A., Picklo, M. J. Sr, Griffin, T. J. & Bernlohr, D. A. Carbonylation of adipose proteins in obesity and insulin resistance: identification of
adipocyte fatty acid-binding protein as a cellular target of 4-hydroxynonenal. _Mol. Cell Proteomics_ 6, 624–637 (2007). Article CAS PubMed Google Scholar * Chabowski, A., Gorski, J.,
Luiken, J. J., Glatz, J. F. & Bonen, A. Evidence for concerted action of FAT/CD36 and FABPpm to increase fatty acid transport across the plasma membrane. _Prostaglandins Leukot. Essent.
Fatty Acids_ 77, 345–353 (2007). Article CAS PubMed Google Scholar * Glatz, J. F., Luiken, J. J. & Bonen, A. Membrane fatty acid transporters as regulators of lipid metabolism:
implications for metabolic disease. _Physiol. Rev._ 90, 367–417 (2010). Article CAS PubMed Google Scholar * Spitsberg, V. L., Matitashvili, E. & Gorewit, R. C. Association and
coexpression of fatty-acid-binding protein and glycoprotein CD36 in the bovine mammary gland. _Eur. J. Biochem._ 230, 872–878 (1995). Article CAS PubMed Google Scholar * Woodford, J. K.,
Jefferson, J. R., Wood, W. G., Hubbell, T. & Schroeder, F. Expression of liver fatty acid binding protein alters plasma membrane lipid composition and structure in transfected L-cell
fibroblasts. _Biochim. Biophys. Acta_ 1145, 257–265 (1993). Article CAS PubMed Google Scholar * Iso, T. _ et al_. Capillary endothelial fatty acid binding proteins 4 and 5 play a
critical role in fatty acid uptake in heart and skeletal muscle. _Arterioscler. Thromb. Vasc. Biol._ 33, 2549–2557 (2013). Article CAS PubMed PubMed Central Google Scholar * Murphy, E.
J., Prows, D. R., Stiles, T. & Schroeder, F. Liver and intestinal fatty acid-binding protein expression increases phospholipid content and alters phospholipid fatty acid composition in
L-cell fibroblasts. _Lipids_ 35, 729–738 (2000). Article CAS PubMed Google Scholar * Maeda, K. _ et al_. Adipocyte/macrophage fatty acid binding proteins control integrated metabolic
responses in obesity and diabetes. _Cell Metab._ 1, 107–119 (2005). Article CAS PubMed Google Scholar * Coe, N. R., Simpson, M. A. & Bernlohr, D. A. Targeted disruption of the
adipocyte lipid-binding protein (aP2 protein) gene impairs fat cell lipolysis and increases cellular fatty acid levels. _J. Lipid Res._ 40, 967–972 (1999). Article CAS PubMed Google
Scholar * Shaughnessy, S., Smith, E. R., Kodukula, S., Storch, J. & Fried, S. K. Adipocyte metabolism in adipocyte fatty acid binding protein knockout mice (aP2−/−) after short-term
high-fat feeding: functional compensation by the keratinocyte [correction of keritinocyte] fatty acid binding protein. _Diabetes_ 49, 904–911 (2000). Article CAS PubMed Google Scholar *
Scheja, L. _ et al_. Altered insulin secretion associated with reduced lipolytic efficiency in aP2−/− mice. _Diabetes_ 48, 1987–1994 (1999). Article CAS PubMed Google Scholar * Hertzel,
A. V. _ et al_. Lipid metabolism and adipokine levels in fatty acid-binding protein null and transgenic mice. _Am. J. Physiol. Endocrinol. Metab._ 290, E814–E823 (2006). Article CAS PubMed
Google Scholar * Storch, J. & Thumser, A. E. The fatty acid transport function of fatty acid-binding proteins. _Biochim. Biophys. Acta_ 1486, 28–44 (2000). Article CAS PubMed
Google Scholar * Schroeder, F. _ et al_. Role of fatty acid binding proteins and long chain fatty acids in modulating nuclear receptors and gene transcription. _Lipids_ 43, 1–17 (2008).
Article CAS PubMed Google Scholar * Huang, H., Starodub, O., McIntosh, A., Kier, A. B. & Schroeder, F. Liver fatty acid-binding protein targets fatty acids to the nucleus. Real time
confocal and multiphoton fluorescence imaging in living cells. _J. Biol. Chem._ 277, 29139–29151 (2002). Article CAS PubMed Google Scholar * Yu, S., Levi, L., Siegel, R. & Noy, N.
Retinoic acid induces neurogenesis by activating both retinoic acid receptors (RARs) and peroxisome proliferator-activated receptor β/δ (PPARβ/δ). _J. Biol. Chem._ 287, 42195–42205 (2012).
Article CAS PubMed PubMed Central Google Scholar * Yu, S., Levi, L., Casadesus, G., Kunos, G. & Noy, N. Fatty acid-binding protein 5 (FABP5) regulates cognitive function both by
decreasing anandamide levels and by activating the nuclear receptor peroxisome proliferator-activated receptor β/δ (PPARβ/δ) in the brain. _J. Biol. Chem._ 289, 12748–12758 (2014). Article
CAS PubMed PubMed Central Google Scholar * Tan, N. S. _ et al_. Selective cooperation between fatty acid binding proteins and peroxisome proliferator-activated receptors in regulating
transcription. _Mol. Cell Biol._ 22, 5114–5127 (2002). Article CAS PubMed PubMed Central Google Scholar * Adida, A. & Spener, F. Adipocyte-type fatty acid-binding protein as
inter-compartmental shuttle for peroxisome proliferator activated receptor γ agonists in cultured cell. _Biochim. Biophys. Acta_ 1761, 172–181 (2006). Article CAS PubMed Google Scholar *
Ayers, S. D., Nedrow, K. L., Gillilan, R. E. & Noy, N. Continuous nucleocytoplasmic shuttling underlies transcriptional activation of PPARγ by FABP4. _Biochemistry_ 46, 6744–6752
(2007). Article CAS PubMed Google Scholar * Makowski, L., Brittingham, K. C., Reynolds, J. M., Suttles, J. & Hotamisligil, G. S. The fatty acid-binding protein, aP2, coordinates
macrophage cholesterol trafficking and inflammatory activity. Macrophage expression of aP2 impacts peroxisome proliferator-activated receptor γ and IκB kinase activities. _J. Biol. Chem._
280, 12888–12895 (2005). Article CAS PubMed Google Scholar * Hotamisligil, G. S. _ et al_. Uncoupling of obesity from insulin resistance through a targeted mutation in aP2, the adipocyte
fatty acid binding protein. _Science_ 274, 1377–1379 (1996). Article CAS PubMed Google Scholar * Bernlohr, D. A., Coe, N. R., Simpson, M. A. & Hertzel, A. V. Regulation of gene
expression in adipose cells by polyunsaturated fatty acids. _Adv. Exp. Med. Biol._ 422, 145–156 (1997). Article CAS PubMed Google Scholar * Uysal, K. T., Scheja, L., Wiesbrock, S. M.,
Bonner-Weir, S. & Hotamisligil, G. S. Improved glucose and lipid metabolism in genetically obese mice lacking aP2. _Endocrinology_ 141, 3388–3396 (2000). Article CAS PubMed Google
Scholar * Maeda, K. _ et al_. Role of the fatty acid binding protein mal1 in obesity and insulin resistance. _Diabetes_ 52, 300–307 (2003). Article CAS PubMed Google Scholar * Cao, H. _
et al_. Regulation of metabolic responses by adipocyte/macrophage fatty acid-binding proteins in leptin-deficient mice. _Diabetes_ 55, 1915–1922 (2006). Article CAS PubMed Google Scholar
* Cao, H. _ et al_. Identification of a lipokine, a lipid hormone linking adipose tissue to systemic metabolism. _Cell_ 134, 933–944 (2008). Article CAS PubMed PubMed Central Google
Scholar * Erbay, E. _ et al_. Reducing endoplasmic reticulum stress through a macrophage lipid chaperone alleviates atherosclerosis. _Nat. Med._ 15, 1383–1391 (2009). Article CAS PubMed
PubMed Central Google Scholar * Oh, D. Y. _ et al_. GPR120 is an omega-3 fatty acid receptor mediating potent anti-inflammatory and insulin-sensitizing effects. _Cell_ 142, 687–698 (2010).
Article CAS PubMed PubMed Central Google Scholar * Ichimura, A. _ et al_. Dysfunction of lipid sensor GPR120 leads to obesity in both mouse and human. _Nature_ 483, 350–354 (2012).
Article CAS PubMed Google Scholar * Shen, W. J., Sridhar, K., Bernlohr, D. A. & Kraemer, F. B. Interaction of rat hormone-sensitive lipase with adipocyte lipid-binding protein.
_Proc. Natl Acad. Sci. USA_ 96, 5528–5532 (1999). Article CAS PubMed PubMed Central Google Scholar * Smith, A. J. _ et al_. Physical association between the adipocyte fatty acid-binding
protein and hormone-sensitive lipase: a fluorescence resonance energy transfer analysis. _J. Biol. Chem._ 279, 52399–52405 (2004). Article CAS PubMed Google Scholar * Hampton, M. _ et
al_. Deep sequencing the transcriptome reveals seasonal adaptive mechanisms in a hibernating mammal. _PLoS ONE_ 6, e27021 (2011). Article CAS PubMed PubMed Central Google Scholar *
Tontonoz, P., Nagy, L., Alvarez, J. G., Thomazy, V. A. & Evans, R. M. PPARγ promotes monocyte/macrophage differentiation and uptake of oxidized LDL. _Cell_ 93, 241–252 (1998). Article
CAS PubMed Google Scholar * Fu, Y., Luo, N., Lopes-Virella, M. F. & Garvey, W. T. The adipocyte lipid binding protein (ALBP/aP2) gene facilitates foam cell formation in human THP-1
macrophages. _Atherosclerosis_ 165, 259–269 (2002). Article CAS PubMed Google Scholar * Liu, Q. Y. & Nambi, P. Sirolimus upregulates aP2 expression in human monocytes and
macrophages. _Transplant Proc._ 36, 3229–3231 (2004). Article CAS PubMed Google Scholar * Liu, Q. Y., Quinet, E. & Nambi, P. Adipocyte fatty acid-binding protein (aP2), a newly
identified LXR target gene, is induced by LXR agonists in human THP-1 cells. _Mol. Cell Biochem._ 302, 203–213 (2007). Article CAS PubMed Google Scholar * Babaev, V. R. _ et al_.
Macrophage Mal1 deficiency suppresses atherosclerosis in low-density lipoprotein receptor-null mice by activating peroxisome proliferator-activated receptor-γ-regulated genes. _Arterioscler.
Thromb. Vasc. Biol._ 31, 1283–1290 (2011). Article CAS PubMed PubMed Central Google Scholar * Garin-Shkolnik, T., Rudich, A., Hotamisligil, G. S. & Rubinstein, M. FABP4 attenuates
PPARγ and adipogenesis and is inversely correlated with PPARγ in adipose tissues. _Diabetes_ 63, 900–911 (2014). Article CAS PubMed Google Scholar * Zimmer, J. S., Dyckes, D. F.,
Bernlohr, D. A. & Murphy, R. C. Fatty acid binding proteins stabilize leukotriene A4: competition with arachidonic acid but not other lipoxygenase products. _J. Lipid Res._ 45, 2138–2144
(2004). Article CAS PubMed Google Scholar * Dickinson Zimmer, J. S., Voelker, D. R., Bernlohr, D. A. & Murphy, R. C. Stabilization of leukotriene A4 by epithelial fatty acid-binding
protein in the rat basophilic leukemia cell. _J. Biol. Chem._ 279, 7420–7426 (2004). Article PubMed CAS Google Scholar * Spite, M. _ et al_. Deficiency of the leukotriene B4 receptor,
BLT-1, protects against systemic insulin resistance in diet-induced obesity. _J. Immunol._ 187, 1942–1949 (2011). Article CAS PubMed Google Scholar * Layne, M. D. _ et al_. Role of
macrophage-expressed adipocyte fatty acid binding protein in the development of accelerated atherosclerosis in hypercholesterolemic mice. _FASEB J._ 15, 2733–2735 (2001). Article CAS
PubMed Google Scholar * Chan, K. L. _ et al_. Palmitoleate reverses high fat-induced pro-inflammatory macrophage polarization via AMPK. _J. Biol. Chem._
http://dx.doi.org/10.1074/jbc.M115.646992. * Xu, H. _ et al_. Uncoupling lipid metabolism from inflammation through fatty acid binding protein-dependent expression of UCP2. _Mol. Cell Biol._
35, 1055–1065 (2015). Article CAS PubMed PubMed Central Google Scholar * Thompson, B. R., Mazurkiewicz-Munoz, A. M., Suttles, J., Carter-Su, C. & Bernlohr, D. A. Interaction of
adipocyte fatty acid-binding protein (AFABP) and JAK2: AFABP/aP2 as a regulator of JAK2 signaling. _J. Biol. Chem._ 284, 13473–13480 (2009). Article CAS PubMed PubMed Central Google
Scholar * Semenkovich, C. F. Insulin resistance and atherosclerosis. _J. Clin. Invest._ 116, 1813–1822 (2006). Article CAS PubMed PubMed Central Google Scholar * Perrella, M. A. _ et
al_. Absence of adipocyte fatty acid binding protein prevents the development of accelerated atherosclerosis in hypercholesterolemic mice. _FASEB J._ 15, 1774–1776 (2001). Article CAS
PubMed Google Scholar * Makowski, L. _ et al_. Lack of macrophage fatty-acid-binding protein aP2 protects mice deficient in apolipoprotein E against atherosclerosis. _Nat. Med._ 7, 699–705
(2001). Article CAS PubMed PubMed Central Google Scholar * Boord, J. B. _ et al_. Adipocyte fatty acid-binding protein, aP2, alters late atherosclerotic lesion formation in severe
hypercholesterolemia. _Arterioscler. Thromb. Vasc. Biol._ 22, 1686–1691 (2002). Article CAS PubMed PubMed Central Google Scholar * Furuhashi, M. _ et al_. Treatment of diabetes and
atherosclerosis by inhibiting fatty-acid-binding protein aP2. _Nature_ 447, 959–965 (2007). Article CAS PubMed PubMed Central Google Scholar * Boord, J. B. _ et al_. Combined
adipocyte-macrophage fatty acid-binding protein deficiency improves metabolism, atherosclerosis, and survival in apolipoprotein E-deficient mice. _Circulation_ 110, 1492–1498 (2004). Article
CAS PubMed PubMed Central Google Scholar * Rolph, M. S. _ et al_. Regulation of dendritic cell function and T cell priming by the fatty acid-binding protein AP2. _J. Immunol._ 177,
7794–7801 (2006). Article CAS PubMed Google Scholar * Reynolds, J. M. _ et al_. Deficiency of fatty acid-binding proteins in mice confers protection from development of experimental
autoimmune encephalomyelitis. _J. Immunol._ 179, 313–321 (2007). Article CAS PubMed Google Scholar * Elmasri, H. _ et al_. Fatty acid binding protein 4 is a target of VEGF and a
regulator of cell proliferation in endothelial cells. _FASEB J._ 23, 3865–3873 (2009). Article CAS PubMed PubMed Central Google Scholar * Harjes, U., Bridges, E., McIntyre, A.,
Fielding, B. A. & Harris, A. L. Fatty acid-binding protein 4, a point of convergence for angiogenic and metabolic signaling pathways in endothelial cells. _J. Biol. Chem._ 289,
23168–23176 (2014). Article CAS PubMed PubMed Central Google Scholar * Daly, C. _ et al_. Angiopoietin-1 modulates endothelial cell function and gene expression via the transcription
factor FKHR (FOXO1). _Genes Dev._ 18, 1060–1071 (2004). Article CAS PubMed PubMed Central Google Scholar * Elmasri, H. _ et al_. Endothelial cell-fatty acid binding protein 4 promotes
angiogenesis: role of stem cell factor/c-kit pathway. _Angiogenesis_ 15, 457–468 (2012). Article CAS PubMed PubMed Central Google Scholar * Ghelfi, E. _ et al_. Fatty acid binding
protein 4 regulates VEGF-induced airway angiogenesis and inflammation in a transgenic mouse model: implications for asthma. _Am. J. Pathol._ 182, 1425–1433 (2013). Article CAS PubMed
PubMed Central Google Scholar * Saint-Geniez, M. _ et al_. Fatty acid binding protein 4 deficiency protects against oxygen-induced retinopathy in mice. _PLoS ONE_ 9, e96253 (2014). Article
PubMed PubMed Central CAS Google Scholar * Nieman, K. M. _ et al_. Adipocytes promote ovarian cancer metastasis and provide energy for rapid tumor growth. _Nat. Med._ 17, 1498–1503
(2011). Article CAS PubMed PubMed Central Google Scholar * Cataltepe, O. _ et al_. Fatty acid binding protein 4 is expressed in distinct endothelial and non-endothelial cell populations
in glioblastoma. _Neuropathol. Appl. Neurobiol._ 38, 400–410 (2012). Article CAS PubMed Google Scholar * Lee, D. _ et al_. Expression of fatty acid binding protein 4 is involved in the
cell growth of oral squamous cell carcinoma. _Oncol. Rep._ 31, 1116–1120 (2014). Article CAS PubMed Google Scholar * Pelsers, M. M. _ et al_. Liver fatty acid-binding protein as a
sensitive serum marker of acute hepatocellular damage in liver transplant recipients. _Clin. Chem._ 48, 2055–2057 (2002). Article CAS PubMed Google Scholar * Knowlton, A. A., Apstein, C.
S., Saouf, R. & Brecher, P. Leakage of heart fatty acid binding protein with ischemia and reperfusion in the rat. _J. Mol. Cell Cardiol._ 21, 577–583 (1989). Article CAS PubMed
Google Scholar * Tanaka, T., Hirota, Y., Sohmiya, K., Nishimura, S. & Kawamura, K. Serum and urinary human heart fatty acid-binding protein in acute myocardial infarction. _Clin.
Biochem._ 24, 195–201 (1991). Article CAS PubMed Google Scholar * Kleine, A. H., Glatz, J. F., Van Nieuwenhoven, F. A. & Van der Vusse, G. J. Release of heart fatty acid-binding
protein into plasma after acute myocardial infarction in man. _Mol. Cell. Biochem._ 116, 155–162 (1992). Article CAS PubMed Google Scholar * Kanda, T. _ et al_. Intestinal fatty
acid-binding protein is a useful diagnostic marker for mesenteric infarction in humans. _Gastroenterology_ 110, 339–343 (1996). Article CAS PubMed Google Scholar * Schellekens, D. H. _
et al_. Plasma intestinal fatty acid-binding protein levels correlate with morphologic epithelial intestinal damage in a human translational ischemia-reperfusion model. _J. Clin.
Gastroenterol._ 48, 253–260 (2014). Article CAS PubMed Google Scholar * Akbal, E. _ et al_. Liver fatty acid-binding protein is a diagnostic marker to detect liver injury due to chronic
hepatitis C infection. _Arch. Med. Res._ 44, 34–38 (2013). Article CAS PubMed Google Scholar * Foucaud, L. _ et al_. Output of liver fatty acid-binding protein (L-FABP) in bile.
_Biochim. Biophys. Acta_ 1436, 593–599 (1999). Article CAS PubMed Google Scholar * Specht, B. _ et al_. Mammary derived growth inhibitor is not a distinct protein but a mix of heart-type
and adipocyte-type fatty acid-binding protein. _J. Biol. Chem._ 271, 19943–19949 (1996). Article CAS PubMed Google Scholar * Brandt, R. _ et al_. A 13-kilodalton protein purified from
milk fat globule membranes is closely related to a mammary-derived growth inhibitor. _Biochemistry_ 27, 1420–1425 (1988). Article CAS PubMed Google Scholar * Bronsky, J. _ et al_.
Adiponectin, adipocyte fatty acid binding protein, and epidermal fatty acid binding protein: proteins newly identified in human breast milk. _Clin. Chem._ 52, 1763–1770 (2006). Article CAS
PubMed Google Scholar * Cao, H. _ et al_. Adipocyte lipid chaperone AP2 is a secreted adipokine regulating hepatic glucose production. _Cell Metab._ 17, 768–778 (2013). Article PubMed
PubMed Central CAS Google Scholar * Xu, A. _ et al_. Adipocyte fatty acid-binding protein is a plasma biomarker closely associated with obesity and metabolic syndrome. _Clin. Chem._ 52,
405–413 (2006). Article CAS PubMed Google Scholar * Schlottmann, I., Ehrhart-Bornstein, M., Wabitsch, M., Bornstein, S. R. & Lamounier-Zepter, V. Calcium-dependent release of
adipocyte fatty acid binding protein from human adipocytes. _Int. J. Obes. (Lond.)_ 38, 1221–1227 (2014). Article CAS Google Scholar * Kaess, B. M. _ et al_. Cardiometabolic correlates
and heritability of fetuin-A, retinol-binding protein 4, and fatty-acid binding protein 4 in the Framingham Heart Study. _J. Clin. Endocrinol. Metab._ 97, E1943–E1947 (2012). Article CAS
PubMed PubMed Central Google Scholar * Chow, W. S. _ et al_. Elevated circulating adipocyte-fatty acid binding protein levels predict incident cardiovascular events in a community-based
cohort: a 12-year prospective study. _J. Am. Heart Assoc._ 2, e004176 (2013). Article PubMed PubMed Central CAS Google Scholar * von Eynatten, M. _ et al_. Circulating adipocyte fatty
acid-binding protein levels and cardiovascular morbidity and mortality in patients with coronary heart disease: a 10-year prospective study. _Arterioscler. Thromb. Vasc. Biol._ 32, 2327–2335
(2012). Article CAS PubMed Google Scholar * Tso, A. W. _ et al_. Serum adipocyte fatty acid binding protein as a new biomarker predicting the development of type 2 diabetes: a 10-year
prospective study in a Chinese cohort. _Diabetes Care_ 30, 2667–2672 (2007). Article CAS PubMed Google Scholar * Ishimura, S. _ et al_. Circulating levels of fatty acid-binding protein
family and metabolic phenotype in the general population. _PLoS ONE_ 8, e81318 (2013). Article PubMed PubMed Central Google Scholar * Tso, A. W. _ et al_. Serum adipocyte fatty
acid-binding protein associated with ischemic stroke and early death. _Neurology_ 76, 1968–1975 (2011). Article CAS PubMed Google Scholar * Balci, M. M. _ et al_. Serum levels of
adipocyte fatty acid-binding protein are independently associated with left ventricular mass and myocardial performance index in obstructive sleep apnea syndrome. _J. Investig. Med._ 60,
1020–1026 (2012). Article PubMed CAS Google Scholar * Hancke, K., Grubeck, D., Hauser, N., Kreienberg, R. & Weiss, J. M. Adipocyte fatty acid-binding protein as a novel prognostic
factor in obese breast cancer patients. _Breast Cancer Res. Treat._ 119, 367–367 (2010). Article CAS PubMed Google Scholar * Yoo, H. J. _ et al_. Serum adipocyte fatty acid-binding
protein is associated independently with vascular inflammation: analysis with 18F-fluorodeoxyglucose positron emission tomography. _J. Clin. Endocrinol. Metab._ 96, E488–E492 (2011). Article
CAS PubMed Google Scholar * Schmilovitz-Weiss, H. _ et al_. Serum adipocyte fatty acid binding protein in liver transplant recipients and the metabolic syndrome. _Ann. Hepatol._ 11,
343–349 (2012). Article CAS PubMed Google Scholar * Haluzikova, D. _ et al_. Serum concentrations of adipocyte fatty acid binding protein in patients with anorexia nervosa. _Physiol.
Res._ 58, 577–581 (2009). Article CAS PubMed Google Scholar * Comerford, K. B., Buchan, W. & Karakas, S. E. The effects of weight loss on FABP4 and RBP4 in obese women with metabolic
syndrome. _Horm. Metab. Res._ 46, 224–231 (2014). CAS PubMed Google Scholar * Stejskal, D., Karpisek, M. & Bronsky, J. Serum adipocyte-fatty acid binding protein discriminates
patients with permanent and temporary body weight loss. _J. Clin. Lab. Anal._ 22, 380–382 (2008). Article CAS PubMed PubMed Central Google Scholar * Tuncman, G. _ et al_. A genetic
variant at the fatty acid-binding protein aP2 locus reduces the risk for hypertriglyceridemia, type 2 diabetes, and cardiovascular disease. _Proc. Natl Acad. Sci. USA_ 103, 6970–6975 (2006).
Article CAS PubMed PubMed Central Google Scholar * Saksi, J. _ et al_. Low-expression variant of fatty acid-binding protein 4 favors reduced manifestations of atherosclerotic disease
and increased plaque stability. _Circ. Cardiovasc. Genet._ 7, 588–598 (2014). Article CAS PubMed Google Scholar * Wang, J. _ et al_. FABP4: a novel candidate gene for polycystic ovary
syndrome. _Endocrine_ 36, 392–396 (2009). Article CAS PubMed Google Scholar * Bhushan, B. _ et al_. Fatty-acid binding protein 4 gene polymorphisms and plasma levels in children with
obstructive sleep apnea. _Sleep Med._ 12, 666–671 (2011). Article PubMed PubMed Central Google Scholar * Unger, R. H. & Cherrington, A. D. Glucagonocentric restructuring of diabetes:
a pathophysiologic and therapeutic makeover. _J. Clin. Invest._ 122, 4–12 (2012). Article CAS PubMed PubMed Central Google Scholar * Wu, L. E. _ et al_. Identification of fatty acid
binding protein 4 as an adipokine that regulates insulin secretion during obesity. _Mol. Metab._ 3, 465–473 (2014). Article CAS PubMed PubMed Central Google Scholar * Kralisch, S. _ et
al_. Circulating adipocyte fatty acid-binding protein induces insulin resistance in mice _in vivo_. _Obesity (Silver Spring)_ 23, 1007–1013 (2015). Article CAS Google Scholar * Girona, J.
_ et al_. FABP4 induces vascular smooth muscle cell proliferation and migration through a MAPK-dependent pathway. _PLoS ONE_ 8, e81914 (2013). Article PubMed PubMed Central CAS Google
Scholar * Aragones, G. _ et al_. Fatty acid-binding protein 4 impairs the insulin-dependent nitric oxide pathway in vascular endothelial cells. _Cardiovasc. Diabetol._ 11, 72 (2012).
Article CAS PubMed PubMed Central Google Scholar * Lamounier-Zepter, V. _ et al_. Adipocyte fatty acid-binding protein suppresses cardiomyocyte contraction: a new link between obesity
and heart disease. _Circ. Res._ 105, 326–334 (2009). Article CAS PubMed Google Scholar * Lamounier-Zepter, V. _ et al_. Interaction of epoxyeicosatrienoic acids and adipocyte fatty
acid-binding protein in the modulation of cardiomyocyte contractility. _Int. J. Obes. (Lond.)_ 39, 755–761 (2015). Article CAS Google Scholar * Riquelme, C. A. _ et al_. Fatty acids
identified in the Burmese python promote beneficial cardiac growth. _Science_ 334, 528–531 (2011). Article CAS PubMed PubMed Central Google Scholar * Ertunc, M. E. _ et al_. Secretion
of fatty acid binding protein aP2 from adipocytes through a nonclassical pathway in response to adipocyte lipase activity. _J. Lipid Res._ 56, 423–434 (2015). Article CAS PubMed PubMed
Central Google Scholar * Sun, K., Kusminski, C. M. & Scherer, P. E. Adipose tissue remodeling and obesity. _J. Clin. Invest._ 121, 2094–2101 (2011). Article CAS PubMed PubMed
Central Google Scholar * Kralisch, S. _ et al_. Adipocyte fatty acid-binding protein is released from adipocytes by a non-conventional mechanism. _Int. J. Obes. (Lond.)_ 38, 1251–1254
(2014). Article CAS Google Scholar * Lee, M. Y. _ et al_. Chronic administration of BMS309403 improves endothelial function in apolipoprotein E-deficient mice and in cultured human
endothelial cells. _Br. J. Pharmacol._ 162, 1564–1576 (2011). Article CAS PubMed PubMed Central Google Scholar * Hoo, R. L. _ et al_. Pharmacological inhibition of adipocyte fatty acid
binding protein alleviates both acute liver injury and non-alcoholic steatohepatitis in mice. _J. Hepatol._ 58, 358–364 (2013). Article CAS PubMed Google Scholar * Lehmann, F. _ et al_.
Discovery of inhibitors of human adipocyte fatty acid-binding protein, a potential type 2 diabetes target. _Bioorg. Med. Chem. Lett._ 14, 4445–4448 (2004). Article CAS PubMed Google
Scholar * Barf, T. _ et al_. N.-Benzyl-indolo carboxylic acids: design and synthesis of potent and selective adipocyte fatty-acid binding protein (A-FABP) inhibitors. _Bioorg. Med. Chem.
Lett._ 19, 1745–1748 (2009). Article CAS PubMed Google Scholar * Liu, X. _ et al_. New aromatic substituted pyrazoles as selective inhibitors of human adipocyte fatty acid-binding
protein. _Bioorg. Med. Chem. Lett._ 21, 2949–2952 (2011). Article CAS PubMed Google Scholar * Chen, J., Wang, J. & Zhu, W. Binding modes of three inhibitors 8CA, F8A and I4A to
A-FABP studied based on molecular dynamics simulation. _PLoS ONE_ 9, e99862 (2014). Article PubMed PubMed Central CAS Google Scholar * Xu, Q. _ et al_. Design, synthesis and biological
evaluation of thiazole- and indole-based derivatives for the treatment of type II diabetes. _Eur. J. Med. Chem._ 52, 70–81 (2012). Article CAS PubMed Google Scholar * Wang, Y. _ et al_.
Discovery of FDA-approved drugs as inhibitors of fatty acid binding protein 4 using molecular docking screening. _J. Chem. Inf. Model_ 54, 3046–3050 (2014). Article CAS PubMed Google
Scholar * Cai, H. Y. _ et al_. Benzbromarone, an old uricosuric drug, inhibits human fatty acid binding protein 4 _in vitro_ and lowers the blood glucose level in _db/db_ mice. _Acta
Pharmacol. Sin._ 34, 1397–1402 (2013). Article CAS PubMed PubMed Central Google Scholar * Aouadi, M. _ et al_. Gene silencing in adipose tissue macrophages regulates whole-body
metabolism in obese mice. _Proc. Natl Acad. Sci. USA_ 110, 8278–8283 (2013). Article CAS PubMed PubMed Central Google Scholar * Aouadi, M. _ et al_. Orally delivered siRNA targeting
macrophage Map4k4 suppresses systemic inflammation. _Nature_ 458, 1180–1184 (2009). Article CAS PubMed PubMed Central Google Scholar * Won, Y. W. _ et al_. Oligopeptide complex for
targeted non-viral gene delivery to adipocytes. _Nat. Mater._ 13, 1157–1164 (2014). Article CAS PubMed Google Scholar * Miao, X. _ et al_. The mAb against adipocyte fatty acid-binding
protein 2E4 attenuates the inflammation in the mouse model of high-fat diet-induced obesity via toll-like receptor 4 pathway. _Mol. Cell. Endocrinol._ 403, 1–9 (2015). Article CAS PubMed
Google Scholar * Herroon, M. K. _ et al_. Bone marrow adipocytes promote tumor growth in bone via FABP4-dependent mechanisms. _Oncotarget_ 4, 2108–2123 (2013). Article PubMed PubMed
Central Google Scholar * Yore, M. M. _ et al_. Discovery of a class of endogenous mammalian lipids with anti-diabetic and anti-inflammatory effects. _Cell_ 159, 318–332 (2014). Article
CAS PubMed PubMed Central Google Scholar * Maceyka, M. & Spiegel, S. Sphingolipid metabolites in inflammatory disease. _Nature_ 510, 58–67 (2014). Article CAS PubMed PubMed
Central Google Scholar * NCBI. _Fabp4 [Mus musculus] GenBank: CAJ18597.1_ [online], (2005). Download references ACKNOWLEDGEMENTS The authors thank members of the Hotamisligil and Bernlohr
laboratories for helpful discussions. We thank A. P. Arruda for assistance in generating the initial figures, and K. Claiborn for critical reading and editing of the manuscript. The
Hotamisligil laboratory is supported in this area by research funding from the NIH (grant number DK064360) and a sponsored research agreement with Union Chimique Belge. The Bernlohr
laboratory is supported by the NIH (grant number DK053189). AUTHOR INFORMATION AUTHORS AND AFFILIATIONS * Department of Genetics and Complex Diseases and Sabri Ülker Center, Harvard T.H.
Chan School of Public Health, 677 Huntington Avenue, Boston, 02115, MA, USA Gökhan S. Hotamisligil * Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota,
321 Church Street SE, Minneapolis, 55455, MN, USA David A. Bernlohr Authors * Gökhan S. Hotamisligil View author publications You can also search for this author inPubMed Google Scholar *
David A. Bernlohr View author publications You can also search for this author inPubMed Google Scholar CONTRIBUTIONS Both authors researched data for the article, discussed the content, and
wrote, reviewed and edited the manuscript before submission. CORRESPONDING AUTHORS Correspondence to Gökhan S. Hotamisligil or David A. Bernlohr. ETHICS DECLARATIONS COMPETING INTERESTS
G.S.H. receives research funding under a sponsored agreement with Union Chimique Belge. D.A.B. declares no competing interests. SUPPLEMENTARY INFORMATION SUPPLEMENTARY FILE 1 The association
of circulating FABP4 with different human diseases.This figure is an adaptation of Figure 3 in the main text, but includes a complete list of references for the association of circulating
FABP4 with different human diseases. Abbreviations: FABP4, fatty acid binding protein 4; NAFLD, nonalcoholic fatty-liver disease. (PDF 96 kb) POWERPOINT SLIDES POWERPOINT SLIDE FOR FIG. 1
POWERPOINT SLIDE FOR FIG. 2 POWERPOINT SLIDE FOR FIG. 3 POWERPOINT SLIDE FOR FIG. 4 POWERPOINT SLIDE FOR FIG. 5 RIGHTS AND PERMISSIONS Reprints and permissions ABOUT THIS ARTICLE CITE THIS
ARTICLE Hotamisligil, G., Bernlohr, D. Metabolic functions of FABPs—mechanisms and therapeutic implications. _Nat Rev Endocrinol_ 11, 592–605 (2015). https://doi.org/10.1038/nrendo.2015.122
Download citation * Published: 11 August 2015 * Issue Date: October 2015 * DOI: https://doi.org/10.1038/nrendo.2015.122 SHARE THIS ARTICLE Anyone you share the following link with will be
able to read this content: Get shareable link Sorry, a shareable link is not currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing
initiative